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Abstract: Terpenes, especially volatile terpenes, are important components of tea aroma due to
their unique scents. They are also widely used in the cosmetic and medical industries. In addition,
terpene emission can be induced by herbivory, wounding, light, low temperature, and other stress
conditions, leading to plant defense responses and plant–plant interactions. The transcriptional levels
of important core genes (including HMGR, DXS, and TPS) involved in terpenoid biosynthesis are
up- or downregulated by the MYB, MYC, NAC, ERF, WRKY, and bHLH transcription factors. These
regulators can bind to corresponding cis-elements in the promoter regions of the corresponding
genes, and some of them interact with other transcription factors to form a complex. Recently, several
key terpene synthesis genes and important transcription factors involved in terpene biosynthesis
have been isolated and functionally identified from tea plants. In this work, we focus on the research
progress on the transcriptional regulation of terpenes in tea plants (Camellia sinensis) and thoroughly
detail the biosynthesis of terpene compounds, the terpene biosynthesis-related genes, the transcription
factors involved in terpene biosynthesis, and their importance. Furthermore, we review the potential
strategies used in studying the specific transcriptional regulation functions of candidate transcription
factors that have been discriminated to date.

Keywords: terpenoid biosynthesis; MEP and MVA pathways; biotic and abiotic stress factors;
transcriptional regulation; Camellia sinensis

1. Introduction

Terpenoids are the most abundant secondary metabolites of plants with diverse struc-
tures and aromatic scents [1–3]. The chemical structures of terpenoids are extremely variable
yet share the common feature of biosynthesis, and the number of five-carbon isoprene
units in the skeleton structure is the key for the classification of terpenoids [4–7]. Isoprene
(C5), monoterpenes (C10), sesquiterpenes (C15), diterpenoids (C20), sesterterpenes (C25),
triterpenes (C30), and tetraterpenes (C40) are important terpenoid substances [8–10]. It is
well known that terpenoids play an important role in plant life through direct and indirect
plant defense, pollinator attraction, and different interactions between plants and their en-
vironment [11–14]. Monoterpenes (linalool, limonene, myrcene, and trans-β-ocimene) and
some sesquiterpenes (farnesene, nerolidol, and caryophyllene) are common constituents of
floral scents [4,15–17]. In addition, these terpenoid substances might serve as important
signals mediating interactions between plants and herbivores, and they have potential
applications in the pharmaceutical, food, and cosmetic industries [6,18–21].

The mevalonic acid (MVA) and methylerythritol phosphate (MEP) pathways are two
independent, compartmentally separated pathways for terpenoid formation [22–25]. The
MEP pathway is mainly responsible for the biosynthesis of mono- and diterpenes, while
the MVA pathway mainly produces sesquiterpenes, sterols, and triterpenes in plants [1,26].
Linear prenyl diphosphates are the basic building blocks for C5 and can be produced from
the condensation of IPP and DMAPP by prenyltransferases [1]. The precursor of monoter-
penes, geranyl pyrophosphate (GPP), is formed from one DMAPP and one IPP molecule by
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GPP synthase (GPPS) in plastids [27]. Moreover, the precursor of sesquiterpenes, farnesyl
diphosphate (FPP), is synthesized from two IPP molecules and one DMAPP molecule
by farnesyl diphosphate (FPP) synthase in the cytosol [28]. The tremendous diversity of
volatile terpenoids in plants is mainly ascribed to the ample catalytic versatility of ter-
pene synthases (TPSs), many of which have the distinctive ability to synthesize multiple
products from prenyl diphosphate precursors, GPP, FPP, and geranylgeranyl diphosphate
(GGPP) [29,30]. Since the isolation and purification of S-linalool synthase (LIS) from the
flower fragrance in Clarkia breweri by Pichersky [31], some TPS genes related to floral scent
biosynthesis have been gradually reported, such as in citrus (Citrus sinensis) [32], carrot
(Daucus carota) [33], tea (Camellia sinensis) [34], and sweet pea (Lathyrus odoratus) [35]. The
TPS family genes constitute a medium-sized to large family. There are approximately
20–150 functional members in the genomes of almost all plant species [36], and a total of
80 TPS-like genes have been identified in tea plants to date [34].

