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Abstract: Osteoarthritis (OA) is a degenerative disease that causes pain, cartilage deformation, and
joint inflammation. Mesenchymal stem cells (MSCs) are potential therapeutic agents for OA treatment.
However, the 2D culture of MSCs could potentially affect their characteristics and functionality.
In this study, calcium-alginate (Ca-Ag) scaffolds were prepared for human adipose-derived stem
cell (hADSC) proliferation with a homemade functionally closed process bioreactor system; the
feasibility of cultured hADSC spheres in heterologous stem cell therapy for OA treatment was then
evaluated. hADSC spheres were collected from Ca-Ag scaffolds by removing calcium ions via
ethylenediaminetetraacetic acid (EDTA) chelation. In this study, 2D-cultured individual hADSCs or
hADSC spheres were evaluated for treatment efficacy in a monosodium iodoacetate (MIA)-induced
OA rat model. The results of gait analysis and histological sectioning showed that hADSC spheres
were more effective at relieving arthritis degeneration. The results of serological and blood element
analyses of hADSC-treated rats indicated that the hADSC spheres were a safe treatment in vivo. This
study demonstrates that hADSC spheres are a promising treatment for OA and can be applied to
other stem cell therapies or regenerative medical treatments.

Keywords: osteoarthritis; human adipose-derived stem cells; cell spheres; alginate; monosodium
iodoacetate

1. Introduction

Osteoarthritis (OA) is the most common musculoskeletal disease and was assumed to
be the fourth leading cause of disability worldwide in 2020 [1,2]. OA can cause a variety of
discomforts, including pain, stiffness, and dysfunction, which can lead to chronic disability
and significant financial burden, especially in people over the age of 65 [3]. OA affects the
knee joint the most, accounting for nearly 85% of the global burden of OA, followed by the
joints of the hands and hips [2]. In addition, owing to the increase in the global average
life expectancy, the prevalence of OA is also increasing, which has a significant societal
impact [4].
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Generally, non-pharmacological methods are regarded as the primary means of treat-
ing knee OA, including education, self-management, regular exercise, and weight control,
especially in obese people [2,5]. However, when non-pharmacological methods cannot
relieve pain and reduce disability in patients, pharmacological methods are recommended
to treat OA, such as paracetamol and non-steroidal anti-inflammatory drugs (NSAIDs) [5].
However, long-term NSAID use may cause kidney damage, myocardial infarction, gastric
irritation, and gastrointestinal bleeding [6,7].

Intraarticular (IA) injection is an alternative strategy for knee OA therapy. Corticos-
teroids (CS), hyaluronic acid (HA), and platelet-rich plasma (PRP) have been used for the
management of knee OA. CS injection was shown to reduce pain within 1 month post-
injection; HA injections required almost 2–3 months to relieve pain, while PRP injections
significantly reduced pain in knee OA patients within 3 months [8,9]. However, these types
of IA injections only show analgesic and lubrication effects and do not lead to recovery
of cartilage cells in the OA area. Therefore, the pain relief associated with IA injection
diminishes weeks after injection [7,10–12].

Cartilage is a soft connective tissue composed of extracellular matrix (ECM) synthe-
sized by resident chondrocytes; therefore, maintaining the phenotype of healthy chondro-
cytes is important for the quality of ECM maintenance [13]. Nevertheless, self-repair of
articular cartilage (AC) is difficult because of its low regenerative capacity caused by the
lack of blood supply, low cellularity, and a limited number of progenitor cells. Moreover,
autograft cartilage cells also have limitations, such as the small number of cells available
and low chondrogenic ability [14]. Stem cell treatment is another approach for the treatment
of knee OA. Among the various cell therapies, adipose-derived stem cell (ADSC) therapy
is considered promising. ADSCs can differentiate into different mesenchymal cell types,
such as bone, cartilage, and adipocytes [15]. In addition, ADSCs are an abundant source of
multi-potent adult stem cells that are easily isolated from subcutaneous fat tissue using
minimally invasive surgery [16]. Therefore, ADSCs are potential candidates for knee OA
treatment.

