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Abstract: Ribosomes, in general, are viewed as constitutive macromolecular machines where protein
synthesis takes place; however, this view has been recently challenged, supporting the hypothesis
of ribosome specialization and opening a completely new field of research. Recent studies have
demonstrated that ribosomes are heterogenous in their nature and can provide another layer of
gene expression control by regulating translation. Heterogeneities in ribosomal RNA and ribosomal
proteins that compose them favor the selective translation of different sub-pools of mRNAs and
functional specialization. In recent years, the heterogeneity and specialization of ribosomes have
been widely reported in different eukaryotic study models; however, few reports on this topic have
been made on protozoa and even less on protozoa parasites of medical importance. This review
analyzes heterogeneities of ribosomes in protozoa parasites highlighting the specialization in their
functions and their importance in parasitism, in the transition between stages in their life cycle, in the
change of host and in response to environmental conditions.

Keywords: ribosome heterogeneity; ribosome specialization; ribosomal RNA; ribosomal protein;
mRNA translation; translational control; Trypanosomatidae; Apicomplexa

1. Introduction

Ribosomes translate the genetic information encoded in mRNAs into functional
polypeptides and proteins. Ribosomes are complex structures, consisting of 4 riboso-
mal RNAs (rRNAs) and 80 ribosomal proteins (RP) in eukaryotes (79 in Saccharomyces
cerevisiae) [1], forming 2 subunits: a small subunit (40S), composed of 18S rRNA and 33 RPs,
and a large subunit (60S), constituted by 28S, 5.8S, and 5S rRNAs and 47 RPs [1,2].

The ribosome has been considered highly conserved within species, which is why 18S
rDNA sequences are commonly used for phylogenetic reconstructions [3]. However, recent
studies have revealed that ribosomes are not invariant and homogeneous entities, on the
contrary, they show different types of heterogeneity [4]. Despite ribosome heterogeneity
being reported for the first time in Escherichia coli in the 1970s [5,6], with subsequent reports
of ribosome variability and specialization in the 1980s and 1990s [7–9], it was only after
the postulation of “the ribosome filter hypothesis” in 2002, that the premise that ribosome
heterogeneity can lead to specific interactions between ribosomes and mRNAs, triggering
differential rates in mRNA translation [10,11], was established. Later studies have shown
that heterogenous ribosomes display functional specialization, which boosts the translation
of selective sub-pools of mRNAs [12–16], supporting “the ribosome filter hypothesis”.
Although recent data support the theory of ribosome specialization in mammals [17], the
data validating the ribosome specialization and its functional role in other organisms
including protozoa are very limited; despite this, the ribosome heterogeneity in these
organisms is undeniable. Likewise, it has been demonstrated that ribosomes expressing
these heterogeneities are essential for proper differentiation of stem cells and embryo
development [18], vertebrate tissue patterning [19], and even, could have a predominant
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expression in some tissues, such as testis [20–26], or as a response to stress [27,28]. This
evidence highlights ribosomes as active molecules involved in translational control, further
from their static role as molecular machines with the only purpose of protein synthesis.

Currently, it remains unclear how specialized ribosomes are formed. It is possible
that specialized ribosomes could be synthesized de novo or could be remodeled through
the exchange of the ribosomal components. The first scenario is likely to occur in the
case of ribosome heterogeneity in different tissues in mammals when certain paralogs are
dom-inant. In the second scenario, specialization may involve the remodeling of existing
ribosomes where the core structure of the ribosome will be reused, and the surface proteins
are replaced with de novo synthesized paralogs. The second scenario is more likely to be
used when very fast changes are required, for example, during stress. In this case, it is
likely only proteins close to the ribosome surface can be exchanged or modified directly
in the cytoplasm. Some data indeed support that ribosome composition is not fixed after
biogenesis and exchange of RPs with mature ribosomes may occur. However, overall,
these extremely interesting questions about two scenarios are very difficult to address
experimentally and require further investigation.

1.1. Types of Ribosome Heterogeneity

Several studies have reviewed the types of ribosome heterogeneity observed in dif-
ferent organisms, which can be classified into three categories according to their origin:
ribosomal protein heterogeneity, ribosomal RNA heterogeneity, and heterogeneity by
ribosome-associated factors [4,29–36].

