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Abstract: The lectin TFF2 belongs to the trefoil factor family (TFF). This polypeptide is typically
co-secreted with the mucin MUC6 from gastric mucous neck cells, antral gland cells, and duodenal
Brunner glands. Here, TFF2 fulfills a protective function by forming a high-molecular-mass complex
with the MUC6, physically stabilizing the mucus barrier. In pigs and mice, and slightly in humans,
TFF2 is also synthesized in the pancreas. Here, we investigated the murine stomach, pancreas, and
duodenum by fast protein liquid chromatography (FPLC) and proteomics and identified different
forms of Tff2. In both the stomach and duodenum, the predominant form is a high-molecular-
mass complex with Muc6, whereas, in the pancreas, only low-molecular-mass monomeric Tff2 was
detectable. We also investigated the expression of Tff2 and other selected genes in the stomach,
pancreas, and the proximal, medial, and distal duodenum (RT-PCR analysis). The absence of the
Tff2/Muc6 complex in the pancreas is due to a lack of Muc6. Based on its known motogenic, anti-
apoptotic, and anti-inflammatory effects, we propose a protective receptor-mediated function of
monomeric Tff2 for the pancreatic ductal epithelium. This view is supported by a report that a loss of
Tff2 promotes the formation of pancreatic intraductal mucinous neoplasms.

Keywords: trefoil factor; TFF2; lectin; stomach; pancreas; mucin; MUC6; pancreatic cancer; branching
morphogenesis; pancreatic organogenesis

1. Introduction

TFF2 (formerly: (pancreatic) spasmolytic polypeptide [1,2]) is a secretory polypeptide
belonging to the trefoil factor family (TFF; reviews: [3,4]). Its exocrine secretion predomi-
nantly occurs in gastric mucous neck cells, antral gland cells, and duodenal Brunner glands
cells, together with the mucin MUC6 [5–8]. In the mouse, and not in the human, Tff2 is the
predominant TFF peptide in the lung [9,10]. In some species (such as pig and mouse), it is
clearly expressed in the pancreas [2,11–14], exclusively in the exocrine acini of the glands,
as shown for the pig [15] and the mouse [14]. From here, TFF2 reaches the duodenum via
the pancreatic duct and the ampulla of Vater as a constituent of the pancreatic juice. As
known from the porcine pancreas, TFF2 secretion is highly regulated and very sensitive to
physiological stimuli [16]. Its release into the pancreatic juice is controlled by parasympa-
thetic mechanisms, which also stimulate in parallel the secretion of a cocktail of pancreatic
food-digesting enzymes [16]. One of the major physiological stimuli is the ingestion of
food [16].

In humans, TFF2 was reported as not being detectable in a normal pancreas [17,18]
or in the ampulla of Vater (also known as hepatopancreatic ampulla) [7]. However, small
amounts of TFF2 are probably restricted to the human exocrine pancreatic ducts [19,20],
and minute amounts of TFF2 and MUC6 are secreted from the pancreatic duct glands
(PDGs) of the human and mouse, mainly found in the proximal and central pancreatic
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duct epithelium [21]. Of special note, these PDGs harbor progenitor cells responsible for
pancreatic ductal epithelial repair [21].

In addition to its exocrine secretion, there is also endocrine secretion of TFF2 (re-
view: [4]), in particular in lymphoid tissues (spleen, lymph nodes, and thymus [22,23])
and the CNS [24]. Furthermore, aberrant and partially ectopic expression of TFF peptides
is observed during pathological conditions, such as inflammation, a specific metaplasia
(spasmolytic polypeptide expressing metaplasia, SPEM), and tumors (reviews: [6,25,26]).
For example, TFF2 is upregulated in a murine pancreatitis model and in human pancreati-
tis, [20,21] as well as in pancreatic carcinoma [27].

Mammalian TFF2 contains two cysteine-rich TFF domains, and the N- and C-terminal
regions are connected with an additional disulfide bridge between Cys-6 and Cys-104,
generating a circular structure (Figure 1; reviews: [2,28]). Human TFF2 is N-glycosylated,
containing in its gastric form an unusual fucosylated N,N’-diacetyllactosediamine (Lacd-
iNAc) oligosaccharide [29], whereas the porcine and murine homologous polypeptides are
not N-glycosylated (Figure 1). The extent of N-glycosylation, as well as the concentration
of TFF2 in the human gastric juice, shows dramatic diurnal variations [30]. There is also an
ortholog of TFF2, termed xP4, in the frog Xenopus laevis, which contains four TFF domains
arranged in tandem [31,32]. Furthermore, a peptide with astonishing structural similarity
to TFF2 exists in X. laevis skin, also consisting of two TFF domains [33].
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staining of MUC6 in both gastric and Brunner glands [38,39]. 
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Figure 1. Disulfide-linked schematic structure of TFF2. Cysteine residues are shown in yellow. The
N-linked carbohydrate moiety typical of human TFF2 is indicated.

The molecular function of TFF2 in the stomach (and the duodenum) has been es-
tablished as a lectin, which binds specifically to the terminal carbohydrate moiety of the
mucin MUC6, i.e., the GlcNAcα1→4Galβ1→R epitope (review: [34]). This glycotope is
evolutionarily conserved in MUC6 from frog to human [35], which explains why porcine
TFF2 even binds to the X. laevis ortholog of MUC6 [36]. The key enzyme for the synthesis
of the unusual terminal αGlcNAc residue is α1,4-N-acetylglucosaminyltransferase (α4GnT;
encoded by the A4gnt gene in the mouse), which shows the same highly restricted expres-
sion pattern as MUC6 and TFF2, i.e., gastric mucous neck cells, antral gland cells, and
duodenal Brunner glands (review: [37]). The αGlcNAc residue is recognized by the lectin
GSA-II from Griffonia simplicifolia [35]. Thus, GSA-II is often used for histochemical staining
of MUC6 in both gastric and Brunner glands [38,39].