Two-dimensional (2D) culture conditions vary widely for each cell type. In 2D culture,
the proliferated cells are grown on the surface of culture flasks, plates, or dishes and the
cell number is limited by the surface area of the culture container. In general, using 2D
culture, it is not possible to reach the cell number required for clinical usage. In addition,
the 2D culture approach has been demonstrated to present critical limitations, resulting in
low differentiation efficiency [17]. To overcome these limitations, a three-dimensional (3D)
cell culture method was developed to improve the cells and physiological equivalence of
in vitro experiments [18]. The use of various dynamic in vitro 3D tissue culture systems to
mimic the native microenvironment of target tissues has been explored for decades [19].
Scaffold-based culture technologies offer physical support to mechanical structures in
ECM-like matrices, on which isolated cells can migrate, proliferate, and aggregate [20].
Moreover, the key functions of these scaffolds are to encourage cell-scaffold interactions;
promote cell adhesion; permit adequate transport of gases and nutrients to ensure cell
survival, proliferation, and differentiation under a negligible amount of inflammation or
toxicity; and control the structure and function of cells [21]. Natural polymer scaffolds
usually demonstrate a lack of immune response and improved cell interactions compared
to synthetic polymers [22].

Alginate is a natural polysaccharide composed of β-D-mannuronate and α-L-
glucuronate that is widely used in tissue engineering [23–25]. Alginate can form hy-
drogels via non-covalent cross-linking with divalent cations [17]. Alginate scaffolds can
also exhibit high porosity, allowing the transportation of gases and nutrients via a simple
freeze-drying method. Moreover, alginate hydrogels have been demonstrated to support
chondrocyte growth and chondrogenesis of mesenchymal stem cells [26,27].

In this study, alginate was cross-linked with calcium ions to form a hydrogel and a
porous scaffold was obtained by freeze-drying. The harvested human adipose-derived
stem cells (hADSCs) were seeded onto Ca-Ag scaffolds and proliferated in a homemade
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functionally closed process bioreactor system. The cells could simultaneously form hADSC
spheres on the Ca-Ag scaffolds and the hADSC spheres could be collected by removal
of calcium ions via ethylenediaminetetraacetic acid (EDTA) chelation. In this study, indi-
vidual 2D-cultured hADSCs or hADSC spheres were evaluated for knee OA treatment.
The monosodium iodoacetate (MIA)-induced OA model was used to prove the concept
and evaluate the efficacy of the developed scaffold in vivo via hematoxylin and eosin
(HE) and toluidine blue staining. Gait analysis was conducted to evaluate the walking
performance of the hADSC-treated MIA-induced OA rats. The OA score was evaluated
using the Osteoarthritis Research Society International (OARSI) osteoarthritis cartilage
histopathology assessment system. The overall process is schemed as shown in Figure 1.
We hypothesized that hADSC spheres would have more potential to treat knee OA than
2D-cultured hADSCs.
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Figure 1. The graph illustrates the concept and strategy for this study. Briefly, the first step was to seed
hADSC into Ca-Ag scaffolds and incubate at a functionally-closed process bioreactor system. At the
end of incubation, the hADSC spheres were collected by non-enzymatic treatment and centrifugation.
The hADSC spheres were injected into the articular cavity for OA therapy.

2. Results
2.1. Characterization of Ca-Ag Scaffolds

The Ca-Ag scaffold were prepared by freeze-drying technique. The scaffolds had a
cylindrical shape with a diameter of 5.87 ± 0.29, height of 6.13 ± 0.34 mm, and dry weight
of 12.35 ± 0.54 mg (Figure 2a). The swelling scaffolds were formed after the scaffolds
absorbed PBS (Figure 2b). The FT-IR spectrum of Ca-Ag scaffold is shown in Figure 2c.
Stretching vibrations of O-H bonds of alginate appeared in the range of 3000–3650 cm−1.
Stretching vibrations of aliphatic C-H were observed at 2920 cm−1. The bands obtained
at 1595 and 1470 cm−1 were contributed from asymmetric and symmetric vibrations of
carboxylate salt ion, respectively. The band of 973 cm−1 was contributed from C-O-C group.
The Ca-Ag scaffolds were confirmed to be dissolvable in 50 mM EDTA solution for 5 min
at 37 ◦C (Figure 2d,e).
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Figure 2. Characterization of Ca-Alginate Scaffolds: (a) the Ca-Ag scaffold was cylinder-shaped
and the average dimensions were 6.13 mm in height and 5.87 mm in diameter; (b) image of Ca-Ag
scaffold after immersed in ddH2O for 5 min; (c) FT-IR spectrum of Ca-Ag scaffold; (d) image of Ca-Ag
scaffold treated with ddH2O for 5 min at 37 ◦C; (e) image of Ca-Ag scaffold treated with 50 mM
EDTA for 5 min at 37 ◦C, at which point the scaffold was fully dissolved.