A common type of RP heterogeneity is related to the presence of multiple paralog
genes encoding them, as in the case of S. cerevisiae, where 59 of 79 RPs are encoded by
duplicated genes, many of them with no functional redundancy [37]. An example of this
specialization was observed in uL30 genes, where the uL30A paralog (hypoacetylated)
is predominantly translated in natural conditions and is required for optimal ribosomal
biogenesis and cell growth; however, when cells were exposed to staurosporine, uL30A
translation was inhibited and uL30B (hyperacetylated) increased its translation rate, caus-
ing the yeasts’ resistance to the drug [28]. Some paralogs have also shown differential
expression and functional specialization in some tissues such as mouse’s testis, where
RPL39L, the paralog of ribosomal protein RPL39/eL39, is mainly expressed later in sper-
matogenesis and is essential for fertility in mice [26]. On the other hand, RPs can be also
heterogeneous in stoichiometry, which means, they have a variation in their equimolar
proportions. This has been observed in mouse embryonic stem cells (mESCs), where 6 of
15 assessed RPs showed sub-stoichiometric measurements, and 4 of them were in 60% to
70% of polysomal ribosomes, indicating that translating ribosomes lack at least one RP [12].
Ribosomal proteins have also shown variability by post-translational modifications, in-
cluding methylation, ubiquitination, acetylation, and phosphorylation. An example of this
was observed in different cell culture lines, where phosphorylation of Serin 38 (S38) in
RPL12/uL11 boosted the association of phosphorylated ribosomes with mRNAs actively
translated during mitosis [38]. Likewise, in the stationary growth phase of yeast, a 10-fold
increase in dimethylation of arginine 10 (R10) in RPS2/uS5, slowing down the processing
and export of rRNA 20S, was observed as a possible response to nutrient depletion [39].

Ribosomal RNA (rRNA) heterogeneity can be caused by changes in rDNA alleles and
their variable copy number across individuals. This was observed in mouse and human
sequences, where intra and inter-individual nucleotide sequence heterogeneities were
identified in all four rRNA genes, as well as tissue-specific expression of rRNA variants [40].
Additionally, rRNA can exhibit three different types of post-transcriptional modifications
in nucleotides [41]: conversion of uridine to pseudouridine (Ψ) [42,43], methylation of
ribose’s 2′ hydroxyls (2′-O-methylations) [44,45], and methylation of bases [46]. These
modifications are guided by small nucleolar RNAs (snoRNAs) and stand-alone enzymes
and are important for translational initiation and fidelity, stability of ribosome structure
and biogenesis [47,48].
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In addition to variations in rRNAs and RPs, ribosome-associated factors also serve as
a source of ribosome heterogeneity and specialization. These factors are proteins binding
to the ribosome that mediate certain processes in translation. One of them is the Receptor
for Activated C Kinase 1 (RACK1) which is essential for the full and efficient translation of
capped mRNAs and efficient recruitment of eukaryotic initiation factor 4E (eIF4E) [49,50];
its depletion or mutation alters the translation of specific mRNAs and can cause induction of
autophagy [50]. The Fragile X Mental Retardation Protein (FMRP) is a polysome-associated
RNA-binding protein regulating neuronal translation. It stalls ribosome translocation dur-
ing elongation and serves as a translational brake on a selective set of transcripts encoding
synaptic proteins. Loss of FMRP leads to Fragile X syndrome (FXS) and autism [51].

In addition to all these types of ribosome heterogeneity reported in cytosolic ribo-
somes, mitochondrial ribosomes (mitoribosomes) have undergone substantial changes
during their evolution, differing from bacterial ribosomes with respect to composition
and structure [52,53]. The changes include the acquisition of numerous ribosomal proteins,
some of which are exclusive to mitochondria, and reduce the rRNA content in half com-
pared to bacteria’s ribosomes (Table 1) [54–59]. As a result, mitoribosomes exceed the
bacterial ribosomes in molecular mass and physical dimensions; additionally, they have a
strong functional specialization, synthetizing exclusively hydrophobic membrane proteins
in mammals, as well as mitochondrial ribosomal subunits, enzymes, and assembly factors
in other kingdoms [60].

Table 1. Composition of cytosolic and mitochondrial ribosomes in different organisms.

E. coli
Ribosome [61]

S. cerevisiae
Mitoribosome [62]

T. brucei
Mitoribosome [63]

H. sapiens
Mitoribosome [64]

Eukaryotic Cytosol
Ribosomes [61]

Ribosome

Sedimentation
coefficient 70S 74S ~60S [65] 55S 80S

Molecular weight 2.3 MDa 3–3.3 MDa 4.5 MDa 2.7 MDa 3.3–4.3 MDa

Number of rRNAs 3 2 2 3 4

Number of proteins 55 80 127 83 79–80

Large subunit

Sedimentation
coefficient 50S 54S 40S * 39S 60S

Number of rRNAs

23S (2904 nt) 21S (3296 nt) 12S (1176 nt) 16S (1569 nt) 26S–28S
(3396–5034 nt)

5.8S (156–158 nt)

5S (120 nt) tRNA (73–75 nt) 5S (120–121 nt)

Number of proteins 33 46 72 50 46–47

Small subunit

Sedimentation
coefficient 30S 37S 30S * 28S 40S

Number of rRNAs 16S (1542 nt) 15S (1649 nt) 9S (620 nt) 12S (962 nt) 18S (1800–1870 nt)

Number of proteins 22 34 55 30 33

* Sedimentation coefficient belongs to Leishmania tarentolae [66].