The physical interaction of TFF2 and MUC6 probably creates a crosslinked mucous
network, which affects the viscoelastic properties of mucous gels, as shown in vitro [40],
and even prevents shrinking of secretory granules during the processing of the sam-
ples for electron microscopy [41]. This explains why, in the alternating mucin layers of
the gastric mucus, TFF2 is strictly co-localized with MUC6 [8,42]. Taken together, by
crosslinking MUC6, TFF2 is an integral structural constituent of the gastroduodenal mucus
barrier, the latter physically protecting the cells from acid-induced damage and bacterial
infection [4,28,43,44].

In addition to being a structural component of the gastroduodenal mucus, various
biological activities have been described for monomeric TFF2 in vitro, indicating a receptor-
mediated function, such as enhancement of cell migration (motogenic effect) and inhibition
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of apoptosis (reviews: [3,4,6]). For example, TFF2 weakly enhanced the chemotaxis of
bronchial BEAS-2B cells [45–47], as well as pancreatic cell lines [20], and inhibited apoptosis
in several cancer cell lines [48,49] and pancreatic explant cultures [14]. Both of these effects
are perfectly suited to synergistically enhance the rapid repair of epithelia by cell migration,
a process termed “restitution” (reviews: [3,4,50]). Cell migration and survival mechanisms
are even coordinately regulated [51]. Of note, these effects are observed at concentration
ranges of 5× 10−8–10−6 M or above only, excluding TFF2 as a classical high-affinity peptide
ligand (review: [4]). Thus, rather low-affinity interactions typical of lectins were proposed to
modulate a variety of glycosylated receptors (“lectin-triggered receptor activation/blocking
hypothesis” [25,28,52]). A similar mechanism was described for galectins [53], and it would
also explain the role of TFF2 as an anti-inflammatory factor and for the promotion of Th2
immunity (reviews: [22,25]). For example, TFF2 was reported, e.g., to block activation
of the interleukin (IL)-1β receptor in macrophages [23], to antagonize the IL-12 release
from macrophages (probably via a Toll-like receptor, TLR), or to induce IL-13 expression
in gastric surface mucous cells (review: [25]). In addition to the IL-1β receptor and a
TLR, CXCR4 might be one of the putative TFF2 receptors [54,55], together with a plethora
of other transmembrane glycoproteins, such as β1-integrin, CRP-ductin/DMBT1gp340,
proteinase-activated receptor PAR4, and LINGO3 (reviews: [3,4,25]).

There are also indications of the existence of different Tff2 receptors in embryonic
pancreatic cells, with biological responses at a Tff2 concentration of 3 × 10−7 M [14]. Tff2
was detectable starting at E16.5 in developing acinar cells [14]. At that time, secondary tran-
sition branching morphogenesis was observed (review: [56]). A combination of diffusible
protein ligands and specific receptors plays a key role in this process. Remarkably, Tff2
prevented the apoptosis of insulin-producing cells and Nkx6.1+ precursor cells through
CXCR4 and a yet unidentified Tff2 receptor, respectively [14]. These results are reminiscent
of those describing an anti-apoptotic effect, as well as branching morphogenesis (tubu-
logenesis), promoted by TFF2 (at concentrations of 5 × 10−8 M to 10−7 M) in a cancer
cell line [48]. The effect of TFF2 on branching morphogenesis would be ideally suited to
support murine pancreatic organogenesis, probably together with other factors [56]. Thus,
a detailed analysis of the pancreas of Tff2KO mice would be highly interesting as changes
might also explain the protection of Tff2KO mice from high-fat-induced obesity [57], e.g.,
due to the down-regulation of pancreatic lipases.

Tff2-deficient (Tff2KO) mice do not show a severe phenotype (reviews: [4,22,25]). They
have increased susceptibility to indomethacin-induced ulcerations [58], Helicobacter pylori-
induced gastritis [59], and Yersinia enterocolitica infection, and their recovery after dextran
sodium sulfate (DSS)-induced colitis is delayed (reviews: [4,25]). Macrophages of Tff2KO

mice are hyper-responsive to IL-1β stimulation and have an increased level of IL-12/23p40,
and altered expression of immune-regulating genes [22,23]. Of note, when transgenic
Pdx1-Cre;LSL-KRASG12D (KC) mice were bred with Tff2KO mice, the KC/Tff2KO offspring
developed a greater number and higher grade of pancreatic intraepithelial neoplasia than
the KC mice, indicating a tumor-suppressor activity (protective effect) of Tff2 in the murine
pancreas [60].

In the past, we discovered that the TFF2 forms in the porcine stomach and pancreas
differ [61]. Gastric TFF2 was exclusively associated with the high-molecular-mass mucus
fraction, whereas pancreatic TFF2 appeared as a low-molecular-mass homodimer [61].
Thus, it was the aim of the present study to systematically investigate the Tff2 forms in the
murine stomach, pancreas, and duodenum, respectively, with the help of size-exclusion
chromatography (SEC). We also performed expression profiling of selected genes (RT-PCR
analysis) in order to explain why different Tff2 forms occur. We hypothesize that the
different Tff2 forms are suggestive of different molecular functions, i.e., a possible receptor-
mediated protective function of monomeric pancreatic Tff2 (e.g., motogenic, anti-apoptotic,
anti-inflammatory) versus physical stabilization, particularly of the gastroduodenal mucus
barrier (high-molecular-mass Tff2/Muc6 complex).
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2. Results
2.1. Characterization of Tff2 Forms in the Murine Stomach, Pancreas, and Duodenum by SEC

A murine gastric extract was separated by SEC, and the Tff2 immunoreactivities
were tested (Figure 2). The Tff2 content mainly peaked in the high-molecular-mass region
(B9, B10), together with the periodic acid–Schiff (PAS)-positive mucins (Figure 2A). Only
minor amounts were detectable in the low-molecular-mass region (peak: D2–D5). For
comparison, the Tff1 content was also determined. The majority of Tff1 peaked in the
low-molecular-mass region, and only a small amount of Tff1 was detectable in the mucin
region (Figure 2A). After reducing SDS-PAGE, Tff2 appears as a monomer with a Mr of
about 14k (Figure 2B). In contrast, after non-reducing SDS-PAGE, the Tff2 from B9 and B10
appears mainly as a double band, with a Mr of about 18k and a minor band with a Mr of
about 14k; also, minor amounts of Tff2 were still visible in the high-molecular-mass region
(Figure 2B). In contrast, the pattern of Tff2 from D4 and D5 under non-reducing conditions
was different.