2.2. Seeding Efficiency and Cell Proliferative Quantification

To determine seeding efficiency of hADSCs on Ca-Ag scaffolds, CellTiter-Glo® Lu-
minescent Cell Viability Assay was used to estimate the cell number after the hADSCs
cultured with the scaffolds for 1 day. Initial cell density was 1 × 106 cells/scaffold and cell
seeding efficiency was about 82.67%. The proliferation of hADSCs adhered to the Ca-Ag
scaffold was determined after culturing with bioreactor on day 14. The 2.35 fold cell growth
from the initial cell density (Figure S1). The hADSC spheres were observed in the Ca-Ag
scaffold at day 14 by a SEM (Figure 3).
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2.3. Gait Analysis

The study was divided into four groups described and abbreviated as follows: (1) the
rats only received normal saline injection (Sham); (2) the rats received MIA injection (MIA);
(3) the rats received MIA injection and were treated with individual cells (2D); and (4) the
rats received MIA injection and were treated with cell spheres (3D).

To explore the effect of hADSC spheres on walking performance in MIA-induced OA
rats, gait analysis was conducted. The results showed that the response times for stance,
brake, and propulsion in MIA-induced OA rats were higher than those in the Sham Group.
Concurrently, the response times of stance, brake, and propulsion in the 2D and 3D groups
decreased compared to those of the MIA Group, while the reaction time of the 3D Group
was much lower than that of the 2D Group; these results indicate that the hADSC spheres
could improve the walking performance of MIA-induced OA rats (Figure 4).
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Figure 4. Evaluation of walking performance by gait analysis (n = 4).

2.4. H&E Stain

Analysis of rat knee joint histological section showed that Sham Group had smooth
surface and regular arrangement of chondrocytes in articular cartilage after 4 weeks postop-
eratively in this animal study. H&E staining of the femorotibial section showed a reduction
in the number of chondrocytes and appearance of empty lacunae after MIA treatment,
indicating that the chondrocytes were damaged. In the sections of 2D and 3D groups,
chondrocytes were partially protected in MIA-induced OA rats (Figure 5). The empty
lacunae and chondrocyte of H&E section were illustrated in Figure S2.
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H&E staining results at 8 weeks post-operatively indicated the Sham Group main-
tained the normal cartilage phenotype. However, the number of chondrocytes reducing
was observed in the superficial and transition zones of the articular cartilage in the MIA
group. The OA rats treated with individual hADSCs or hADSC spheres showed improving
phenotype compared to the MIA Group. In addition, the 3D Group kept the cartilage
phenotype (Figure 5). Overall, these results verified that hADSC spheres had a better effect
in relieving arthritis degeneration compared with the 2D Group.

2.5. Toluidine Blue Stain and OA Score

The results of toluidine blue staining 4 weeks after surgery are shown in Figure 6. The
length from the cartilage surface to the tidemark was measured in the Sham, MIA, 2D, and
3D groups as 131.81, 64.47, 51.32, and 153.95 µm, respectively. At 8 weeks postoperatively,
the measured lengths from the cartilage surface to tidemark were 192.10, 73.69, 63.16, and
184.87 µm in the Sham, MIA, 2D, and 3D groups, respectively (Figure 4). The toluidine
blue-positive cartilage was only present in the Sham and 3D groups, which indicates that
the cartilage could restore the ability to synthesize ECM.
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Figure 6. Toluidine blue staining of knee articular cartilage (scale bar = 100 µm).