The biosynthesis of terpenoids is reported to be regulated by a variety of transcription
factors. For example, MYB and MYC were found to work cooperatively in controlling
the expression of terpene synthase genes. In the myb21 mutant of Arabidopsis, it was
observed that the emission of sesquiterpenes catalyzed by AtTPS11 and AtTPS21 was
decreased, but whether AtMYB21 could regulate AtTPS11 and AtTPS21 directly or not
was unclear. Moreover, AtMYB21 and AtMYC2 might form the MYB–bHLH complex
to regulate the biosynthesis of sesquiterpenes [37]. Recently, the highly transactive MYB
transcription factor in Freesia hybrida, FhMYB21L2, was demonstrated to activate the ex-
pression of FhTPS1 via binding to the MYBCORE motif (CAACCG) in its promoter region.
On the other hand, FhMYC2 exhibited a negative effect on the expression of FhTPS1 by
trapping the FhMYB21L2, which might be the proposed regulatory mechanism for the
dynamic change of linalool emission at different developmental stages of the Freesia flowers.
In addition, the MYC2 transcription factor was found to interact with RERJ1 (a bHLH
transcription factor) [38] or DELLA proteins to regulate the expression of sesquiterpene
synthase genes [39]. Other transcription factors, such as NAC, EIN3-like [40], HY5 (bZIP
transcription factor) [41], bHLH [42], and scarecrow-like (SCL) [43], have also been found
to participate in regulating the expression of TPSs.

Tea plants are evergreen perennial plants that originated in southwest China [44].
Although the TPS gene family has been identified and classified in tea plants [34], the func-
tions of most CsTPSs in tea plants remain unknown [45]. Studies based on the integration
of metabolomics and transcriptomics have suggested that the MYB, MYC, bHLH, NAC,
ERF, and WRKY transcription factors may regulate tea aroma through the transcriptional
regulation of the MVA pathway- and MEP pathway-related genes, thereby causing changes
in terpenoid volatiles in tea leaves in different seasons [46–48]. This article discusses the
recent advances in understanding the functions and molecular mechanisms of terpenoid
biosynthesis and the transcriptional regulation of terpenoid production by different types
of transcription factors in tea plants.

2. Terpenoid Compounds in Tea Plants

Terpenes, or terpenoids, include more than 50,000–80,000 compounds with differ-
ent structures, which are important resources for building essential isoprenoid com-
pounds, such as sterols, brassinosteroids, cytokinins, quinones, chlorophyll, tocopherols,
carotenoids, abscisic acid (ABA), and gibberellins [49,50]. Although some terpenes are
primarily responsible for floral scents, including their aromas and physiological effects,
most members of the terpenes are defensive toxins and herbivore deterrents [51]. This
article summarizes the main functions of terpenoids in tea plants according to the research
published in recent years (Figure 1). From the perspective of defense responses, it is well
known that volatile terpenes play essential roles in communication between plants and
in the communication between plants and other organisms, thus improving plant fitness
(for example, through preventing herbivory and improving the success rate of pollina-
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tion) [52]. Because of their special floral scents, some terpenes are widely used in industrial
applications, such as in the pharmaceutical and cosmetic industries [6,18,53].
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nonatriene.

2.1. Terpenoids in Tea Aroma

Tea is the most popular beverage worldwide apart from water due to its sensory
qualities and health benefits [54]. As an important component of tea quality, aroma has
received great attention in tea production [55]. Terpenoids, along with lipids, carotenoids,
phenylpropanoids, and their glycoside derivatives, constitute the main volatile organic
compounds (VOCs) in tea aroma [56,57]. Although terpenoid volatiles have a relatively
low detection threshold, they have been reported as key aroma compounds for the sensory
quality of tea [46]. There are more than 100 types of terpenoid tea aroma substances, most
of which are volatile monoterpenoids (such as geraniol and linalool) and sesquiterpenes
(such as nerolidol) [34,58]. Studies have shown that volatile terpenes dominate the aroma
(more than 60%) in tea products [59,60].

Generally speaking, β-myrcene, α-phellandrene, (Z)-β-ocimene, (Z)-furan linalool
oxide, (E)-furan linalool oxide, γ-terpinene, DMNT, cosmene, (E)-pyranoid linalool ox-
ide, linalool oxide pyranoside, linalyl formate, α-cubebene, γ-elemene, humulene, (E)-
β-famesene, (Z, E)-α-farnesene, α-muurolene, α-farnesene, T-muurolol, α-cadinol, α-
terpineol, geraniol, β-caryophyllen, δ-cadinene, (E)-nerolidol, linalool, D-limonene, and
β-pinene are reported to be important terpene compounds in tea aroma [48,59,61]. Among
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them, linalool and its furan oxides, (Z)-furan linalool oxide and (E)-furan linalool oxide, are
important components of sweet and floral aromas, while (E)-pyranoid linalool oxide and
linalool oxide pyranoside have earthy aromas [62]. Geraniol and linalool oxides present
pleasant floral scents and may be the principal contributors to the floral and green odor of
Longjing tea [63–65]. The compound (E)-nerolidol has floral green, citrus woody, and waxy
odors [59], which are among the characteristic aromas of oolong tea [66]. The content of
these terpenes varies among different tea plant species and might affect the suitability of tea
cultivars, indicating that they may play a major role in the formation of floral fragrance [59].