1 
 

 

Figure 2. Analysis of a murine gastric extract (5 animals). (A) Elution profile after SEC (Superdex
75 HL) as determined by absorbance at 280 nm (PAS-positive mucin fractions: pink). Underneath:
Distribution of the relative Tff1 (black) and Tff2 contents (blue) as determined by Western blot analysis
under reducing conditions and semi-quantitative analysis of the monomeric band intensities. (B) 15%
SDS-PAGE under reducing (R) and non-reducing (NR) conditions, respectively, and Western blot
analysis of the high-molecular-mass fractions B9 and B10, as well as the low-molecular-mass fractions
D4 and D5 concerning Tff2. (C) Non-reducing 15% SDS-PAGE of fraction B10 and Coomassie staining.
The high- (H) and low-molecular-mass regions (L1, L2) were excised, proteins eluted, and subjected
to reducing SDS-PAGE. The samples not entering the gel were removed from the gel pocket (P) and
subjected to reducing SDS-PAGE. Western blot analysis concerning Tff2 of P, H, L1, and L2 and
relative Tff2 content. (D,E) 1% AgGE and Western blot analysis of fractions B6–C1 concerning Tff2
(D) or Muc6 (lectin GSA-II, (E)). Relative standard: DNA ladder (base pairs).
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Porcine gastric TFF2 was previously shown to bind strongly to mucin, even after
boiling in SDS (i.e., after non-reducing SDS-PAGE) [62]. To test whether murine gastric Tff2
also exists in high-molecular-mass forms after non-reducing SDS-PAGE, we analyzed the
Tff2 content in the gel pocket, and the high- and low-molecular-mass regions (Figure 2C).
The majority of Tff2 appeared in the 18k form (L1); however, Tff2 was also detectable in
significant amounts in the high-molecular-mass region (H), and even in the gel pocket. After
1% agarose gel electrophoresis (AgGE), both Tff2 as well as the mucin Muc6 (lectin GSA-II)
were detected in the PAS-positive high-molecular-mass fractions B7–B12 (Figure 2D,E).
Here, the Tff2 and Muc6 appeared to be associated to form ultrahigh-molecular-mass
complexes, which, in part, did not enter the agarose gel.

As a next step, a murine pancreatic extract was analyzed in a similar manner (Figure 3).
Here, Tff2 was detectable in the low-molecular-mass region only (Figure 3A). After reducing
SDS-PAGE, the Tff2 appears as a single band with a Mr of about 14k (Figure 3B), whereas,
after non-reducing SDS-PAGE, the Tff2 appears as a triple band (major: 18k; minor 16k, 14k;
Figure 3B). After AgGE, the Muc6 was not detectable in the high-molecular-mass range
(Figure 3C).
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Figure 3. Analysis of a murine pancreatic extract (3 animals). (A) Elution profile after SEC on a
Superdex 75 HL column as determined by absorbance at 280 nm (faint PAS-positive mucin fractions:
pink-hashed). Underneath: Distribution of the relative Tff2 content as determined by Western
blot analysis under reducing conditions and semi-quantitative analysis of the monomeric band
intensities. (B) 15% SDS-PAGE under reducing (R) and non-reducing (NR) conditions, respectively,
and Western blot analysis of the low-molecular-mass fractions D5–D7 concerning Tff2. (C) 1% AgGE
and Western blot analysis of high-molecular-mass fractions B4–B12 concerning Muc6 (lectin GSA-II).
As positive controls, equivalent samples from the stomach (Sto) and duodenum (Duo), respectively,
were analyzed. Relative standard: DNA ladder (base pairs).

In order to verify that the low-molecular-mass peak actually contains Tff2, fraction
D6 (Figure 3) was separated by preparative reducing (Figure 4A) and non-reducing SDS-
PAGE (Figure 4B), respectively. Bands 2–4 were eluted and tested for Tff2 by Western
blotting under reducing conditions, indicating Tff2 predominantly in band 2 (Figure 4C).
Furthermore, Tff2 was identified in all four bands by bottom-up proteomics (Figure 4D).
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Figure 4. Proteome analysis of the low-molecular-mass form of Tff2 in a pancreatic extract (fraction
D6 from Figure 3). (A) SDS-PAGE under reducing (R) conditions and Coomassie staining. Band 1
was excised. (B) NR SDS-PAGE and Coomassie staining. Bands 2, 3, and 4 were excised, proteins
eluted, and subjected to reducing SDS-PAGE. (C) Western blot analysis concerning Tff2 (bands 2–4;
C positive control). (D) Results of the proteome analyses after tryptic in-gel digestion of bands 1–4.
Identified regions in Tff2 are shown in red.

Finally, a duodenal extract (complete duodenum) was analyzed (Figure 5). Here,
predominantly a high-molecular-mass form (peak: B8), congruent with the PAS-positive
mucin range, was detected (Figure 5A). Furthermore, minute amounts of a low-molecular-
mass form appeared (peak: D6; Figure 5A).
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mucin fractions: pink). Underneath: Distribution of the relative Tff2 content as determined by Western
blot analysis under reducing conditions and semi-quantitative analysis of the monomeric band
intensities. (B) 15% SDS-PAGE under reducing (R) and non-reducing (NR) conditions, respectively,
and Western blot analysis of the high-molecular-mass fractions B9 and B10, as well as the low-
molecular-mass fractions D6 and D7 concerning Tff2. (C) Non-reducing 15% SDS-PAGE of fraction
B8 and Coomassie staining. The high- (H) and low-molecular-mass regions (L1, L2) were cut out,
the proteins were eluted, and subjected to reducing SDS-PAGE. Also, the remaining high-molecular-
mass sample not entering the gel was removed from the gel pocket (P) and subjected to reducing
SDS-PAGE. Western blot analysis concerning Tff2 of P, H, L1, and L2 and relative Tff2 content. (D) 1%
AgGE and Western blot analysis of the fractions B4–C2 concerning Muc6 (lectin GSA-II). Relative
standard: DNA ladder (base pairs). (E) 1% AgGE and Western blot analysis of high-molecular-mass
fractions B3–B12 of a parallel SEC concerning Muc6 (lectin GSA-II). Shown are also the hybridization
signals (autoradiography) obtained after incubating the blot with 125I-labeled porcine pancreatic
TFF2 (pTFF2; overlay assay).