The sections were further evaluated for OA scores. The scores at 4 weeks after surgery
were 0 ± 0, 14 ± 2.31, 11.5 ± 6.40, and 0.75 ± 0.96 in the Sham, MIA, 2D, and 3D groups,
respectively (Figure 7a). At 8 weeks postoperatively, the scores of the Sham, MIA, 2D, and
3D groups were 0 ± 0, 16 ± 1.63, 12.5 ± 5.74, and 0.5 ± 0.57, respectively (Figure 7b).
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From these results, we conclude that hADSC spheres are a better choice for OA
treatment than 2D-cultured cells.

2.6. Serological and Blood Elements Analysis

To evaluate the safety of the hADSC treatment, serological and blood element analyses
were performed. Blood samples were collected from the tail veins of rats at 4 (Table 1)
and 8 weeks (Table 2). The results indicated that the aspartate aminotransferase (GOT)
increased in the MIA and 2D groups at 4 weeks. Moreover, the results showed no significant
difference between the 3D and Sham groups. These results indicate that hADSCs spheres
injected into the joint cavity of rats did not trigger tissue inflammation and showed no liver
or kidney toxicity.

Table 1. Biochemical and hematological tests for 4 weeks treatment on MIA-induced OA rats
(* p < 0.05 compared to Sham Group).

Item Unit Sham MIA 2D 3D

RBC 106/µL 7.67 ± 0.29 7.73 ± 0.88 7.63 ± 0.51 7.63 ± 0.38
WBC 103/µL 9.08 ± 0.93 9.86 ± 3.39 9.92 ± 1.92 10.18 ± 0.96
PLT 103/µL 866.50 ± 209.56 819.50 ± 454.21 906.75 ± 391.95 911.67 ± 198.61
Monocyte 103/µL 0.46 ± 0.10 0.41 ± 0.14 0.45 ± 0.10 0.49 ± 0.07
Lymphocyte 103/µL 6.53 ± 0.65 6.61 ± 3.03 5.96 ±2.04 7.15 ± 0.47
GOT U/L 88.33 ± 9.29 110.00 ± 1.41 * 108.50 ± 2.12 * 87.50 ± 7.78
GPT U/L 28.75 ± 2.22 35.75 ± 5.74 34.00 ± 3.46 30.00 ± 4.40
ALP U/L 1127.50 ± 428.25 1085.00 ± 268.52 1082.75 ± 224.38 1055.00 ± 344.34
BUN mg/dL 17.75 ± 2.00 19.80 ± 1.42 19.75 ± 1.42 18.65 ± 2.51
CRE mg/dL 0.34 ± 0.04 0.28 ± 0.02 0.25 ± 0.03 * 0.28 ± 0.05

RBC—red blood cell; WBC—white blood cell; PLT—platelet; GOT—aspartate aminotransferase; GPT—alanine
aminotransferase; ALP—alkaline phosphatase; BUN—blood urea nitrogen; CRE—creatinine.

Table 2. Biochemical and hematological tests for 8 weeks treatment on MIA-induced OA rats.

Item Unit Sham MIA 2D 3D

RBC 106/µL 8.11 ± 0.54 7.98 ± 0.59 7.99 ± 0.22 8.32 ± 0.44
WBC 103/µL 6.36 ± 1.50 6.76 ± 0.88 6.65 ± 0.49 6.54 ± 0.75
PLT 103/µL 943.50 ± 67.18 939.33 ± 273.35 937.33 ± 290.18 868.50 ± 62.66
Monocyte 103/µL 0.41 ± 0.09 0.32 ± 0.09 0.37 ± 0.11 0.39 ± 0.05
Lymphocyte 103/µL 4.48 ± 0.86 4.03 ± 0.66 4.17 ± 0.52 4.19 ± 0.46
GOT U/L 71.25 ± 3.40 67.50 ± 21.02 81.50 ± 19.84 83.50 ± 6.36
GPT U/L 27.70 ± 2.38 27.75 ± 6.29 27.50 ± 5.92 32.50 ± 1.00
ALP U/L 890.50 ± 53.03 850.67 ± 154.57 877.00 ± 150.79 928.00 ± 64.63
BUN mg/dL 18.40 ± 1.14 19.33 ± 3.44 19.27 ± 4.10 18.20 ± 0.84
CRE mg/dL 0.23 ± 0.02 0.28 ± 0.03 0.27 ± 0.04 0.26 ± 0.03