1.2. Ribosome Heterogeneity and Specialization in Non-Parasitic Protozoa

One of the first and most studied protozoans where ribosome heterogeneity and
specialization were reported is Dictyostelium discoideum, a soil-dwelling social amoeba.
This organism lives in soil and feeds on bacteria; however, starvation induces amoebae
aggregation and it becomes a multicellular organism that undergoes cell differentiation
and morphogenesis, to finally produce the fruiting body that comprises a spore-containing
sorus resting upon a stalk [67,68] (Figure 1).
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Developmental regulation of RPs has been described in D. discoideum, where different
populations of ribosomes are assembled in distinct stages of their life cycle [69–71]. The
change in ribosome composition takes place in two phases, the first one (activation) occurs
after nutrient starvation, leading to the development of a different population of ribosomes
that accumulate in the fruiting body (social amoebae ribosomes—SAR); the second phase
(deactivation) occurs during the spores’ germination, causing an accumulation of a different
set of ribosomes in vegetative amoebae (vegetative amoebae ribosomes—VAR) [72]. The
RP heterogeneity observed in D. discoideum has been classified into three categories: quanti-
tative, covalent modifications, and stoichiometric, according to its presence or occurrence in
vegetative amoebae and developing cells or spores. The first one includes the presence or
absence of certain RPs in both stages; the covalent modifications encompass modifications
of RP, such as methylations and phosphorylations and, finally, stoichiometric heterogeneity
is reported as a rise in the abundance of some RP in one stage compared to the other [72]
(Figure 1).
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Figure 1. Ribosome switching in Dyctiostelium discoideum’s life cycle. The vegetative cycle of
D. discoideum (light blue dotted box) includes free-living amoebae that reproduce by binary fis-
sion when there are proper nutritional conditions; in this cycle, vegetative amoebae ribosomes (VAR)
express the ribosomal proteins (RP) shown in the blue table. The social cycle (light red dotted box)
starts when there are deficient nutritional conditions, forcing amoebae to aggregate and form a
multicellular organism. Social amoebae ribosomes (SAR) express a different set of RPs and modifica-
tion patterns, which are shown in the light red box. The correlation of the new nomenclature was
conducted following the new system for naming ribosomal proteins [73]. * The correlation of these
proteins with the current nomenclature is unknown. † These proteins are known to be associated
with the respective ribosomal subunits, but no numerical designation was given by the authors [69].
‡ Correlation of these proteins were made, taking into account the correlation for yeast ribosomal
proteins made by Moore (1991) [74].
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In addition to D. discoideum, there are several reports about ribosome heterogeneity
and specialization in other organisms [4,29,31,35,36]. However, despite the raising im-
portance of these variabilities in regulation of gene expression at the translational level,
scarce information is available about it for protozoa parasites. Most of these parasites
are characterized by switching between two or more hosts, facing challenging environ-
ments, and developing elaborated mechanisms to survive, of which ribosomes may assume
important functions. In this review, we focused on the role of ribosome heterogeneity
and specialization in the biology of digenetic protozoa parasites of medical interest, with
special emphasis on Plasmodium spp., Trypanosoma spp., and Leishmania spp.; these parasites
represent excellent models to study ribosome specialization due to their digenetic nature of
the life cycle.

2. Ribosome Specialization in Plasmodium spp.

Plasmodium genera is composed of apicomplexan parasites, which include P. falciparum
and P. vivax, the main etiological agents of malaria in humans. The life cycle of this parasite
includes two hosts, the Anopheles vector mosquitoes in which the sporogonic cycle occurs,
and the vertebrate host, where the erythrocytic and exoerythrocytic phases take place
(Figure 2). In exoerythrocytic phase, parasites multiply asexually in liver cells before
differentiating into merozoites and then enter into the bloodstream and initiate erythrocytic
phase. Each stage has a peculiar morphology and physiology that is determined by its gene
expression profile, which is carried out by epigenetic, transcriptional, post-transcriptional,
and post-translational regulatory mechanisms [75].
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Figure 2. Types of SSU ribosomal RNA expressed in Plasmodium spp. life cycle. A-type rRNA (the red
inner circle) is transcribed early in the exoerythrocytic cycle of Plasmodium in liver cells of a vertebrate
host, being dominant until the zygote stage in the midgut of a mosquito. S-type rRNA (blue inner
circle) expression starts in zygotes and is maximally transcribed in the sporozoite stage at salivary
glands of mosquitoes; being reduced after infection of liver cells. The O-type rDNA (green inner
semicircle) was only described in P. vivax, which is expressed in maturing ookinetes and oocysts and
was not detectable in sporozoites from mosquitoes.
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Unlike other eukaryotes, in which rDNA is composed of hundreds of tandem re-
peated units, Plasmodium has 4–8 single-copy rDNA units distributed in different chromo-
somes [76]. rDNA is the main source of ribosome heterogeneity in Plasmodium, evidenced
by the presence of different types of rRNA genes, which are structurally distinct and ex-
pressed at different stages of the Plasmodium life cycle [77,78]. The small subunit rRNA (SSU
rRNA) transcripts from A-type (asexual) gene predominate in hepatic and bloodstream
stages, while S-type (sporozoite) gene transcripts are prevalent in mature sporozoites;
additionally, a third type of rRNA gene (O-type gene) was discovered in P. vivax, which is
expressed in maturing ookinetes/oocysts [76,79] (Figure 2). Further studies demonstrate
that the switching of transcriptional activity between the different rRNA gene types was
linked to differentiation pathways and developmental progression in a species-specific
manner [80,81].

