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Abstract: The mitochondria play a crucial role in cellular metabolism, reactive oxygen species (ROS)
production, and apoptosis. Aberrant mitochondria can cause severe damage to the cells, which have
established a tight quality control for the mitochondria. This process avoids the accumulation of
damaged mitochondria and can lead to the release of mitochondrial constituents to the extracellu-
lar milieu through mitochondrial extracellular vesicles (MitoEVs). These MitoEVs carry mtDNA,
rRNA, tRNA, and protein complexes of the respiratory chain, and the largest MitoEVs can even
transport whole mitochondria. Macrophages ultimately engulf these MitoEVs to undergo outsourced
mitophagy. Recently, it has been reported that MitoEVs can also contain healthy mitochondria, whose
function seems to be the rescue of stressed cells by restoring the loss of mitochondrial function.
This mitochondrial transfer has opened the field of their use as potential disease biomarkers and
therapeutic tools. This review describes this new EVs-mediated transfer of the mitochondria and the
current application of MitoEVs in the clinical environment.

Keywords: MitoEVs; mitochondria; extracellular vesicles; biomarker; therapy

1. Introduction

The mitochondria are cellular organelles with a double membrane structure that
use aerobic respiration to generate ATP. Apart from their traditional role in oxidative
phosphorylation, the mitochondria have key roles in several metabolic pathways, cell
proliferation, and differentiation, ROS production and consumption, and apoptosis [1]. The
mitochondria also have an important role in the fine modulation of calcium homeostasis,
and when compromised, they lead to different pathological conditions [2]. Moreover, it
has been shown that the alteration of calcium signals that reach the mitochondria during
pathological conditions (such as oxidative stress) is accompanied by a deformation of this
organelle structure and function, triggering its clearance [3].

Mammal mitochondria contain several copies of their genome consisting of a circular
DNA molecule of 16.6 kb. The mitochondrial genome includes 37 genes encoding 13 pro-
teins for subunits of the respiratory complexes of the electron transport chain, 22 tRNA,
and 2 rRNA (12S and 16S rRNA).

The mitochondria are transmitted to subsequent generations through the vertical
maternal lineage in mammals. During symmetric cell division, the mitochondria are
distributed randomly between daughter cells [4]. Conversely, during asymmetric cell
division, the mitochondria are differentially segregated. This was demonstrated using a
colored labeling strategy where old mitochondria were labeled 48 to 58 h before cell division,
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and young mitochondria were labeled 0 to 10 h before division. The authors observed
that, after cell division, the old-labeled mitochondria from the mother cells were divided
more asymmetrically between daughter cells than the young-labeled mitochondria [5],
thus suggesting the existence of active mechanisms that guide mitochondria partitioning
between daughter cells.

Recently, the mitochondria have been found to be horizontally transferred between
mammalian cells, challenging the current concepts of mitochondria inheritance [6]. Di-
verse structures mediate intercellular mitochondrial transfer. These include tunneling
nanotubes (TNTs) [7], extracellular vesicles (EVs) [8], gap junctions [9], and cell fusion [10].
However, free extracellular mitochondria have also been found in supernatants from cells
cultured in vitro, as well as in biological fluids, under both physiological and pathological
conditions [11,12].

TNTs, gap junctions, and cell fusion have been extensively described; therefore, in
this review, we will focus on mitochondria horizontal transfer through EVs. EVs are dou-
ble lipid layer-surrounded vesicles that are secreted to the extracellular milieu by almost
all cell types and they drive intercellular communication. “EVs” is a general term that
englobes several subtypes of cell-released membranous structures, including exosomes,
microvesicles, apoptotic bodies, and others, regardless of their biogenesis, size, density,
and function [13]. These particles can be isolated from the media of cells in culture and
from biological fluids, using different procedures, such as serial ultracentrifugation, ultra-
filtration, size-exclusion chromatography, immunoaffinity, or microdevices, among others.
The size of EVs ranges from 40 nm to 5 µm [14], and their typical cargo includes proteins,
lipids, and nucleic acids. These vesicles are known to be involved in physiological and
pathological processes, including the removal of unwanted proteins, antigen presentation,
genetic exchange, immune response, inflammation, tumor metastasis, and dissemination of
pathogens [15]. Recently, intact organelles such as mitochondria have also been detected in
EVs; therefore, EVs are believed to participate in intercellular mitochondrial transfer [16,17].