RBC—red blood cell; WBC—white blood cell; PLT—platelet; GOT—aspartate aminotransferase; GPT—alanine
aminotransferase; ALP—alkaline phosphatase; BUN—blood urea nitrogen; CRE—creatinine.

3. Discussion

Stem cells have been widely used in tissue regeneration owing to their multi-
differentiation and self-renewal abilities [28]. Mesenchymal stem cells (MSCs) are multi-
potent stem cells capable of differentiating into diverse mesodermal lineages of osteoblasts,
chondrocytes, and adipocytes [29]. ADSCs belong to the MSC family and are derived from
adipose tissues. Unlike bone marrow mesenchymal stem cells (BMSCs), ADSCs can be
easily isolated through liposuction, which is minimally invasive and less painful. Moreover,
compared with BMSCs, ADSCs can be harvested at a level of 100–1000 times the number
of cells under the same extraction volume and can be a potential candidate for stem cell
therapy [30,31]. In this study, we isolated ADSCs from human adipose tissue and used OA
treatments for rats for the following reasons: (1) adipose tissue is an abundant source of
hADSCs; (2) it has been reported that hADSCs do not express MHC class II, i.e., hADSCs
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do not trigger a xenogenic immunologic reaction [32]; and (3) the final goal of our OA
treatment strategy is to use human autologous hADSCs to treat OA.

Animal models of OA can be divided into naturally occurring OA, surgically induced
OA, and chemically induced OA. Spontaneous OA models do not require any interventions
to induce this condition. However, the limitation is inherent variability, which incurs
greater numbers and costs [33]. A variety of surgically induced models have been reported
and the commonly used models for rodents include meniscectomy, destabilization of the
medial meniscus (DMM), meniscal tear, and anterior cruciate ligament (ACL) or posterior
cruciate ligament transection [34]. However, some surgeries require well-trained operators
to avoid experimental variation. Chemically induced models involve injection of toxic or
inflammatory compounds directly into the knee joint. This is a less invasive and more easily
performed method for inducing OA. The severity of the induced OA can also be evaluated
and optimized through dosage control. Moreover, the model only required a single injection
for OA induction; the commonly used agents included immunotoxins, collagenase, papain,
and MIA. MIA is the most commonly used compound in OA studies and is an inhibitor
of glyceraldehyde-3-phosphate dehydrogenase of the Krebs cycle, leading to the death of
chondrocytes. This model generates a reproducible, robust, and rapid pain-like phenotype
that can be graded by altering MIA dosage [35,36].

Cell-based therapy is increasingly popular and has attracted much attention for the
treatment of incurable diseases. However, a major limitation of cell-based therapy is the
need for large cell numbers. It is estimated that up to 109 cells are required for a single
treatment. Currently, it is difficult to harvest sufficient cell numbers for medical use using
traditional cell culture methods [37,38]. For example, the maximum yield of cells harvested
from a 75T flask is approximately 107 cells. Hence, for cell transplantation treatment, the
operator needs to prepare more than 100 T75 flasks to reach 100 million cells, which could
cause batch variability, inefficiency, and low quality of transplantable cells in 2D culture.
In addition, these processes also have the risk of exposure to contamination. Therefore,
the bioreactor system plays a key role in cell expansion in cell-based therapy for clinical
translation.