The functional specialization of ribosomes containing these rRNAs remains contro-
versial. The large subunit rRNA (LSU rRNA) from A- and S-type in P. falciparum showed
functional differences in chimeric rRNAs experiments [82]. The GTPase domain of the 25S
rRNA from S. cerevisiae was replaced by GTPase domains from Plasmodium A- and S-type.
Cells with A-type chimeric rRNA grew normally, but S-type chimeric rRNA was lethal.
Additionally, it was demonstrated that one of the S-type genes (D-type SSU) in P. yoelii,
an etiological agent of rodent malaria, is essential for oocyst and sporozoite development,
and disruption of this gene causes the oocyst development defect (OOD), characterized
as having small oocysts and lacking infective sporozoites [83]. However, studies made on
both types of rRNAs from P. berghei, another causative agent of rodent malaria, did not
show structural differences in core regions of LSU rRNA molecules including GTPase sites.
Moreover, knockout of the S-type gene units did not affect the development of this parasite
in the vertebrate and mosquito hosts, which could indicate a functional equivalence of both
rRNA genes by a gene dosage phenomenon [84].

On the other hand, Cryptosporidium parvum, an intestinal Apicomplexa monogenean
protozoa phylogenetically close to Plasmodium spp., has also shown heterogeneity in 18S
rRNA and the presence of two types of rDNA units: Type A and type B, which differentiate
each other from the internal transcriber space regions and their number of copies, being four
for type A and one for type B [85,86]. Despite this similarity in ribosome heterogeneity with
Plasmodium spp., the functional significance of this difference is not known in C. parvum.

Ribosome-associated factors contribute to ribosome heterogeneity and regulate transla-
tion. Relatively little is known about their role in Plasmodium spp.; however, some examples
support their importance in these species. RACK1, an important regulatory component
of mRNA translation, has been found to be associated with 80S and actively translated
polysomes in malaria parasites [87].

Organellar Ribosomes of Plasmodium

Plasmodium parasites harbor a single and crucial mitochondrion with a reduced mito-
chondrial DNA (mtDNA), which encodes two rRNAs and only three proteins: Cytochrome
c oxidase subunit I (COI), Cytochrome c oxidase subunit III (COIII) and Cytochrome b
(Cyb) [88,89]. Mitoribosomes of Plasmodium also have a reduced rRNA content, with
2037 nucleotides in total; however, unlike most of the organisms, this rRNA is highly
fragmented, where SSU rRNA is composed of 12 fragments totaling 804 nt, while LSU
rRNA is composed 15 fragments totaling 1233 nt [90]. Regarding ribosomal proteins, there
is limited available information with up to 43 mitochondrial ribosomal proteins (MRP)
identified in P. falciparum, based on sequence similarity with known MRP of bacterial
and mitochondrial origin; however, the species-specific Plasmodium MRP still remains
unknown [91,92]. Likewise, Plasmodium also harbors the apicoplast, which is a relic of
plastids that contains its own DNA and is transcribed by its own apparatus [92]. The
apicoplast’s DNA has a complete set of rRNAs and a cluster of ribosomal proteins genes
of plastid and bacterial origins [93]. Like mitoribosomes, ribosomes from the apicoplast
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are also reduced, composed of approximately 40 ribosomal proteins and a large and small
rRNA subunit, but these are not fragmented [94].

Despite the limited information available, the importance of some ribosomal proteins
has been described. For instance, the knockdown of MRPL13/uL13m caused a deficiency
in mitochondrial electron transport chain (mtETC), loss of mitochondrial membrane po-
tential (∆Ψm), hypersensitivity to proguanil and death [95]. Likewise, MRPL12/bL12m,
MRPL17/bL17m, MRPL18/uL18m, and MRPL23/ul23m are important for proper en-
zymatic activity of cytochrome bc1 complex and the resistance to bc1 inhibitors [91,96].
Additionally, the protein ARPS10 from the apicoplast has shown an important role in
tolerance to febrile temperatures and artemisinin, showing the role of this plastids in drug
resistance [97,98].

3. Ribosome Specialization in Trypanosomatids

Trypanosomatidae is a family of parasites taxonomically located in the order Kine-
toplastida, which are characterized by having extranuclear DNA known as kinetoplast
DNA [99]. This family includes the causative agents of Sleeping sickness disease (Try-
panosoma brucei), Chagas disease (T. cruzi), and Leishmaniasis (Leishmania spp.). Trypanoso-
matids have evolved in different ways than other eukaryotes, developing unique cellular
and genetic pathways, such as polycistronic transcription and trans-splicing of pre-mRNAs,
leading to a distinctively structured mRNA, which includes the spliced leader (SL), a
chain of 39 identical nucleotides at the 5′ terminus with methylation in the first four nu-
cleotides [100,101]. Likewise, ribosomes of Trypanosomatids have shown unique features,
such as a 25/28S rRNA fragmented into 6 transcripts, the presence of unusually large
expansion segments (ES), and ribosomal protein extensions, as well as additional rRNA
insertions, including one exclusively large rRNA domain [102–105].