Although many aroma compounds are found in tea, only a small number of compo-
nents whose concentration exceeds their odor threshold contribute to the aroma charac-
teristics of tea. Different fragrances have different threshold concentrations because the
detection limits of the human olfactory system are different. In some cases, the threshold
concentration between the two different aroma components differs by a thousand times [67].
Linalool, geraniol, and nerolidol are potent odorants of tea, with flavor dilution (FD) factors
of 64, 64, and 32, respectively. These compounds impart tea products with a creamy, rose-
like floral odor [68,69]. Three terpenoids, β-myrcene, D-limonene, and (E)-α-farnesene,
are considered aroma-active compounds and have been detected in Rougui Wuyi rock tea,
especially β-myrcene, which has a spicy aroma that might contribute to herbal or woody
odors [69]. In white tea, volatile terpenes, including β-myrcene, linalool, and geraniol, are
the key potent odorants, and geraniol and linalool mainly contribute a strong floral aroma
when tea leaves are withered under sunlight [70]. In addition, some terpene substances
that do not contribute to human sensory perception are also involved in sensory formation
by indirectly affecting the formation of other aroma components or in response to adverse
processes [59].

2.2. Responses of Terpenoids to Stress

Plants synthesize and release many types of VOCs for reproduction, defense, and com-
munication between plants [71–73]. The formation of volatile terpenoids can be influenced
by various stresses, including biotic stress (such as tea green leafhopper herbivory) and
abiotic stress (such as light, temperature, and wounding) during the tea plant’s growth pro-
cess and the manufacture of tea products [67]. At present, little is known about the specific
mechanism through which plants sense volatiles sent by other plants [52]. Some modern
strategies, such as E. coli, yeast expression systems, and plant transgenic systems, can be
applied to the investigation of the relationships between characteristic aroma compounds
and plants [67].

The direct defenses of plants include physical structures (trichomes and thorns) and
the accumulation of chemical or biochemical compounds induced by herbivore feeding,
most of which exhibit antibiotic activities or toxicity [74]. Some of the sesquiterpenoids
provide direct protection through the formation of phytoalexins, which are produced
as part of the plant’s defense system [75]. Volatiles emitted from damaged vegetative
tissues after herbivore feeding have been reported to exhibit the function of protecting
plants by deterring herbivores and by attracting the enemies of herbivores [5]. It has been
established that herbivory-induced volatile terpenoids may serve as both indirect and
direct defenses [76,77]. After egg deposition or feeding by herbivorous arthropods, plants
can be induced to emit volatile terpenoids [78,79], such as geraniol, farnesene, ocimenes,
linalool, and nerolidol [80]. These volatile blends can be exploited by natural enemies of
the herbivores to locate infested plants (predators and parasitoids), and the release of these
terpenoids is considered to be an important mechanism for plants to indirectly defend
themselves [81]. Herbivore-specific compounds from the oral secretions of feeding insects
might be the underlying cause of a rapid change in the green leaf volatiles emitted from
plants [79]. DMNT, a common volatile released in response to herbivore attacks and a floral
odor constituent, was identified as an effective compound used by herbivorous insects
to find their host plants for feeding and egg deposition [82]. After being attacked by the
geometrid Ectropis obliqua, the emission of DMNT was significantly increased, and it seems
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to have interacted with jasmonic acid (JA) to promote the resistance of neighboring intact
plants to herbivorous insects [83].

In addition to biotic stresses, abiotic stresses have also been found to increase the con-
centration of most volatile terpenes significantly [84]. Recent studies have demonstrated
that light can activate the formation of plant volatiles, while the metabolite levels of tea
leaves require a relatively long time to respond to light treatment. In contrast to natural
light or dark treatment, blue light (470 nm) and red light (660 nm) significantly increased
most endogenous volatile terpenes via significantly upregulating the expression levels of
key genes involved in volatile terpene formation [84]. However, green light irradiation
could markedly damage the aroma and taste of the tea, leading to a strong greenish flavor
and an astringent taste, probably because green light irradiation decreased the contents of
chemical compounds in black tea [85]. Furthermore, UV-B treatment application on one-
year-old potted plants of C. sinensis cv. “Longjing-43” differentially altered the metabolism
of terpenoids with significant effects at 8 h of treatment, demonstrating the strong potential
for UV-B application in flavor improvement in tea [86]. During the processing of tea, the
combination of a low-temperature application and wounding damage has been demon-
strated to improve tea aroma [87]. For example, (E)-nerolidol can be induced during the
turn over stage with the mechanical damage at a relatively low temperature, which is not
detected in intact tea plants [88]. In addition, drought and wounding caused by long-term
withering (36–48 h) significantly induced the upregulated expression of monoterpenes,
such as linalool and geraniol, while floral and fruit flavor compounds ((E)-nerolidol and
cis-jasmone) showed a significant decrease in content concomitantly [58].