The defined bioreactor was designed to mimic the physiological conditions to provide
a good environment for the cells to adhere, survive, and proliferate on the scaffolds [39].
In our previous study, a closed bioreactor system was designed to culture osteoblast cell
clusters [17]. In this study, hADSCs were seeded onto the Ca-Ag scaffold and cultured in
our homemade functionally closed process bioreactor system. The hADSC spheres were
formed on the Ca-Ag scaffolds and grown in the bioreactor under a constant medium flow
supplying nutrition to maintain cell survival and proliferation in the scaffolds. The hADSC
spheres were collected and compared with 2D-cultured hADSCs for OA treatment. These
results verified that hADSC spheres had a better effect in relieving arthritis degeneration
compared with the 2D-cultured hADSCs. However, the cell proliferation rate was a
limitation in this study. There was only 2.35 times cell growth from the initial cell density
obtained after culturing with bioreactor for 14 days. Through modification of the surface
area of scaffold, the cell seeding method and nutrition supply of bioreactor could improve
the proliferation rate in this bioreactor system.

ADSC spheroids have been suggested to improve cell biological properties, including
increasing cell viability and proliferative capacity, stabilizing morphology, and improving
metabolic functions, compared to 2D cultures [40]. In addition, it has been reported that
3D cultures can enhance differentiation markers and anti-inflammatory cytokine gene
expression and stimulate ECM secretion [14]. In this study, the walking performance of 3D
hADSC-treated MIA-induced OA rats were significantly improved compared to that of rats
administered 2D-cultured hADSCs (Figure 4). The femorotibial section showed that the 3D
hADSC sphere-treated groups had the least chondrocyte damage and greatest ability to
synthesize ECM (Figures 5 and 6). The OA score was also significantly reduced, indicating
recovery of OA rats (Figure 7). The results of the animal study suggested that hADSC
sphere treatment had a better effect than individual cells in relieving arthritis degeneration
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in MIA-induced rats; it also exhibited a chondrocyte protection effect. Moreover, according
to the serological and blood element analysis of hADSC-treated OA rats, no inflammation
indicators for liver and kidney toxicity were observed, indicating that the hADSC spheres
were a safe treatment in vivo (Tables 1 and 2). In summary, these results suggest that
hADSC spheres are a promising treatment for OA and can be applied to stem cell therapies
or other applications in regenerative medicine.

4. Materials and Methods
4.1. Materials

Sodium alginate (100–300 cP, 2% (25 ◦C)), calcium chloride, EDTA, formaldehyde,
monosodium iodoacetate (MIA), sodium chloride, xylene, hematoxylin, eosin Y, and tolui-
dine blue were purchased from Sigma-Aldrich (St. Louis, MO, USA). hADSCs was pur-
chased from Invitrogen (Waltham, MA, USA), while CellTiter-Glo® Luminescent Cell
Viability Assay kit was purchased from Promega (Madison, WI, USA). Isoflurane was pur-
chased from Panion & BF Biotech (Taipei, Taiwan), while Ethanol was purchased from Echo
chemical (Miaoli, Taiwan). Povidone-iodine was purchased from Jen Sheng pharmaceutical
Co., Ltd. (Taichung, Taiwan)

4.2. Preparation of Ca-Ag Scaffolds

Ca-Ag scaffolds were prepared using a freeze-drying method, as described previ-
ously [17]. In brief, 1.5% (w/v) of sodium alginate (A2158, Sigma, St. Louis, MO, USA) was
dissolved in de-ionized water at room temperature; the solution was then transferred into
a 48-well culture plate with a volume of 1 mL per well. The culture plate was frozen at
−20 ◦C overnight and porous alginate sponges were obtained using a freeze-dryer. The
dried alginate sponges were cross-linked with 2% calcium chloride (C1016, Sigma, USA)
solution for 1 h at room temperature to prepare Ca-Ag scaffolds. The cross-linked Ca-Ag
scaffolds were sterilized with 75% ethanol (48840001041-06-75EC, Echo chemical, Taiwan),
dried in a gradient series of ethanol, and stored at room temperature for later use. A FT-IR
spectroscopy (Spectrum 100 FT-IR Spectrometer, PerkinElmer, Waltham, MA, USA) with
auto-attenuated total reflectance (ATR) accessory was used to detect the functional group
of Ca-Ag scaffold. The spectra were recorded wavelength between 4000 to 600 cm−1 with a
resolution of 8 cm−1; the number of scans performed was 4.