3.1. Trypanosoma spp.

Like Plasmodium spp., the main source of ribosome heterogeneity with potential
functional specialization described in Trypanosoma spp. is the rRNA. For instance, it has been
reported that pseudouridylation (Ψ) is developmentally regulated in two stages of T. brucei,
where 21 positions on the rRNA were hyper-pseudouridylated in the bloodstream form
(BSF) [106] (Figures 3A,B and 4A,B). Interestingly, four domains located in the peptidyl-
transferase center (PTC) were hypermodified (H69, H89, H90, and H92), where H69 and
H89 have 4 hypermodified positions, while H90 and H92 have one each (Figure 4B).
Additionally, overexpression of snoRNAs that guide the modifications of H69 accelerates
the growth of polycyclic forms (PCF) at an elevated temperature (30 ◦C), which suggests
that hyper-pseudouridylation participates in the ability of the parasite to maintain ribosome
function despite the temperature changes between hosts [106] (Figure 3C).

Likewise, it has been described that several 2′-O methylations sites of rRNA are
differentially regulated at the two stages of the life cycle of T. brucei. Specifically, the
increased methylations observed in 18 and 36 positions in BSF and PCF, respectively
(Figures 3A,B and 4A–C); curiously, these modifications are close to functional domains of
rRNA such as E, P, and A sites and PTC [107] (Figure 4B,C). Although the precise role of
these rRNA modifications in each stage of T. brucei has not been discovered, their closeness
to functional domains of the ribosome could improve the translation of specific subsets
of mRNA and support the existence of different populations of ribosomes with specific
functions during the Trypanosoma life cycle.

On the other hand, proteomic analyses of T. cruzi epimastigotes showed the overex-
pression of 33 ribosomal proteins (17 from the large subunit and 16 from the small subunit)
in the exponential phase compared with stationary phase in vitro; in addition, four ribo-
somal proteins were uniquely expressed in the exponential phase (L7Ae/eL8, L27/eL27,
L34/eL34, and one acidic RP) and one expressed exclusively in the stationary phase (S12),
highlighting the importance of ribosomes in stages’ transitioning [108].
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Figure 3. rRNA modifications observed in different stages of the Trypanosoma brucei life cycle.
(A) Bloodstream forms (BSF), mainly represented by slender replicative trypomastigotes in the blood
of the mammalian host, show 21 hyper-pseudouridylated (Ψ) positions in rRNA, many of them in do-
mains located in the peptidyl-transferase center (PTC), as well as 18 positions with 2′-O-methylations
increased, which is accompanied by the overexpression of most of C/D snoRNAs. Procyclic forms
(PCF), also known as procyclic trypomastigotes, display an increase in 2′-O-methylations in 36 posi-
tions of rRNA compared with BSF. (B) Number of 2′-O-methylations (green circles with an M) and
pseudouridylations (yellow circles with Ψ) in the large subunit (LSU) and the small subunit (SSU)
of the ribosome in BSF and PCF. (C) Hypermodified positions in Helix 69 (H69) of LSU rRNA. The
H/ACA snoRNAs involved in the pseudouridylation of ribosomal RNA are highlighted in yellow
boxes. Overexpression of these snoRNAs in PCF favors the acceleration of their growth at 30 ◦C.

Another layer of translational control is achieved by ribosome-associated factors.
In a recent study, the protein TbRACK1 was found in association with ribosomes and
elongation factor 1A in Trypanosoma brucei and is important for the translational control of
cytokinesis [109]. However, more studies are needed to understand what factors can bind
ribosomes and what are their role in translational control.
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Figure 4. Positions of the rRNA with hyperpseudouridylations and increased 2′-O-methylations in
bloodstream forms (BSF) and procyclic forms (PCF) of T. brucei. PDB 4V8M [104] ribosome structure
were used to visualize methylation and pseudouridylation sites using PyMOL [110]. The SSU is
indicated by pale yellow, while the LSU is indicated by pale cyan. Methylation sites are circled in red,
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while pseudouridylation sites are indicated in blue. (A) Methylation and pseudouridylation sites
are increased in BSF (+y). There seems to be a cluster of methylation sites in the SSU near the E-site.
There is also a cluster of methylation sites near the nascent polypeptide exit tunnel as indicated
by uL22 and near uL13 and uL3. uL13 has extra-ribosomal functions in mammals while uL3 has
increased expression in certain mammalian tissues [17]. (B) Methylation and pseudouridylation sites
in BSF (−y). Left figure shows a view of 180 degrees along the y-axis of (A); right side shows a view
of 280 degrees along the y-axis of (A) and a magnification of 60 Å, highlighting helices composing the
PTC. Pseudouridylation sites seem to cluster in the SSU, while methylation appears to cluster in the
LSU on this side. (C) Increased methylation sites in PCF. Methylation sites appear more diffused in
PCF parasites than in BSF forms. The helices composing the PTC are highlighted with the same color
pattern as in (B). There are also more methylation sites in PCF than BSF.