2.3. Potential Uses of Terpenoids in Industrial Applications

In addition to distinguishing the importance of some terpenes in the tea aroma quality
due to their unique floral scents as discussed in Section 2.1. of the present work, terpenoids
in tea plants have been widely applied in the medical and cosmetic industries, including
squalene, citronellol, triterpenoid saponin, and geraniol [89–91]. Squalene (C30H50) is an
intermediate hydrocarbon in the biosynthesis of terpenes that was first found in shark liver
oil. Since its discovery, squalene has been widely used in biological applications due to
its beneficial properties, including its anticarcinogenic, antioxidant, and skin-hydrating
properties, among others [92–94]. Due to the health properties of squalene and its rising
demand in industrial uses, alternative sources from plants or microorganisms need to
be identified given the recent restrictions on harvesting sharks [93,95,96]. The essential
oils in medicinal plants have profound applications in treating central nervous system
disorders and diseases of inflammatory etiology. Some of the medicinal plants are rich
in secondary metabolites with antihyperalgesic activity, such as citronellal with antihy-
peralgesic activity [97]. Two enantiomers of citronellol, namely (R)-(+)-β-citronellol and
(S)-(−)-β-citronellol, are distributed in many medicinal and aromatic plants [98]. Triter-
penoid saponins are recognized for their medicinal benefits, such as acylated oleanane-type
triterpene oligoglycosides and florathea saponins A–C in tea plants [99,100]. Oleanane-type
triterpenoid saponins exhibit antiproliferative activity against digestive carcinoma human
cell lines, indicating that triterpenoid saponins may be a valuable tool to improve the effi-
cacy of cytostatics [101,102]. Geraniol is known as an important ingredient in many highly
valued essential oils for its rose-like aroma and is widely applied in cosmetic products [103].
Fragrance is an integral character of cosmetics, and some essential oils of citrus, lavender,
eucalyptus, and tea tree are often used as fragrances in the cosmetic industry to stimulate
the interest among consumers [104,105].

3. Biosynthesis Pathways of Terpenoids

Terpenoids contain the basic building block units for IPP and its isomer DMAPP, from
two relatively separate pathways, namely the MEP and MVA pathways [27], in plastids
and the cytosol, respectively (Figure 2). The MEP pathway is mainly responsible for the
biosynthesis of mono- and diterpenes (~53 and ~1% of total floral terpenoids, respectively),
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and the MVA pathway is mainly responsible for the biosynthesis of sesquiterpenes (~28%
of total floral terpenoids) [1,106]. Although these isoprenoid biosynthetic pathways are sep-
arated, they are connected by metabolic “cross-talk”, which is mediated by unrecognized
transporters [1]. The MEP pathway begins with the condensation of D-glyceraldehyde
3-phosphate and pyruvate and involves seven enzymatic reactions, while the MVA path-
way starts from the stepwise condensation of three molecules of acetyl-CoA and consists
of six enzymatic reactions [107]. Then, two IPP molecules and one DMAPP molecule are
synthesized to form FPP by FPP synthase in the cytosol, and one DMAPP with one IPP
molecule in the plastids results in the formation of GPP, the precursor of monoterpenes, and
is catalyzed by the GPPS [107]. TPS is responsible for the final steps in terpenoid biosynthe-
sis (Figure 2) through catalyzing complex carbocation-driven cyclization, rearrangement,
and elimination reactions [108]. Increasing evidence has shown that the TPS family has
profound plastic functions in variable family sizes and evolving new enzymes with new
functions [108–110]. The TPS family is classified into class I and class II TPSs [111]. Each
group of TPSs has specific motifs that enable their distinctive functions, such as class I TPSs
with the DDxx (D, E) motif and metal-binding NSE/DTE motif and class II TPSs with the
DxDD motif [111–113].
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Figure 2. Terpenoid biosynthesis pathways in plants. MVA, mevalonic acid; AACT, acetyl-
CoA acetyltransferase; HMG, 3-hy-droxy-3-methylglutaryl-CoA; HMGS, hydroxy methylglutaryl-
CoA synthase; HMGR, hydroxy methylglutaryl-CoA reductase; MK, mevalonate kinase; MVAP,
mevalonate-5-phosphate; PMK, phosphomevalonate kinase; MVAPP, mevalonate-5-diphosphate;
MDD, mevalonate-5-diphosphate decarboxylase; IPP, isopentenyl diphosphate; IPPI, isopentenyl
diphosphate isomerase; DMAPP, dimethylallyl pyrophosphate; GGPPS, GGPP synthase; FPPS, farne-
syl pyrophosphate synthase; FPP, farnesyl pyrophosphate; GGPP, geranylgeranyl pyrophosphate;
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TPS, terpene synthase/cyclase; MEP, methylerythritol phosphate; DXS, 1-deoxy-D-xylulose-5-
phosphate synthase; DXP, 1-deoxy-D-xylulose-5-phosphate; DXR, 1-deoxy-D-xylulose-5-phosphate
reductoisomerase; CMS, CDP-ME synthase; CDP-ME, 4-diphosphocytidyl-2-C-methyl-D-erythritol;
CMK, 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase; CDP-ME2P, 4-(cytidine-5′ -diphospho)-2-
C-methyl-D-erythritol-2-phosphate; MCS, 2-C-methyl-D-erythritol-2,4-cyclodiphosphate synthase;
ME-cPP, 2-C-methyl-d-erythritol 2, 4-cyclodiphosphate; HDS, 4-hydroxy-3-methylbut-2-enyl diphos-
phate synthase; HMBPP, 4-hydroxy-3-methylbut-2-enyl diphosphate; HDR, 4-hydroxy-3-methylbut-
2-enyl diphosphate reductase; DMAPP, dimethylallyl diphosphate; IDI, IPP/DMAPP isomerase;
GPPS, GPP synthase; and GPP, geranyl pyrophosphate.