4.3. Seeding of hADSCs on Ca-Ag Scaffolds

hADSCs (StemPro® Human Adipose-Derived Stem Cells, R7788-115, Invitrogen, USA)
were generously provided by Gwo Xi Stem Cell Applied Technology. The hADSCs were
suspended in the medium and seeded into scaffolds at a density of 1 × 106 cells/scaffold.
The scaffolds with hADSCs were placed in a 24-well culture plate for 24 h at 37 ◦C under
5% CO2 for cell adhesion and transferred to a functionally closed process bioreactor system.
The medium was circulated at an initial pump setting of 1 mL/min using a peristaltic pump.
The hADSCs spheres were obtained from Ca-Ag scaffolds by dissolving the scaffolds in
50 mM EDTA (324503, Sigma, USA) solution for 5 min at 37 ◦C.

4.4. Seeding Efficiency and Cell Proliferative Quantification

The seeding efficiency of hADSCs on Ca-Ag scaffolds was quantified by CellTiter-Glo®

Luminescent Cell Viability Assay (G7570, Promega, USA). The hADSCs were briefly seeded
into Ca-Ag scaffolds at a density of 1 × 106 cells/scaffold. The scaffolds with hADSCs
were placed in a 24-well culture plate for 24 h at 37 ◦C under 5% CO2 for cell adhesion. The
scaffolds were transferred into another well and treated with 50 mM EDTA solution for
5 min at 37 ◦C to obtain hADSCs spheres. The supernatants were discarded after centrifuged
for 5 min at 1200 rpm. Both the hADSCs spheres and cultured medium were reacted with
0.5 mL of CellTiter-Glo® reagent for 30 min in a dark environment. The luminescent
intensities were recorded using multilabel plate readers (EnSpire, PerkinElmer, USA).
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The seeding efficiency was calculated by the following formula: seeding efficiency (%) =
100 × IhADSCs /(IhADSCs + Icultured medium), where I is the luminescent intensities.

Cell proliferative quantification was performed at the end point. The scaffolds were
collected from bioreactor on day 14 and transferred into a 50 mL tube. The scaffolds were
then dissolved for obtaining the hADSCs spheres by treating 50 mM EDTA solution for
5 min at 37 ◦C. The supernatants were discarded after being centrifuged for 5 min at
1200 rpm. The hADSCs spheres were reacted with 0.5 mL of CellTiter-Glo® reagent for
30 min in a dark environment. The luminescent intensities were recorded using multilabel
plate readers (EnSpire, PerkinElmer, USA).

4.5. SEM Analysis

The morphology of hADSC spheres on Ca-Alginate scaffolds was observed by a SEM
(TM-1000, Hitachi, Tokyo, Japan). The sample was fixed with 4% formaldehyde (HT501128,
Sigma, USA) for 2 h and dehydrated using a graded ethanol series (30–100%). All the
samples were dried by critical point drying method and sputter-coated with platinum.

4.6. Animal Study
4.6.1. Rat OA Model

Male Sprague–Dawley rats (176–200 g) were used in this study. The rats were pur-
chased from BioLASCO, Taiwan, and delivered to the Laboratory Animal Center, National
Health Research Institutes, Taiwan, seven days before the experiment began to accommo-
date the environment. One cage per two rats was utilized throughout the experimental
period with a controlled temperature and humidity of 22 ◦C and 55%, respectively; the
period also used a 12-h light-on and -off method. The study protocol was approved by the
Institutional Animal Care and Use Committee of the National Health Research Institutes
(NHRI-IACUC-107115).

To induce MIA-induced OA, rats were anesthetized with isoflurane (Panion & BF
Biotech, Taiwan) and given a single intra-articular injection of 0.3 mg monosodium iodoac-
etate (MIA, I2512, Sigma, USA) prepared in 50 µL of sterile normal saline (S5866, Sigma,
USA) through the infrapatellar ligament of the left knee. The rats were anesthetized with
isoflurane and the injected area was sterilized using 75% ethanol and povidone–iodine
(F18030, Jen Sheng pharmaceutical Co., Ltd., Taiwan). MIA was injected using a syringe
with a 27-gauge needle. After 3 days of MIA treatment, the rats were anesthetized with
isoflurane and 50 µL of individual cells (1 × 106), cell spheres (1 × 106), or normal saline
was injected into the same MIA-induced location.