3.2. Leishmania spp.

Regarding Leishmania spp., there is limited information of rRNA or RP heterogeneity
related to specialized ribosomes that are regulated during development; however, an inter-
esting study about experimental evolution showed that L. donovani gains fitness at the cost
of infectivity loss as an adaptation to the environment [111]. The authors, through genomic,
transcriptomic, and proteomic analyses, demonstrated that some biological processes such
as “ribosome biogenesis”, “ribosome assembly” and “rRNA processing” have an impor-
tant role in fitness gain by forming “fitness-adapted ribosomes”, which can change the
translation specificity or efficiency and allows the environment adaptation of Leishmania to
changing conditions [111]. Likewise, a quantitative proteomic analysis also revealed that
some ribosomal proteins are differentially expressed in the life cycle of L. tropica, L. major,
and L. donovani, being up or down-regulated in different stages of the differentiation pro-
cess in all species, indicating that ribosomal proteins are involved in the most important
pathways of the metacyclogenesis mechanisms [112–114] (Figures 5 and 6A–F).

All these characteristics observed in Trypanosomatids’ ribosomes have something in
common: the involvement of small nucleolar RNAs (snoRNAs). snoRNAs are non-coding
RNA present in nucleoli of eukaryotic cells which are mainly classified into two groups:
C/D box and H/ACAbox snoRNAs, which participate in the processing of rRNA molecules
by adding 2′-O-methylations and pseudouridylations (Ψ), respectively, although a third
type of snoRNAs was recently described, the small Cajal body-specific RNAs (scaRNAs),
which are in Cajal bodies and have both C/D and H/ACA structures [115–117]. They
bind to partner proteins forming a ribonucleoprotein complex (RNP), which guides the
recognition and tethering of target RNAs, thereby specifying the modification sites [115].
Unlike other eukaryotes, where around six snoRNAs are heading rRNA processing, Try-
panosomatids have at least 18 snoRNAs having this function, which is the highest number
reported [118,119]. Additionally, snoRNAs have shown differential developmental expres-
sion in T. brucei [106,107] and L. donovani [111], which, taking into account the importance
of snoRNAs in ribosome assembly and biogenesis, could be related to the production
of specialized ribosomes and contribute to the adaptation of these parasitic protozoa to
host switching.

Leishmania species can exhibit the ribosome heterogeneity through ribosome-associated
factors. LiAlba1 and LiAlba3 are RNA binding proteins controlling developmental gene
expressions in Leishmania infantum [120]. These proteins can form complex interactions
with ribosomal subunits, RNA binding proteins and translation factors. Their increased
association with the ribosomal subunits is observed under conditions of decreased transla-
tion and support their role in translational repression. Interestingly, these proteins display
a differential localization during parasite development.
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Figure 6. Localization of ribosomal proteins developmentally regulated in Leishmania spp. PDB
5T2A [121] ribosome structures were used to visualize the ribosomal proteins using PyMOL [110].
The SSU is indicated by pale yellow, while the LSU is indicated by pale cyan. Regulated proteins are
highlighted and denoted next to the protein with their respective colors. (A) Upregulated ribosomal
proteins in the transition from procyclic to metacyclic promastigotes in Leishmania major. LSUα, part
of the 26S rRNA, was hidden to better illustrate the location of eL32. (B) Downregulated ribosomal
proteins in the transition from procyclic to metacyclic promastigotes in Leishmania major. P2 is
not pictured as PDB 5T2A does not contain a solved structure of this protein. (C). Downregulated
ribosomal proteins in the transition from metacyclic promastigote to amastigote-like forms in L. tropica.
Both the +y and -y directions for this stage of development were depicted. (D) Upregulated ribosomal
proteins in the transition from metacyclic promastigotes to amastigote-like forms in L. tropica. The
view of only one side of the ribosome is shown, which is 180 degrees from C. (E) Upregulated
ribosomal proteins in the transition from amastigotes to promastigotes in L. donovani. The view of
only one side of the ribosome is shown containing all three ribosomal proteins. P2 is not pictured as
PDB 5T2A does not contain a solved structure of this protein. (F) Downregulated ribosomal proteins
in the transition from amastigotes to promastigotes L. donovani. The +y and –y ribosome directions
are indicated by a 180 degree turn. eS31 was not depicted since 5T2A does not have that coordinate.

3.3. Trypanosomatid Mitoribosomes

Trypanosomatid mitoribosomes have the most pronounced compositional and archi-
tectural deviations so far. They are larger and more complex than any other mitoribosome
described to date, with a molecular weight of 4.5 MDa, highly reduced rRNA content
(1796 nt) located in the core of the ribosome and an expanded repertoire of proteins (127)
acting as a shell for rRNA [63]. Roughly half of the ribosomal proteins found in trypanoso-
mal mitochondria are unique to this species [122]. The RNA/protein ratio of T. brucei is 1:6,
differing from the 2:1 ratio found in E. coli, 1:1 ratio of S. cerevisiae mitochondria, and the
1:2 ratio found in mammalian mitochondria (Table 1) [63,123,124].