After the reducing SDS-PAGE, Tff2 from both the high- and low-molecular-mass range
appeared as a 14k band (Figure 5B). After the non-reducing SDS-PAGE, two forms were
detectable below 18k. To test whether duodenal Tff2 still exists in the high-molecular-
mass forms after the non-reducing SDS-PAGE, we analyzed the Tff2 content in the gel
pocket and the high- and low-molecular-mass regions (Figure 5C). The majority of the
Tff2 appeared in the 18k form (L1); only minute amounts of Tff2 were detectable in the
gel pocket (P) and the high-molecular-mass region (H) (Figure 5C). After AgGE, Muc6
was detectable (lectin GSA-II) in the PAS-positive high-molecular-mass region (fractions
B7–B11; Figure 5D,E). Furthermore, 125I-labeled porcine pancreatic TFF2 (pTFF2) binds to
the same regions (overlay assay; Figure 5E).

In the past, human gastric TFF2 was shown to bind to the mucin MUC6 and not
MUC5AC [43]. Similarly, as described previously for a human gastric extract [43], a
murine gastric extract was reduced and denatured by boiling in 1% β-mercaptoethanol and
separated by a HiPrep 16/60 Sephacryl S-500 High Resolution (S-500) column (Figure 6).
The PAS-positive mucin peak was separated from the Tff2 (Figure 6A). According to a
previous report [63], murine Muc6 was detected after 1% AgGE with the lectin GSA-II and
murine Muc5ac with the lectin WFA from Wisteria floribunda (Figure 6B). The GSA-II and
the WFA patterns were not congruent, indicating at least a partial separation of Muc6 and
Muc5ac, similarly as described for the human mucins [43]. Furthermore, from the result of
an overlay assay, it seems that 125I-pTFF2 predominantly binds to Muc6 (Figure 6B).

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 8 of 18 
 

 

 
Figure 6. Analysis of a murine gastric extract (9 animals) after reduction in boiling β-
mercaptoethanol. (A) Elution profile after SEC on a Sephacryl S-500 High Resolution column as 
determined by absorbance at 280 nm. Underneath: Distribution of the relative Tff1 (black) and Tff2 
contents (blue). For comparison, the fractions were analyzed for their mucin content using the PAS 
reaction (pink). (B) 1% AgGE and subsequent Western blot analysis of the mucin-containing 
fractions B4–D9 concerning Muc6 (lectin GSA-II) and Muc5ac (lectin WFA), respectively. The 
hybridization signals (autoradiography) obtained after incubating the blot with 125I-labeled porcine 
pancreatic TFF2 (pTFF2; overlay assay) are also shown. The start is marked with a dot on the left. 

2.2. Expression Analysis of the Murine Stomach, Pancreas, and Duodenum (RT-PCR Analysis) 
From the protein data shown in Figures 2 and 3, it is clear that Tff2 occurs in different 

molecular forms in the stomach and pancreas, respectively. In the stomach, a high-
molecular-mass form of Tff2 is characteristic (Figure 2), whereas, in the pancreas, a low-
molecular-mass form was observed (Figure 3). From previous data from the human 
stomach, it is well known that TFF2 binds strongly to the mucin MUC6 as a lectin via the 
evolutionary conserved terminal carbohydrate moiety GlcNAcα1→4Galβ (review: [34]). 

Here, using expression analysis, we investigate the possible reason for the different 
Tff2 forms in the stomach and pancreas, respectively (Figure 7). We even compared the 
two characteristic regions of the stomach, i.e., the corpus and the antrum. We hypothesize 
that possibly Muc6 and/or the GlcNAcα1→4Galβ carbohydrate moiety of Muc6 are 
missing in the pancreas so that lectin-mediated Tff2/Muc complexes cannot form. A 
comprehensive expression profiling was performed including transcripts encoding TFF 
peptides (Tff1, Tff2, Tff3) and polypeptides/proteins known to be associated with TFF 
peptides (Gkn2, Muc6, Fcgbp). Furthermore, expression of the mucins Muc2 and Muc5ac 
was included, as well as the enzyme responsible for the synthesis of the terminal 
GlcNAcα1 sugar moiety in Muc6 (A4gnt). In addition, and as controls, expression of 
Dmbt1 (a cysteine-rich glycoprotein with a role in mucosal innate immunity), the hormone 
gastrin (Gast) typical of the gastric antrum, the transcription factor Pdx1 typical of the 
gastric antrum and pancreas, and the ependymin-related protein (Epdr1/UCC1; [64,65]) 
was monitored. The major results are (Figure 7): (i) Tff2 (together with Tff3) is the typical 
TFF gene expressed in the murine pancreas. (ii) Neither Muc6 nor A4gnt expression was 
detectable in the pancreas within this study. (iii) In contrast, Muc6 and A4gnt transcripts 
were easily detected in the stomach. (iv) Fcgbp and Gast are typically expressed in the 
gastric antrum. 

Figure 6. Analysis of a murine gastric extract (9 animals) after reduction in boiling β-mercaptoethanol.
(A) Elution profile after SEC on a Sephacryl S-500 High Resolution column as determined by ab-
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comparison, the fractions were analyzed for their mucin content using the PAS reaction (pink). (B) 1%
AgGE and subsequent Western blot analysis of the mucin-containing fractions B4–D9 concerning
Muc6 (lectin GSA-II) and Muc5ac (lectin WFA), respectively. The hybridization signals (autoradiog-
raphy) obtained after incubating the blot with 125I-labeled porcine pancreatic TFF2 (pTFF2; overlay
assay) are also shown. The start is marked with a dot on the left.