It is generally believed that both class I and class II TPSs are responsible for the for-
mation of hemiterpenes, monoterpenes, sesquiterpenes, diterpenes, sesterterpenes, and
terpenes, while triterpenes and tetraterpenes are mainly synthesized by class II TPSs [114].
To date, few class I TPSs were also charactered to catalyze the formation of large-terpene,
such as C25, C30, and sesquarterpenes (C35) terpenes [114–116]. Isoprene (2-methyl-1,3-
butadiene) is the most common form of hemiterpene and has the smallest and simplest C5
basic building block [117]. Isoprene emissions from plants play important roles in plant
defenses against biotic and abiotic stresses, and they can also improve photosynthetic
performance at high temperatures [118–120]. Monoterpenes are essential substances in
the aromatic oil, cosmetic, perfume, food, and pharmaceutical industries for their unique
odors [121–123]. While monoterpene synthases (mTPSs) are considered to catalyze GPP for
monoterpenes, the GPP transporter has not yet been discovered [111]. The sesquiterpenes
are constituents of floral scents and have health-promoting properties (such as antioxidant,
anti-inflammatory, and anticancer properties), which might be mainly induced by ambient
temperatures [124–128]. Sesquiterpenes are mainly synthesized in the cytosol through the
MVA pathway with FPP as a substrate. In addition, the formation of small amounts of
sesquiterpenes has been detected in plasmids [129,130]. Diterpene biosynthesis is well
known to be initiated in plastids from GGPP in the MEP pathway [131–133]. Diterpene
synthases (diTPSs) can be characterized as class I diTPSs and class II diTPSs, with the
functions of forming additional rings, double bonds, or hydroxyl groups [134,135]. In
addition, diTPS and cytochrome P450 monooxygenase (P450) enzymes have been found to
work in combination to produce novel diterpene compounds [136–138]. Taxol, a famous
diterpenoid secondary metabolite, is considered one of the most effective anticancer agents
originally extracted from the bark of Taxus brevifolia [139]. In the taxol biosynthetic pathway,
taxadiene synthase (TS), taxadiene-5α-hydroxy-lase (T5αOH), and specialized Taxus BAHD
family acyltransferases (ACTs) are responsible for the cyclization of taxadiene and the
modification of the taxane skeleton [140]. In addition, sclareol (labdane diterpenoid) is a
natural starting material for ambrox and related ambroxide synthesis, because of its delicate
odor and fixative properties [141]. In clary sage (Salvia sclarea), the main plant species for
sclareol production, functional modification of labdane and labdane-related diterpenoids
mainly involved the addition of hydroxy groups, which can be catalyzed by diTPSs and
P450s [141,142]. Sesterterpenes consist of relatively rare terpenoid substances that are
formed by geranylfarnesyl diphosphate synthase (GFPPS) using GFPP as the precursor
in the plastid MEP pathway [143–145]. Triterpenes are C30 compounds derived from two
molecules of FPP to generate the squalene catalyzed by squalene synthase (SQS) via the
MVA pathway in the cytoplasm [26,146,147]. Although triterpenoids are not necessary
for plant growth and development, the substances in this group have a wide range of
biological activities and widespread commercial applications [148–151]. Tetraterpenes are
derived from the phytoene condensation of isopentenyl diphosphate (IDP) and dimethy-
lallyl diphosphate (DMADP) by phytoene synthase (PYS) [152]. Carotenoids are the most
representative tetraterpenes and are famous natural functional pigments and photoprotec-
tors that have demonstrated efficiency in preventing human health disorders [153–156].
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4. Transcriptional Regulation of Volatile Terpenoids
4.1. Terpenoid Biosynthesis-Related Genes