These mitoribosomes are also characterized by a prominent SSU, which is even bigger
than LSU [63], as well as the presence of unusual 45S SSU* complexes composed of 9S
rRNA, at least 39 ribosomal proteins, pentatricopeptides repeats (PPR) and other pro-
teins not typically found in ribosomes, such as rhodanese-like protein (Rhod) [66,125,126].
This complex has shown an important role in the growth of procyclic forms as well as
the synthesis of COI and Cyb in T. brucei and consequently, affecting the production of
ATP [126]. Likewise, mitoribosomal protein MRPS12/uS12m is the only ribosomal pro-
tein encoded by kinetoplast DNA, which undergoes an extensive U-insertion/deletion
editing. It has observed that MRPS12/uS12m mRNA editing is essential for mitochon-
drial translation, since perturbations of the editing system results in an inhibition of the
mitochondrial protein synthesis, affecting the production of Cyb and COI, with a parallel
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reduction in 45S SSU* complexes [127]. Both studies highlight that such regulation becomes
necessary during the differentiation of bloodstream forms (BSF) into the insect procyclic
forms (PCF) of T. brucei. It must be accompanied by a transition from mitochondrion
lacking cytochrome-mediated electron transport chain into a fully functional system of
oxidative phosphorylation [126,127], since in BSF the ATP is produced via substrate level
phosphorylation and is hydrolyzed by the F1F0 ATP synthase to generate mitochondrial
trans-membrane potential [128,129].

4. Role of Ribosome Specialization in Parasitism

Protozoa parasites have complex life cycles, switching between two hosts or between
environment-host, which has turned them into unique organisms with elaborate and
complex machinery that allows their adaptation to adverse environments [130]. At the
molecular level, it has been observed that protozoa parasites can exhibit changes in the
genome [131–133], transcriptome [134–136], translatome [137], and proteome [138–140]
when facing stressful factors and in different developmental stages. In this way, the
regulation of mRNA translation becomes essential for parasite invasion, proliferation, and
its response to changes in temperature, nutrient depletion, and the immune response of
the host.

Several proteomic analyses have shown that ribosomal proteins as well as proteins
related to ribosome biogenesis are some of the most up or downregulated proteins in
the transition stage [108,112,113,141]. However, it is necessary to highlight that some ri-
bosomal proteins exhibit extraribosomal functions in other organisms, such as acting as
DNA endonucleases (RPS3/uS3) [142,143], helping in antiviral responses (RPL10/uL16,
RPL13A/uL13) [144,145], and even being part of the small nucleolar ribonucleoproteins
(snoRNP) (RPL7/uL30) [146]; some act in autoregulation of RP synthesis and as sentinels
in ribosome biosynthesis, among other functions [147–150]. Therefore, currently, it remains
unknown if the ribosomal proteins differentially expressed in stage transition have extrari-
bosomal functions or may be associated with the formation of specialized ribosomes in
protozoa parasites.

In addition to ribosomal proteins, other molecules such as rRNA, snoRNAs, ribosome-
associated proteins and non-coding RNA play fundamental roles in the biogenesis of
ribosomes, favoring base modification, protein binding, bond establishment, sequence
cleavage, and recently have been recognized as regulators of ribosome functions and
translation [109,111,118,120,151–161]. Non-coding RNAs (ncRNAs) are present in all three
domains of life, and some of them have shown a special stress-specific expression, inhibiting
protein production on the global scale or having a stimulating effect on translation by
interacting with translating ribosomes in a stress-dependent manner [157,158]. In protozoa
parasites, it has been also described that certain ncRNAs are developmentally regulated
and/or respond to stress, they can be associated with ribosomes and have a potential role in
translation regulation in T. brucei and L. infantum [154,159,160]. Furthermore, long ncRNAs
that promote the parasite differentiation in T. brucei have also been reported [161]. All these
molecules could have an important role in developing specialized ribosomes that regulate
translation during the hosts switching, or during its adaption to different challenges such
as starvation, heat-shock, and oxidative stress during infection [130].

A recent study revealed that infection with Toxoplasma gondii leads to a dramatic
change in the ribosome composition in mammalian macrophages and selective reprogram-
ming of host mRNA translation [162]. Parasite infection induces upregulation of many
ribosomal proteins in the host and activates mTORC1. The inhibition of host mTORC1 leads
to the reduction in parasite replication, supporting that manipulation of host ribosome
composition and selective reprogramming of host translatome are important strategies for
parasite survival during infection.