2. MitoEVs

EVs have different sizes, ranging from 40–150 nm (small EVs) to 500–5000 nm (large
EVs). Smaller EVs mostly contain genetic material, such as mtDNA [18–22], mtRNA [23],
and mitochondrial proteins [24–28]. Larger EVs may contain entire polarized mitochon-
dria [8,29–31]. As several discrepancies have been described in the literature, mostly due
to differences in the EV isolation protocol used, in this review, we englobe all these ex-
tracellular vesicles containing either intact mitochondrion or mitochondrion components,
as MitoEVs.

MitoEVs transfer enables the incorporation of mitochondria or their components into
the endogenous mitochondrial network of recipient cells. Mitochondrial transfer likely
occurs under normal and physiological conditions between cells, suggesting a regular
exchange of mitochondria that ensures a balanced heteroplasmy [32]. As an example,
it has been reported that mesenchymal stem cells (MSCs) package intact mitochondria
into MitoEVs, which are transferred to chondrocytes in the absence of direct cell−cell
interactions or stimulus [8]. In addition, it has been proposed that mitochondria are
transferred during mouse development [33]. Since embryonic development requires cells
to rely on aerobic glycolysis to support rapid cell proliferation [34], this mitochondria
transfer might play a role in mitochondrial respiration-linked remodeling [35]. However,
more research is needed in this field to assess the specific involvement of MitoEVs in the
control of mtDNA heterogeneity and tissue homeostasis during normal development.

Interestingly, MitoEVs can contain both healthy or damaged mitochondria, with dif-
ferent physiopathological consequences on target cells. Recent research has provided solid
evidence to support that mitochondria are released from cells for transcellular degradation
or transferred to other cells as metabolic support or regulatory messengers [36–39].
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3. How and Why Do Cells Release MitoEVs?

The intercellular transfer of MitoEVs plays specific roles in different conditions. On
the one hand, mitochondria may be released to the extracellular space during develop-
mental processes, inflammatory activation, and in the process of “garbage clearance” of
damaged mitochondria [40]. Indeed, MitoEVs are part of the quality control of the mito-
chondria. When the mitochondria are damaged, cells activate repair mechanisms such
as mitochondrial proteostasis, mitochondrial dynamics (fusion/fission), and mitophagy
or trans mitophagy [36], that is, sending damaged mitochondria to the surrounding cells
(astrocytes or macrophages) to complete the quality control of the mitochondria [41,42].

On the other hand, it is increasingly being reported that MitoEVs released by healthy
MSCs promote anti-inflammatory effects and energy metabolism restoration in target
cells [43]. It has been suggested that stressed cells send specific signals, such as ROS,
leading to the formation of tunneling nanotubes (TNTs) and the shedding of MitoEVs
by healthy cells [17,44], resulting in the transfer of healthy mitochondria to stressed cells,
thereby restoring their functionality and rescuing them from apoptosis [6]. This was
observed in corneal epithelial cells subjected to oxidative stress, which sent environmental
cues to MSC, which responded by releasing MitoEVs, that, once internalized, epithelial cells
displayed an enhanced survival capacity, elevated mitochondrial respiration, and a wound
healing capacity [45]. Similarly, in patients with myoclonus epilepsy with ragged-red fibers
(a mitochondrial disease), MSCs donate MitoEVs to rescue injured cells by improving their
aerobic respiration, suppressing apoptosis, and decreasing oxidative stress [46].