2.2. Expression Analysis of the Murine Stomach, Pancreas, and Duodenum (RT-PCR Analysis)

From the protein data shown in Figures 2 and 3, it is clear that Tff2 occurs in dif-
ferent molecular forms in the stomach and pancreas, respectively. In the stomach, a
high-molecular-mass form of Tff2 is characteristic (Figure 2), whereas, in the pancreas, a
low-molecular-mass form was observed (Figure 3). From previous data from the human
stomach, it is well known that TFF2 binds strongly to the mucin MUC6 as a lectin via the
evolutionary conserved terminal carbohydrate moiety GlcNAcα1→4Galβ (review: [34]).

Here, using expression analysis, we investigate the possible reason for the different
Tff2 forms in the stomach and pancreas, respectively (Figure 7). We even compared the two
characteristic regions of the stomach, i.e., the corpus and the antrum. We hypothesize that
possibly Muc6 and/or the GlcNAcα1→4Galβ carbohydrate moiety of Muc6 are missing in
the pancreas so that lectin-mediated Tff2/Muc complexes cannot form. A comprehensive
expression profiling was performed including transcripts encoding TFF peptides (Tff1, Tff2,
Tff3) and polypeptides/proteins known to be associated with TFF peptides (Gkn2, Muc6,
Fcgbp). Furthermore, expression of the mucins Muc2 and Muc5ac was included, as well as
the enzyme responsible for the synthesis of the terminal GlcNAcα1 sugar moiety in Muc6
(A4gnt). In addition, and as controls, expression of Dmbt1 (a cysteine-rich glycoprotein
with a role in mucosal innate immunity), the hormone gastrin (Gast) typical of the gastric
antrum, the transcription factor Pdx1 typical of the gastric antrum and pancreas, and the
ependymin-related protein (Epdr1/UCC1; [64,65]) was monitored. The major results are
(Figure 7): (i) Tff2 (together with Tff3) is the typical TFF gene expressed in the murine
pancreas. (ii) Neither Muc6 nor A4gnt expression was detectable in the pancreas within
this study. (iii) In contrast, Muc6 and A4gnt transcripts were easily detected in the stomach.
(iv) Fcgbp and Gast are typically expressed in the gastric antrum.
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controls, expression of Actb and Rps26, respectively, was monitored.
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In addition, the duodenum was analyzed by expression profiling concerning Tff2,
Muc2, Muc6 and A4gnt (Figure 8). As controls, the expression of Dmbt1 and Epdr1 was
monitored. As Brunner glands are restricted to the proximal duodenum [39], the duodenum
was divided into the proximal, medial, and distal regions. There is a clear difference
between the proximal and more distal parts concerning Muc6 and A4gnt, i.e., Muc6 and
A4gnt transcripts were detectable in the proximal third only (Figure 8). In contrast, Tff2
expression was detected in all parts, with a preponderance in the proximal part. All the
other transcripts investigated showed an even distribution between the different regions.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 9 of 18 
 

 

 
Figure 7. RT-PCR analysis. Tff1, Tff2, Tff3, Gkn2, Muc2, Muc5ac, Muc6, A4gnt, Fcgbp, Dmbt1, Gast, 
Pdx1, and Epdr1 expression in the gastric corpus and antrum, respectively, as well as in the pancreas. 
The number of amplification cycles is given in parentheses (if different for stomach and pancreas). 
As controls, expression of Actb and Rps26, respectively, was monitored. 

In addition, the duodenum was analyzed by expression profiling concerning Tff2, 
Muc2, Muc6 and A4gnt (Figure 8). As controls, the expression of Dmbt1 and Epdr1 was 
monitored. As Brunner glands are restricted to the proximal duodenum [39], the 
duodenum was divided into the proximal, medial, and distal regions. There is a clear 
difference between the proximal and more distal parts concerning Muc6 and A4gnt, i.e., 
Muc6 and A4gnt transcripts were detectable in the proximal third only (Figure 8). In 
contrast, Tff2 expression was detected in all parts, with a preponderance in the proximal 
part. All the other transcripts investigated showed an even distribution between the 
different regions. 

 
Figure 8. RT-PCR analysis. Muc2, Tff2, Muc6, A4gnt, Dmbt1, and Epdr1 expression in the proximal, 
medial, and distal portions of the murine duodenum. The number of amplification cycles is given 
in parentheses. As controls, the expression of Actb and Rps26, respectively, was monitored. 

2.3. Protein Analysis of the Murine Gastric Corpus, Gastric Antrum, and Pancreas 
The RT-PCR analysis (Figure 7) revealed that the stomach and pancreas differ in the 

expression of Muc6 and A4gnt, and Fcgbp is restricted to the gastric antrum. These results 
were checked for the protein level by Western blot analyses of TRIzol extracts (Figure 9). 

Figure 8. RT-PCR analysis. Muc2, Tff2, Muc6, A4gnt, Dmbt1, and Epdr1 expression in the proximal,
medial, and distal portions of the murine duodenum. The number of amplification cycles is given in
parentheses. As controls, the expression of Actb and Rps26, respectively, was monitored.

2.3. Protein Analysis of the Murine Gastric Corpus, Gastric Antrum, and Pancreas

The RT-PCR analysis (Figure 7) revealed that the stomach and pancreas differ in the
expression of Muc6 and A4gnt, and Fcgbp is restricted to the gastric antrum. These results
were checked for the protein level by Western blot analyses of TRIzol extracts (Figure 9).
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Figure 9. Western blot analysis and in vitro binding study. 1% AgGE and Western blot analysis
of TRIzol extracts from 5 different samples (30 µg protein per lane) of the murine gastric corpus,
gastric antrum, and pancreas, respectively (A–C). (A) Analysis concerning Muc6 (lectin GSA-II);
arrow: antrum-specific signals. (B) Overlay assay with 125I-pTFF2; arrow: antrum-specific signals.
(C) Analysis concerning Fcgbp. (D,E) Loading controls of the same samples after reducing SDS-PAGE:
protein staining with Ponceau S (D) and Western blot concerning Tff2 (E), respectively. (F) Controls:
Relative standard: DNA ladder (base pairs), murine gastric extracts (before SEC and fraction B9
from Figure 2; analysis concerning Fcgbp). The start (dot) and the dye bromophenol blue (BPB)
are marked.