To date, the terpene biosynthesis pathways (MEP and MVA) and many genes (such as
HMGR, DXS, and TPS) related to terpenoid biosynthesis in tea plants have been extensively
studied, and it has been demonstrated that TPSs of different classes catalyze the rate-
limiting step of converting terpenoid precursors into monoterpenes, sesquiterpenes, and
diterpenes [46,54]. The plant TPS gene family can be classified into the following subgroups:
a (TPS-a, monofunctional class I sesqui- and di-TPSs), b (monofunctional class I mono-
TPSs), c (TPS-c, monofunctional class II diTPSs), d (TPS-d, gymnosperm-specific class I
mono-, sesqui-, di-TPSs, and bifunctional class II/I diTPSs), g (TPS-g, monofunctional
class I mono-, sesqui-, and di-TPSs), e/f (TPS-e/f, monofunctional class I diTPSs), and
h (TPS-h, Selaginella-specific bifunctional class II/I diterpene synthases (diTPSs)) [108].
Among them, TPS-a, TPS-b, and TPS-g are angiosperm-specific subgroups, while TPS-d
is a gymnosperm-specific subgroup [36,108]. Few plants contain all the TPS subfamilies.
Usually, the TPS family of each plant contains two or more subfamilies. A recent study
identified 80 TPS-like genes in the C. sinensis cv. ‘Shuchazao’ (SCZ) genome, including
TPS-a, TPS-b, TPS-c, TPS-g and TPS-e/f subgroups [34]. Interestingly, most sesquiterpene
synthetized CsTPSs gained high transcriptional levels in flowers and leaves, while limited
monoterpene synthase genes maintained substantial transcript levels in many tested organs.
It was noted that the functions of the most-recognized CsTPSs remained unclear due to the
limitation of sequence precision, indicating that more strategies need to be developed to
obtain the full sequences of these genes for their functional validation in vitro and in plants.
However, through the comprehensive comparison of several different tea plant genomes, it
was found that the CsTPS family varied among different cultivars. For example, CsTPS08
is only annotated in the genome of C. sinensis cv. ‘Huangdan’ (HD) and C. sinensis cv.
‘Tieguanyin’ (TGY) of the oolong tea species with higher terpene aroma, but not completely
annotated in some tea species suitable for green tea processing [45].

Linalool is one of the most abundant and scent-determining constituents, including
two isomers (R)-linalool and (S)-linalool, existing in plants [157–159]. Notably, (R)-linalool
has been found to have a woodier and lavender-like aroma, while (S)-linalool has a sweet,
floral, and petitgrain-like smell [158]. Linalool synthase (LIS) in tea plants specifically
catalyzes the formation of linalool [160]. The transcript levels of CsLISs (CsLIS1, KF006849;
CsLIS2, KR873396) were increased in tea leaves under single-wounding treatment and
continuous-wounding treatment compared to that in fresh tea leaves, indicating that
mechanical damage may promote the release of linalool from tea leaves [61]. Similarly,
wounding stress during the turn over process was presumed to be the main factor to
activate some key genes involved in the formation of volatiles, such as the linalool synthase
gene CsTPS2 (KR873395) [66]. CsTPS42 (CSS0000049), a bifunctional enzyme defined as
CsLIS/NES (NES, nerolidol synthase), can generate linalool with GPP as a substrate, and
the upregulated expression levels of CsTPS42 might lead to the corresponding release of
linalool [48]. In addition, CsTPS2 (KR873395) was also recognized as a linalool synthase
gene that was significantly upregulated during the ‘withering’ step of oolong tea manu-
facture [66]. In conclusion, these previous studies indicate that the fact that the linalool
synthase gene in tea plants might be proposed as a wounding stress-response gene. How-
ever, few studies have focused on the specific linalool stereoisomer-producing genes in
tea plants. Zhou et al. [160] cloned two (R)-linalool synthase candidate genes, CsRLIS
(MT178265) and CsTPS (XM_028210969), which specifically catalyzed the formation of
(R)-linalool and caused the accumulation of internal (R)-linalool during oolong tea manu-
facture. Moreover, the relative expression levels of (S)-linalool synthase and (R)-linalool
synthase genes might cause the dynamic levels of the proportions between two isomers of
linalool among different C. sinensis cultivars.