3.1. MitoEVs for Mitochondria Quality Control

Cells perform mitochondrial quality control through four different pathways (see Figure 1).
The proteostasis of mitochondrial proteins includes mitochondria-localized chaper-

ones and proteases that re-fold or degrade individual aberrant proteins, thereby main-
taining the quality of proteins functioning within the mitochondria [47]. Mitochondrial
proteostasis degrades unfolded or oxidized proteins within the mitochondrial matrix by mi-
tochondrial proteases; although, in some cases, these aberrant proteins can be ubiquitinated
and delivered to the cytosolic ubiquitin−proteasome system (UPS) [48–50]. It has been
reported that ubiquitination occurs at the inner mitochondrial membrane and that some
metabolic proteins (such as succinate dehydrogenase subunit A) are UPS-dependent [51];
thereby suggesting that UPS is involved in the regulation of mitochondrial quality control.

Mitochondrial dynamics consist of the antagonistic and balanced activities of the
fusion and fission machinery to shape the mitochondrial compartment. A shift toward
fusion favors the generation of interconnected mitochondria, whereas a shift toward fis-
sion produces numerous mitochondrial fragments [52]. Large mitochondrial networks
generated by fusion are typically observed in metabolically active cells; in contrast, in qui-
escent cells, the mitochondria are frequently observed as numerous small spheres or short
rods. Mitochondrial dynamics are mediated by fusion factors (mitofusin 1 and 2 (MFN1
and MFN2), and optic atrophy 1 (OPA1)) and fission factors (dynamin-related protein 1
(DRP1) and mitochondrial fission protein 1 (FIS1)). Fusion dilutes damaged mitochondria
along the network, whereas fission targets dysfunctional mitochondria to their subsequent
clearance through mitophagy [53,54]. Depending on the physiological context, MFN2 can
either mediate mitochondrial fusion or recruit cytosolic Parkin to initiate mitophagy [55].
Interestingly, alterations in MFN2 can hamper mitochondrial fusion leading to the forma-
tion of clumped mitochondrial aggregates [56]. It is likely that in this scenario, clumped
mitochondria would also be subjected to degradation through mitophagy.
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Figure 1. Mitochondria quality control and MitoEVs formation. Aberrant mitochondrial components
can be degraded by the UPS, but also be incorporated in MDV that fuse with lysosomes to form
MVB, leading to the formation and delivery of small mitoEVs. Whole damaged mitochondria are
subjected to fusion and fission processes, the latter ending in mitophagy and promoting transmi-
tophagy through the formation and release of large mitoEVs. UPS: Ubiquitin proteasome system;
MDV: mitochondria-derived vesicles; MVBs: multivesicular bodies; PINK1: PTEN-induced puta-
tive protein kinase 1; MVB: multivesicular bodies; EVs: extracellular vesicles; Mfn1: mitofusin 1;
Mfn2: mitofusin 2; Opa1: optic atrophy 1; Drp-1: dynamin-related protein 1; FIS1: mitochondrial
fission protein 1; LC3: microtubule-associated protein 1 light chain 3.

Severely damaged mitochondria are incorporated into LC3-positive autophagosomes
that will eventually fuse with lysosomes or late endosomes for their degradation through
mitophagy [57]. This pathway relays on PTEN-induced putative protein kinase 1 (PINK1)
and Parkin, which are activated following a loss of mitochondrial membrane potential [58].
Interestingly, it has been reported that autophagy-deficient cells [59–61] as well as UPS-
deficient cells release an increased number of MitoEVs. Similarly, several stresses in-
crease the number of released MitoEVs. Indeed, under cold stress, brown adipocytes
eject MitoEVs containing oxidatively-damaged mitochondria that are cleared by resident
macrophages [26,62]. In addition, mesenchymal stem cells (MSC) subjected to oxidative
stress package mitochondria into EVs for cellular transfer, which are posteriorly engulfed
by macrophages that undergo outsource mitophagy [63].