Clearly, the GSA-II detected high-molecular-mass products in the stomach only. Of
note, there is also a signal, which appeared in the gastric antrum only (see arrow in
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Figure 9A). We also performed an in vitro binding study of these extracts with 125I-pTFF2
(overlay assay; Figure 9B). Here, the 125I-pTFF2 bound predominantly to an ultrahigh-
molecular-mass region (gel pocket) but also faintly to a region exclusively in the gastric
antrum (see arrow in Figure 9B). Fcgbp is restricted to the gastric antrum (Figure 9C).
The loading control is shown in Figure 9D. The relative Tff2 content of the samples was
analyzed in Figure 9E. Remarkably, the relative Tff2 content in the pancreas is higher than
in the gastric corpus. The highest Tff2 concentrations are found in the gastric antrum.

3. Discussion
3.1. The Predominant Gastric Tff2 Form Is Different When Compared with the Pancreatic Form

From a comparison of the elution profiles after the SEC, it is clear that the predom-
inant Tff2 form in the murine stomach (Figure 2A) is different from that in the pancreas
(Figure 3A). Gastric Tff2 mainly occurs in a high-molecular-mass form (Figure 2A), whereas
pancreatic Tff2 is detectable in a low-molecular-mass form only (Figure 3A). Generally, this
situation is comparable to that in the porcine stomach and pancreas, respectively [61].

Based on results from human [43], porcine [62] and X. laevis stomach extracts [36], the
high-molecular-mass form of murine gastric Tff2 is expected to represent a non-covalent
complex between Tff2 and the mucin Muc6, due to a lectin interaction. In the latter,
the conserved O-linked terminal αGlcNAc carbohydrate moiety plays an essential role
(review: [34]). In agreement with this, we also show the binding of radioactively labeled
porcine TFF2 with gastric Muc6 (overlay assay), which was denatured and depleted from
the endogenous Tff2 by preceding boiling with β-mercaptoethanol (Figure 6B). The positive
binding after reduction is also a strong indication that TFF2 binds via the sugar moiety, as
typical of a lectin.

Furthermore, murine gastric Tff2 can be released from the Tff2/Muc6 complex by
boiling in SDS (Figure 2B). Of note, the release of murine Tff2 by boiling in SDS is not
complete, and significant amounts (about 30%) of Tff2 are still bound to Muc6, as they
appear in the high-molecular-mass region and even the gel pocket (Figure 2C). Only
after denaturing extraction with TRIzol Reagent, the Tff2 could be released completely
from the Tff2/Muc6 complex [66]. This is reminiscent of porcine stomach extracts, where
the majority of TFF2 could not be separated from MUC6 by boiling in SDS [61,62]. In
contrast, in human stomach extracts, TFF2 was completely released by boiling in SDS [43].
Currently, the reason why TFF2 is bound much stronger to MUC6 in the murine and
porcine gastric mucus when compared with human mucus is not clear. In principle, the N-
glycosylation of human TFF2 could be the reason, as neither murine nor porcine Tff2/TFF2
are glycosylated. Furthermore, in porcine TFF2, the formation of a non-covalently linked
homodimer [61] might be an additional factor responsible for the extreme stability of the
porcine TFF2/MUC6 complex against boiling in SDS, and even denaturing extraction with
TRIzol [62]. The biological role of the unusual stability of the murine, and particularly the
porcine, TFF2/MUC6 complex has not been clarified, but it is tempting to speculate that
this is an evolutionary adaptation of the gastric mucus barrier to the different nutritional
habits of these animals when compared with humans.

The low-molecular-mass form of Tff2 observed in the pancreas (Figure 3A) probably
represents a monomer (Figure 3B). Of note, after the non-reducing SDS-PAGE, Tff2 appears
as a triple band (major: 18k; minor: 16k, 14k; Figure 3B). The 18k band probably repre-
sents a circular form, which is formed by a disulfide bridge between Cys-6 and Cys-104
(Figure 1) [66]. This disulfide bridge has been reported to be particularly sensitive against
reduction [67], which might explain the occurrence of the minor 16k and 14k bands, the lat-
ter being similar to the monomeric band (Figure 3B). In all three bands, Tff2 was identified
by proteome analysis (bands 2–4 in Figure 4D). Furthermore, Tff2 was also identified after
reducing SDS-PAGE (band 1 in Figure 4D). Remarkably, here the peptide LVEGEKPSPCR
was identified. Based on the known cDNA sequence, this is expected to represent the
N-terminal of the Tff2. To our knowledge, this is the first time that the mature N-terminal
of murine Tff2 has been determined, indicating cleavage of the precursor after Ala-19. This
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is somewhat surprising as, by comparison with porcine TFF2, one might have expected the
N-terminal to be EKPSPCR—assuming cleavage of the precursor after Gly-23. However,
the cleavage after Ala-19 would be perfectly in agreement with the classical “(-3,-1) rule”
according to von Heijne [68].

As a next step, we performed an expression analysis (RT-PCR) of gastric and pancreatic
specimens (Figure 7) in order to clarify why, in the pancreas, the high-molecular-mass
Tff2/Muc6 complex is lacking (see Figure 3). In contrast to the stomach, both Muc6 and
A4gnt transcripts were not detectable in the pancreas in this study (Figure 7). Thus, the
high-molecular-mass complex cannot form in the pancreas anymore, and Tff2 exists only
in the low-molecular-mass form.

The RT-PCR data (Figure 7) were checked, in part, on the protein level (Figure 9).
In agreement with the results from the RT-PCR analysis, high-molecular-mass reactivity
for GSA-II (recognizing also Muc6) is restricted to the stomach (Figure 9A). Furthermore,
125I-labeled TFF2 is predominantly bound to the ultrahigh-molecular-mass region of the
stomach, which is typical of binding to Muc6. Furthermore, Fcgbp could be detected in
the gastric antrum only, which again is in agreement with the RT-PCR analysis (Figure 7),
as well as with previous reports in mice and humans [66,69]. This is a strong indication
that the gastric mucus layer is not uniform and differs in the corpus when compared with
the antrum. In particular, Fcgbp is considered a component of the first-line innate immune
defense, which seems to be of special importance to the gastric antrum [66].