The genes responsible for the biosynthesis of other essential terpene substances, such
as nerolidol, α-farnesene, and β-ocimene, have also been studied in tea plants [46,48,60].
Nerolidol, a sesquiterpenoid alcohol, is the most effective allelopathic compound showing
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effective applications in agricultural practices [161–164]. In terms of health-promoting
properties and floral scents, nerolidol is also known for its pharmaceutical and medici-
nal values [165–167]. NES is a key enzyme responsible for nerolidol biosynthesis, and
some bifunctional linalool/nerolidol synthases severed by TPS can also produce neroli-
dol [46,165,168,169]. CsTPS4 (KY033151), an NES gene, is significantly downregulated
along with the withering degrees of white tea [60]. Based on the transcriptome analysis
of the green tea spreading process, it was found that the expression level of CsTPS35
(CSS0012706) was generally increased in different tea plant varieties, which was indi-
cated to help produce (E)-nerolidol from FPP [48].The farnesyl pyrophosphate synthase
(FPS) gene is a key enzyme gene in the terpenoid metabolism pathway that is crucial to
the formation of tea quality and flavor [46]. The expression of CsFPS increases with the
aggravation of drought, and the expression of CsFPS is upregulated under light condi-
tions during the withering process of tea [170]. Ocimene (3,7-dimethyl-1,3,6-octatriene), a
ubiquitous floral volatile compound in plants, can be emitted from flowers or vegetative
tissues and can be used to attract pollinators or as an antiaphrodisiac pheromone in plant
defense [171–173]. The FPKM-based gene expression profile of CsOCS2 (OCS, β-ocimene
synthase, and TEA004606.1) showed a high correlation not only with the accumulation
of (E)-β-ocimene, but also with the other three monoterpenes (geraniol, β-myrcene, and
D-limonene) and one sesquiterpene ((E)-β-fanesene) [46]. A new CsOCS gene (MN135992)
that shared a low similarity to the previously characterized tea ocimene synthase genes
(CsOCS1, TEA031457.1; CsOCS2, TEA004606.1) was isolated in ‘TGY’ tea plants [174]. The
in vitro enzymatic reaction experiment indicted that CsOCS protein was a key enzyme
responsible for a large amount of (E)-β-ocimene and a small amount of (Z)-β-ocimene
using GPP as the substrate [174]. In addition, a plastid-located β-ocimene synthase gene
CsBOS1 (TRINITY_DN105425_c1_g2), was determined to be involved in the synthesis of
β-ocimene in tea plants, which is especially sensitive to light treatment and the attack of tea
geometrids [175]. Intriguingly, a CsAFS gene (GFMV01032657) was found that converted
GPP to β-ocimene in vitro, revealing the bifunctional enzyme activity that is common in
the TPS gene family [176]. Meanwhile, the diterpenoid-related genes in tea plants have
recently been reported, including one CPS (ent-copalyl diphosphate synthase, CPS) and two
highly similar KSs (ent-kaurene synthase, KS) [142]. In fast-growing tissues, such as tender
stems and roots, the relative expression levels of CsCPS (MN961684) and CsKSs (MN961685;
MN961686) exhibited highly coordinated patterns [142]. However, it seems that the 1%
differential amino acids between CsKS1 and CsKS2 led to their functional divergence,
according to the functional characterization experimental results [142]. In conclusion, the
identification and definition of these structural genes have provided extended profiles for
future transcriptional investigations.

4.2. Regulation of Transcription Factors Affects Terpenoid Biosynthesis

Many transcription factors have been confirmed to be involved in the regulation of
plant terpenoids (Table 1). Among them, transcription factors that are involved in the
secondary metabolism of plants (ERF and MYB) have been studied extensively. In maize
(Zea mays), TPS10 mainly forms (E)-α- bergamotene and (E)-β-farnesene in leaves damaged
by lepidopteran larvae. These compounds are highly attractive to the natural enemies of
the herbivores [177]. EREB58, an AP2/ERF family transcription factor, was found to be a
positive regulator of TPS10 expression and hence stimulated the emission of two major
TPS10 products [178]. Similarly, PpERF61 in peach (Prunus persica) could activate both
PpTPS1 and PpTPS3 transcriptions simultaneously, leading to the accumulation of linalool
during fruit ripening [179]. In addition to the ERF transcription factor, the expression of
PpbHLH1 in Prunus persica was observed to be significantly positively correlated with flavor-
related linalool production, and PpbHLH1 could directly bind to the E-box (CACATG) in
the PpTPS3 promoter and activate its expression [42]. In tomato (Solanum lycopersicum),
the downregulation of SlMYB75 can moderately increase the sesquiterpene accumulation
(δ-elemene, β-caryophyllene, and α-humulene) through targeting the SlTPS12, SlTPS31,
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and SlTPS35 genes [180]. SlSCL3, the SCL transcription factor, modulates the expression of
terpene biosynthetic pathway genes via transcriptional activation and has similar expres-
sion patterns to those of SlTPS12, while neither direct protein–DNA binding nor interaction
with known regulators has been observed [43]. More information about the biosynthesis of
volatile terpenoids is presented in Table 1. However, it should be noted that the synthesis
of volatile terpenoids is also associated with interactive transcription factor complexes and
epigenetic modifications involving DNA methylation. It is interesting to further examine
the multiple layers of transcriptional regulation for volatile terpenoids.

Table 1. Transcription factors regulating terpene synthesis-related genes in plants.