Gait analysis was performed using a Treadscan 4 weeks after cell injection. At the end
of the experiment, the rats were sacrificed and blood was collected directly.

4.6.2. Serological and Blood Elements Analysis

For serological analysis, blood was collected in a blood collection tube (450533, Greiner
Bio-One, Kremsmünster, Austria). The collection tubes were centrifuged for 10 min at
3500 rpm (5500, Kubota, Osaka, Japan). The supernatant was collected and analyzed for
liver function (AST and ALT), alkaline phosphatase (ALP), and renal function (BUN and
CRE) using a serology analyzer (DRI-CHEM NX-500 I, Fujifilm, Tokyo, Japan).

For blood element analysis, blood was collected in a purple collection tube containing
an EDTA anticoagulant and mixed homogeneously for analysis. The white blood cells
(WBCs), red blood cells (RBCs), hemoglobin (HGB), hematocrit ratio (HCT), platelets (PLT),
neutrophils (NE), eosinophilic multinuclear (EO), basophil (BA), lymphocytes (LY), and
mononuclear spheres (MO) were analyzed using a hematology analyzer (BC-5000 VET,
Mindray, Shenzhen, China).

4.6.3. Histological Staining

Knee joint tissue samples were harvested using a sterilized surgical instrument. The
surrounding soft tissue samples were carefully trimmed and cleaned with PBS. The samples
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were placed in a 4% formaldehyde solution (HT501128, Sigma, USA) for fixation and
subsequently decalcified in 5% nitric acid for 2 weeks. The tissue was embedded in paraffin
in a tissue embedder (Tissue-Tek TEC-6, Sakura Finetek, Torrance, CA, USA) and the
paraffin blocks were sectioned (5 mm-thick sections) using a rotary microtome (RM 215,
Leica, Nußloch, Germany).

For H&E staining, the sections were deparaffinized with xylene (534056, Sigma, USA),
followed by serial ethanol rehydration. The slides were then placed in a Coplin jar con-
taining a hematoxylin solution (GHS3, Sigma, USA) for 5 min and rinsed with ddH2O for
2 min. The sections were stained with 1% eosin Y solution (E4382, Sigma, USA) for 3 min
and dehydrated two times with 95% ethanol and two changes of absolute ethanol. The
sections were cleaned with xylene for 5 min and placed on the cover slide with mounting
media. Images were observed using an optical microscope (Eclipse 80i, Nikon, Tokyo,
Japan).

Toluidine blue staining was used for knee joint evaluation after cell treatment. The
sections were briefly deparaffinized using xylene, followed by serial ethanol rehydra-
tion. The slides were dipped into a Coplin jar containing 0.04% of toluidine blue solution
(T3260, Sigma, USA) for 10 min and rinsed with ddH2O for 1 min. The sections were then
dried at room temperature and washed with xylene for 5 min. The sections were covered
with a cover slide using mounting medium. The images were observed using an optical
microscope and the OA score was evaluated by toluidine blue staining following the Os-
teoarthritis Research Society International (OARSI) osteoarthritis cartilage histopathology
assessment system. The OA score index for the combined grade and stage was recom-
mended. The OA score was calculated using the following formula: score = grade × stage,
with a range of 0–24 based on the most advanced grade and most extensive stage [41].

4.7. Statistic Method

All the results and data were presented with means ± standard deviation. Statistical
analyses were performed by one-way ANOVA. The results were considered of significant
difference when the p-value < 0.05.

5. Conclusions

In this study, we successfully developed Ca-Ag scaffolds for human adipose-derived
stem cell (hADSC) proliferation and incubated them with a homemade functionally closed
process bioreactor system. These results provide an alternative therapeutic strategy for
intra-articular knee OA therapy. In addition, the results of the in vivo study indicate that
hADSC sphere treatment improved the walking performance and OA score of MIA-induced
OA rats. These findings fully support the argument that hADSC heterologous stem cell
therapy is safe and effective for OA treatment.
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