3.2. Tff2 Forms in the Duodenum

Generally, the situation in the duodenum is comparable to that in the stomach. In the
extracts from the total duodena, we identified predominantly the high-molecular-mass
form and only relatively little monomeric Tff2 (Figure 5A).

The high-molecular-mass form of Tff2, representing a Tff2/Muc6 complex, can easily
form in the proximal duodenum, as here, Tff2, as well as Muc6 and A4gnt, are expressed
(Figure 8). Tff2 can be released from the Tff2/Muc6 complex by boiling in SDS (Figure 5C),
indicating a non-covalent interaction. In agreement with this, radioactively labeled Tff2
binds to total duodenal Muc6 (overlay assay; Figure 5E), indicating again the formation of
a non-covalent Tff2/Muc6 complex. Expression of Tff2, Muc6, and A4gnt is known to occur
in the Brunner glands, which are localized in the proximal duodenum only and are usually
not found beyond the entrance of the pancreatic duct, i.e., the ampulla of Vater [39,70].
The results from the RT-PCR analysis (Figure 8) are in agreement with this. However, the
distance Brunner glands extend distally is highly variable between species [70].

Of special note, the medial and the distal parts of the duodenum are devoid of both
Muc6 and A4gnt transcripts, but there is a somewhat weaker, but significant, Tff2 expression
(Figure 8). This might explain why total duodenal extracts also contain little monomeric
Tff2 (Figure 5A,B). In addition, monomeric Tff2 could also reach the duodenum from the
pancreas via the pancreatic duct and the ampulla of Vater, the latter being a prominent
location for adenoma and carcinoma in humans [71].

3.3. Possible Receptor-Mediated Protective Function of Pancreatic Tff2 in the Mouse

Clearly, pancreatic Tff2 is not associated with Muc6 (Figure 3). Only in the ampulla
of Vater, which forms the entrance of the juncture of the common bile duct and the main
pancreatic duct into the duodenum, pancreatic Tff2 might interact with Muc6, similarly as
in humans. In the latter, MUC6, but not TFF2, is synthesized in this organ [7,71]. Thus, the
question arises on the function of monomeric Tff2, particularly in the exocrine pancreas,
but also the medial and distal duodenum.

The delicate pancreatic ductal epithelium is in contact with a cocktail of food-digesting
enzymes, and it also produces essential constituents of the pancreatic juice, e.g., HCO3

−

ions (maintaining a pH of about 8), as well as water. Thus, maintaining the integrity of this
epithelium is extremely important. Monomeric Tff2 from the acini would be perfectly suited
to protect the murine pancreatic ductal system (Figure 10) after damage, in particular after
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food ingestion, by promoting its rapid repair by restitution. Furthermore, monomeric Tff2
could protect the ductal epithelium, also, as an anti-inflammatory factor [23] by preventing
inflammation, the latter being a known pre-requisite for carcinogenesis.
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Figure 10. Schematic structure of the exocrine pancreas (not drawn to scale). Ductules from a group
of acini converge to an intralobular duct, which is connected to interlobular and collecting ducts.
Shown is the predominant synthesis of Tff2 in the acini (red), and its trace amount co-expression,
together with Muc6, in the pancreatic duct glands (PDGs, turquoise). Of note, the total mass of PDGs
is much smaller when compared with that of the exocrine acini.

The pancreatic ductal epithelium, but not the terminal ducts, undergoes continuous
self-renewal from stem and precursor cells located in the PDGs (Figure 10) [21]. Here, only
trace amounts of Tff2 and Muc6 are secreted (Figure 10) [21,72], which might protect the
content of the PDGs by a mucus plug (probably the formation of a Tff2/Muc6 complex).
However, such trace amounts of a presumable Tff2/Muc6 complex were not detected with
the methods used (Figure 3). Of special note, the migration of cells from the PDGs to
populate the ductal epithelium is dependent on Tff2 [21].

Tff2KO mice with a mutated KRASG12D background develop pancreatic mucinous neo-
plasm, which resembles human intraductal papillary mucinous neoplasm (IPMN), the latter
being one of the precursor lesions of pancreatic ductal adenocarcinoma [60]. These data
strongly suggest a protective/reparative function of monomeric Tff2 for the murine pancre-
atic ductal epithelium, e.g., by promoting restitution and inhibiting inflammation. Both
effects would require receptors (potential candidates: [4,25,73,74]). In addition, monomeric
Tff2 could also play a role during pancreatic organogenesis and lipid metabolism.

Remarkably, the situation in humans might be somewhat different. Here, only minute
amounts of TFF2 were detectable [19,20,75], but there are multiple reports of significant
pancreatic MUC6 expression. Thus, the TFF2/MUC6 ratio seems to be very different in
humans and mice, i.e., it is probably much higher in the mouse. This might be indicative
of different protection mechanisms in humans (mucous protection) and mice (monomeric
Tff2-triggered protection).

In the future, it will be an ambitious aim to unambiguously identify the various TFF2
receptors, including their carbohydrate moieties. Of note, the latter probably differ in
various cell types, as glycosylation patterns are dynamic and also cell type-specific [63].
The characterization of glycosylated TFF2 receptors might open, also, new therapeutic
options as well as allow the growth of functional pancreas-derived 3D organoids [76].

4. Materials and Methods
4.1. Animals

The animal care and experimental procedures were conducted in compliance with
Directive 2010/63/EU of the European Parliament and the Council of 22 September 2010
on the protection of animals used for scientific purposes, the German Animal Welfare Act,
and the regulations on the welfare of animals used for experiments or for other scientific
purposes (in their currently valid versions). In the course of these studies, adult wild type
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animals with a mixed 129/Sv and C57BL/6 background were used as described, i.e., they
were fed ad libitum and non-fasted [77].

4.2. Extraction of Proteins, Protein Purification by SEC

Total stomachs, pancreata, and duodena, respectively, from 3–9 animals were collected
and extracted with a 5- to 15-fold amount (w/v) (5-fold: stomach; 6-fold: duodenum;
15-fold: pancreas) of buffer (30 mM of NaCl, 20 mM of Tris-HCl pH 7.0 plus protease
inhibitors) in a Precellys 24 lyser/homogenizer, similarly as described previously in detail
(aqueous extracts) [29,78]. Furthermore, the proteins were extracted using TRIzol Reagent
(Ambion by Life Technologies, Carlsbad, CA, USA) as described previously (TRIzol ex-
tracts) [66].