Transcription
Factor

Accession
Number

Target
TPS Gene

Regulatory
Activity Compound Plant References

EREB58 GRMZM2G381441 TPS10 + (E)-β-Farnesene;
(E)-α-Bergamotene Zea mays [178]

PpERF61 Prupe.5G117800 PpTPS1;
PpTPS3 + Linalool Prunus persica [179]

PpbHLH1 Prupe.8G157500 PpTPS3 + (S)-(+)-Linalool Prunus persica [42]

SlMYB75 FJ705320.1
SlTPS12;
SlTPS31;
SlTPS35

−
δ-Elemene;

β-Caryophyllene;
α-Humulene

Solanum
lycopersicum [180,181]

SlSCL3 Solyc12g099900 N.d +
β-Ocimene;

β-(E)-Caryophyllene;
α-Humulene

Solanum
lycopersicum [43]

MYC2 At1g32640 TPS11;
TPS21 + (E)-β-Caryophyllene. Arabidopsis thaliana [39]

HY5 AT5G11260 AtTPS03 + (E)-β-Ocimene Arabidopsis thaliana [41,182]

FhMYB21L1,
FhMYB21L2

unigene-36442,
unigene-49278 FhTPS1 + Linalool Freesia hybrida [37]

AsMYC2 KP677282
ASS1;

TPS11;
TPS21

+ Volatile sesquiterpenes Aquilaria sinensis [183]

AaNAC2;
AaNAC3;
AaNAC4

KF319047;
KF319048;
KF319049

AaTPS1 + Volatile terpene Actinidia chinensis;
Actinidia arguta [40]

“+”, Transcription factor promotes the expression this target gene. “−”, Transcription factor has negative regulation
activity. N.d., Not defined. TPS, Terpene synthase. ASS, Sesquiterpene synthase. TSB, Tryptophan synthase
β-subunit.

In C. sinensis, the miR171b-3p_2-DELLA-MYC2 and miR166d-5p_1-ABCG2-MYC2
modules were demonstrated to correlate with the terpenoid content, and these modules
could enhance terpenoid biosynthesis in sun-withered leaves [184]. Xu et al. found
that CsMYB13 and CsbHLH10 played possible crucial roles in the regulation of ter-
pene metabolism based on metabolomic and transcriptome profiles [46]. Four CsMYBs,
CsMYB193, CsMYB148, CsMYB147, and CsMYB68, showed high homology to the ter-
penoid regulator MYBs, and the synergistic functions of the MYB, TPS, and MYC2 genes
in terpenoid biosynthesis were confirmed based on the research of Ectropis oblique (EA)
attacking tea leaves [47]. Based on transposase-accessible chromatin with sequencing
(ATAC-seq) and DNA affinity purification sequencing (DAP-seq) analyses of the artificial
hybrids of oolong tea, it was then speculated that MYB83, MYB58, MYB30, MYB81, ARF25,
ARF27, and NAC45 might be the core transcription factors regulating the rate-limiting
enzyme genes (CsDXS, CsHMGS, and CsHMGR) in terpenoid metabolic pathways [185].
More importantly, it was found that CsMYB83 contained a binding peak in the accessible
chromatin region of CsDXS, which provided important evidence for studying its specific
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transcriptional regulation function [185]. Additionally, the metabolic phenotypes and
gene expression profiles of tea leaves revealed a highly significant correlation between
the expression of the NAC, ERF, WRKY, and bHLH transcription factors and key genes
in the terpenoid biosynthesis pathway, suggesting the crucial roles of these transcription
factors in aroma synthesis [48]. Although the comprehensive analysis of metabolomics and
high-throughput sequencing technology has been used to identify many key transcription
factors that might be involved in the biosynthesis of terpenes in tea plants, due to the
lack of relevant evidence on the specific regulatory functions of these transcription factors,
research on the transcription regulation of tea plant terpenes is still at the beginning stage.
For example, it remains unknown whether these candidate transcription factors can directly
bind to the structural genes in the terpene synthesis pathways, whether their transcriptional
regulation functions are positive or negative, and whether there are interactive transcription
factors involved in the regulatory network, and so on. Collectively, in-depth research on
terpene biosynthesis in other horticultural crops has provided good examples for future
investigations in finding answers to the above questions. Through conducting further
in vivo and in vitro experiments on regulatory proteins, researchers can expect to extend
and enrich the current understanding of the field.

5. Conclusions

In recent years, significant progress has been made in the study of terpene biochemistry
in plants, which has promoted the transcriptional regulation of the terpene biosynthesis
pathway in C. sinensis. Based on metabolomic and transcriptomic data, many terpene-
related structural genes and transcriptional regulatory genes have been identified. The
biotic and abiotic stress factors suffered by tea plants stimulate the production of volatile
terpenes and have significant impacts on the quality of tea. Additionally, transcription
factors including MYB, MYC, bHLH, NAC, ERF, and WRKY play important roles in the
biosynthesis of tea plant terpenes. Despite the current knowledge of the close associations
between the expression of individual or multiple genes involved in terpene biosynthesis,
the transcriptional regulation research of tea terpene compounds remains limited. Overall,
identifying additional transcription factors and structural genes would make it easier and
more comprehensive to manipulate the transcription factors involved in pathway-level
regulation. In the future, advanced biotechnologies and metabolic engineering technologies
should be applied to explore the specific functions and binding sites of structural genes
related to the MEP and MVA pathways.
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