The functional specialization of ribosomes is poorly understood in protozoa para-
sites; studies carried out on other model organisms have shown interesting mechanisms
of ribosome specialization as a response to stress. In E. coli, stressful conditions such as
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the presence of antibiotics triggers the stress-induced toxin-antitoxin (TA) system masEF,
which encodes the labile antitoxin MazE and the stable toxin MazF. However, due to the
short lifespan of MazE, it is quickly degraded, and MazF exerts its toxic effects. MazF is
an endonuclease that cleaves single stranded mRNA at ACA sequences, nevertheless it
also cleaves the 16S rRNA within 30S ribosomal subunit in a region required for transla-
tion initiation of canonical mRNAs (anti-Shine-Dalgarno region, aSD). The subpopulation
of ribosomes lacking the 43 nucleotides from 3’ terminus of 16S rRNA selectively trans-
late leaderless mRNA in vivo and in vitro, as a possible response to stress adaptation
of E. coli [163]. Likewise, when E. coli faces nutrient limitations, it has observed an up-
regulation of the operon rrnH, which encodes the 16S rRNA gene rrsH. The presence of
rrsH-bearing ribosomes leads to changes in the expression of stress response genes regu-
lated by the RpoS sigma factor, and alters phenotypic traits such as antibiotic sensitivity,
biofilm formation, and cell motility [164]. On the other hand, Haloarcula marismortui is a
halophilic archaeon which contains three rRNA operons (rrnA, rrnB, and rrnC), operons A
and C are identical, but operon B has a highly divergent nucleotide sequence. It has been
observed that at high temperatures (50 ◦C) operon B displays four times higher expression
levels than operons A and C together; likewise, strain lacking operon B grew slower at high
temperatures [165], which highlights the importance of specialized paralogues in archaeon
survival at different temperatures.

Thus, it is logical to conclude that heterogeneities in ribosomes could lead to a func-
tional specialization directed to produce proteins with important roles for parasite survival;
however, more deep studies are required to determine the functional consequences of ribo-
somal specialization in protozoa parasites. Specialized ribosome components could also be
used as new pharmaceutical targets or as antigens in the development of vaccines [166–168].

5. Conclusions

Recent evidence indicates that specialized ribosomes can support selective translation
of a subset of mRNAs, which makes ribosomes an important regulator of translational con-
trol. Our current knowledge about ribosome specialization in protozoa parasites remains
very limited. Most of the ribosome heterogeneities reported here are caused by modifica-
tions of rRNA, changes in DNA coding rRNAs and heterogeneity in ribosomal proteins.
Despite multiple proteomic studies showing RPs exclusively expressed in different devel-
opmental stages, more studies are required to assess the role of ribosomal proteins in the
formation of specialized ribosomes and the biological consequences of such specializations.
The functional role of rRNA modifications in the life cycle of the parasites also remains
obscure. Notwithstanding, studies about ribosome specialization in parasitic protozoa are
scarce, some protozoa such as Trypanosomatids can serve as an excellent model organisms
to study ribosome specialization since they have a limited transcriptional control, while
regulation of translation is the major route to control gene expression [169,170]. On the
other hand, techniques such as cryoEM have made it possible to deeply unravel the struc-
tures of ribosomes at resolutions never seen before. More studies of this type are required
to know in depth about the variations in the structure of protozoa parasites’ ribosomes and
how these differences provide a different landscape and contribute to selective translation.
The functional role that specialized ribosomes and mitoribosomes play in the response of
the parasite to environmental conditions, the life cycle of the parasite, or its virulence is
one of the major unanswered fundamental questions that require further studies.

Author Contributions: Conceptualization—Z.N.K., C.C.R.-A. and A.L.K.; Writing—original draft
and figures preparation, review and editing—C.C.R.-A.; Structures modeling, review and editing—
M.K.K.; Writing—review and editing—Z.N.K., C.C.R.-A. and A.L.K. All authors have read and
agreed to the published version of the manuscript.



Int. J. Mol. Sci. 2023, 24, 7484 16 of 23

Funding: Research reported in this publication was supported by the National Institute of General
Medical Sciences of the National Institutes of Health under Award Number R15GM146171 to Z.N.K.
The content is solely the responsibility of the authors and does not necessarily represent the official
views of the National Institute of Health.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

aSD Anti-Shine-Dalgarno region
BSF Bloodstream forms
CryoEM Cryo-Electron Microscopy
COI Cytochrome c oxidase subunit I
Cyb Cytochrome b
eIF4E Eukaryotic initiation factor 4E
FMRP Fragile X Mental Retardation Protein
H69 Helix 69
LSU Large subunit
LiAlba1 Leishmania infantum Acetylation lowers binding affinity protein 1
LiAlba3 Leishmania infantum Acetylation lowers binding affinity protein 3
MDa Mega Dalton
mESCs Mouse embryonic stem cells
mRNA Messenger RNA
MRP Mitochondrial ribosomal protein
mtDNA Mitochondrial DNA
mtETC Mitochondrial electron transport chain
mTORC1 Mammalian target of rapamycin complex 1
ncRNA Non-coding RNA
OOD Oocyst development defect
PCF Polycyclic forms
PDB Protein database
PPR Pentatricopeptides repeats
PTC Peptidyl transferase center
RACK1 Receptor for activated C kinase 1
rancRNA Ribosome associated non-coding RNA
rDNA Ribosomal DNA
RNP Ribonucleoprotein
RP Ribosomal protein
RPL Ribosomal protein L
RPS Ribosomal protein S
rRNA Ribosomal RNA
SAR Social amoebae ribosomes
scaRNAs Small Cajal body-specific RNAs
snoRNA Small nucleolar RNA
SSU Small subunit
TA Toxin-Antitoxin
TbRACK1 Trypanosoma brucei Receptor of activated protein C kinase 1
VAR Vegetative amoebae ribosomes
Ψ Pseudouridylation
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