The aqueous extracts (5 mL each) were fractionated by SEC with the ÄKTA FPLC
system (Amersham Biosciences, Freiburg, Germany) as described (fraction numbering:
A1-A12, B1-B12, etc.) using the following columns [61]: HiLoad 16/600 Superdex 75 prep
grade (S75HL; 20 mM of Tris-HCl pH 7.0, 30 mM of NaCl plus protease inhibitors; flow rate:
1.0 mL/min; 2.0 mL fractions) or HiPrep 16/60 Sephacryl S-500 High Resolution (S-500;
20 mM of Tris-HCl pH 7.0, 30 mM of NaCl plus protease inhibitors; flow rate: 0.5 mL/min,
2.0 mL fractions).

4.3. SDS-PAGE, AgGE, and Western Blot Analysis

Denaturing SDS-PAGE under reducing and non-reducing conditions, respectively,
native AgGE, and Western blot analysis were described in detail previously [32,66,78,79].
The transfer of proteins to the nitrocellulose membrane was checked by staining with 0.2%
Ponceau S (Carl Roth GmbH + Co., KG, Karlsruhe, Germany) in 3% trichloroacetic acid.
The gels, after the non-reducing SDS-PAGE, were subjected to post-in-gel reduction with
1% mercaptoethanol at 50 ◦C for 5 min, according to a previous report [61]. As a relative
standard for non-denaturing AgGE, the GeneRuler 1kb Plus DNA Ladder (Thermo Fisher
Scientific Baltics UAB, Vilnius, Lithuania) was used as described previously [80].

The murine Tff1 and Tff2 were detected with the affinity-purified polyclonal antisera
anti-mTff1-1 [81], anti-TFF2 (PA5-75670; Invitrogen by Thermo Fisher Scientific Baltics
UAB, Vilnius, Lithuania), and anti-hTFF2-2 [62] (Figure 9E), respectively. The mucins Muc6
and Muc5ac were detected with the biotinylated lectins GSA-II from G. simplicifolia or WFA
from Wisteria floribunda, respectively, as reported [42,61,63]. The Fcgbp was detected with a
polyclonal antiserum against a fragment of rat Fcgbp kindly provided by Prof. Jürgen Seitz
(Philipps University, Marburg, Germany) [82].

4.4. Identification of Proteins by Bottom-Up Proteomics

For the protein identification, 150 or 200 µL of fraction D6 (Figure 3) was concentrated,
separated by non-reducing or reducing SDS-PAGE, and stained with Bio-Safe Coomassie
Stain G-250, as described [62]; the gel bands were excised and subjected to tryptic digestion,
followed by liquid chromatography coupled to electrospray ionization and tandem mass
spectrometry (LC-ESI-MS/MS). The data obtained were processed and analyzed with a
search engine as described in detail elsewhere [80].

4.5. Tff2 Binding Studies

The labeling of the porcine pancreatic TFF2 (pTFF2) with 125I was as described previ-
ously [62]. The pTFF2 was kindly provided by Dr. L. Thim (Novo Nordisk A/S, Maaloev,
Denmark) [1]. Overlay assays with 125I-labeled pTFF2 were performed as described
previously [62].

4.6. RNA Extraction, PCR Analysis

The isolation and purification of total gastric and duodenal RNA, respectively, (TRIzol
Reagent; Ambion by Life Technologies, Carlsbad, CA, USA), pancreatic RNA (RNA Mini
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Kit, Bioline, Heidelberg, Germany), as well as RT-PCR (reverse transcriptase: Takara Bio
Europe, Saint Germain en Laye, France), were as described in detail previously [81,83,84].

The specific primer pairs used for the RT-PCR have been published previously (Actb,
MB2658/MB2659; Epdr1 MB1890/1891; Gast MB2450/MB2451; Muc2 MB2660/MB2661;
Pdx1 MB2464/MB2465; Tff1 MD7/MD8; and Tff2 MB2306/2307) [66,83–85] and are listed
in Table 1 (A4gnt, Dmbt1, Fcgbp, Gkn2, Muc5ac, Muc6, Rps26, and Tff3). All the primer pairs
used are intron spanning.

Table 1. Oligonucleotides used for RT-PCR analysis and calculated size of the products.

Genes
Accession No.

Primer
No. Primer Pairs Nucleotide

Positions
Annealing T

Size (bp)

A4gnt
NM_001077424.2

MB2430
MB2431

GAAGATTAGGCAGTGAGTTACCA
TTAAGACGACACCACACCCG

2–24
897–878

60 ◦C
896

Dmbt1
NM_001347632.2

MB2869
MB2870

GAACCGGCACAATGGGGATCT
ATAGGACACTTCATCTGTGGGAAC

6–26
115–92

60 ◦C
110

Gkn2
NM_025467.1

MB2732
MB2733

TTCTGGTGGTGCTGTCCATC
TAGGCGACCCAAACAGGAAC

51–70
446–427

60 ◦C
396

Fcgbp
NM_001122603.1

MB2448
MB2449

ATTCTGTGTCGCTGGTTCGT
CAGTTGGCCATCCCAGTCAT

384–403
556–537

60 ◦C
173

Muc5ac
NM_010844.3

MB2318
MB2319

TACCATGAACACCGCTCTGA
GTTGGAGAGGAACTCGTTGG

146–165
718–699

58 ◦C
573

Muc6
NM_001330001.2

MB2320
MB2321

CCCTCATGGCTGTGTATGAC
TTGTGGTTCAAGTAGGTGCC

1389–1408
2223–2204

58 ◦C
835

Rps26
NM_013765.2

MB1494
MB1495

CCAAAACCTGGAGATGAGGA
CAGGCTACGGCAGAGATAGG

120–139
382–363

57 ◦C
263

Tff3
NM_011575.2

MB2470
MB2471

GCTACCCCTCTGTCACATCG
ATCAGCCTTGTGTTGGCTG

166–185
440–421

60 ◦C
275
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