Mildly damaged mitochondria, not yet completely depolarized, may be also subjected
to PINK1 and Parkin action to generate mitochondria-derived vesicles (MDVs) [64,65].
MDVs are generated through the selective incorporation of mitochondrial proteins. These
MDVs have a relatively uniform size, between 70 and 150 nm [66]. MDVs have two differ-
ent fates: they can either fuse with peroxisomes or merge with the endolysosomal system,
forming multivesicular bodies (MVBs) that will in turn be released into the extracellular
compartment as MitoEVs [67,68]. It is believed that mitochondrial discharge by MitoEVs
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operates as a first line of defense against partially depolarized mitochondria, before com-
plete depolarization. Moreover, under stress conditions, lysosomal degradation might
be exceeded and the MDV containing dysfunctional parts of the damaged mitochondria
could then accumulate and act as pro-inflammatory damage-associated molecular patterns
(DAMPs) [28,69]. Cells will prevent this chaos by packaging MDVs into multivesicular
bodies to be extracellularly discharged as MitoEVs, which are degraded by surrounding
macrophages. Very recently, it has been suggested that the elimination of damaged mito-
chondria via MitoEVs is increased when the lysosomal function is compromised [70], and
this mechanism seems to be mediated by the small GTPase Rab7 [71].

In response to stress, it has been published that adipocytes release MitoEVs originat-
ing from MDV, which include damaged mitochondria. These MitoEVs are taken up by
cardiomyocytes, where they trigger a burst of ROS creating oxidative stress; this results in
compensatory antioxidant signaling activation consistent with a metabolic pre-conditioning
of the heart [26].

3.2. MitoEVs for Rescuing Damaged Cells

Accumulating shreds of evidence suggest that MSCs play a role in the protection of
the surrounding damaged cells by providing their intact mitochondria via MitoEVs. It has
been reported that mitochondrial transfer through MitoEVs can rescue stressed cells by
restoring the loss of mitochondrial function in recipient cells and increasing their metabolic
activity [16,24,72]. In a model of acute respiratory distress syndrome (ARDS), it was shown
that MSC-released MitoEVs could restore barrier integrity and normal levels of oxidative
phosphorylation, thereby reducing lung injury [73].

Mitochondrial function is involved in maintaining and dictating stem cell fate, which
plays a role in metabolic reprogramming during quiescence, activation, self-renewal, prolif-
eration, and differentiation. As the mitochondria produce most of the energy by oxidative
phosphorylation, the switch of energy supply from glycolysis to aerobic metabolism is
essential for the successful differentiation or reprogramming of recipient cells. Indeed,
the transfer of healthy mitochondria can reprogram the differentiated cells [74]. It has
been reported that platelets also shed MitoEVs that are integrated by MSCs, activating
their pro-angiogenic activity via their metabolic remodeling [75], suggesting that MitoEVs
promote tissue repair processes.

The mitochondria have a key role in immune-cell regulation. The mitochondria
promote ROS signaling and metabolite availability within immune cells and act as a
scaffold for protein interaction. Therefore, the mitochondria are believed to be necessary
for immune cells to fulfill their specific role in both innate and adaptive responses [76].
MitoEVs can be integrated by T cells and alter their mitotic processes [29]. Recent studies
have shown that macrophages uptake MitoEVs released by MSCs, which stimulates their
mitochondrial activity [77]. A study reported that MitoEVs released by healthy MSCs
ameliorated acute lung injury because macrophages that engulfed these MitoEVs had
enhanced phagocytic capacity and reduced the secretion of TNFα, thereby suppressing
lung inflammation [17]. Importantly, macrophages that have engulfed MitoEVs might
display either pro- or anti-inflammatory effects. It seems that the pro-inflammatory effects
have been described when MitoEVs are released by MSC subjected to pro-inflammatory
treatments such as LPS, whereas the anti-inflammatory effects were observed in resting
MSC [77,78]. These findings suggest that MitoEVs regulate the immune system.

Interestingly, it has recently been reported that macrophages accumulate in peripheral
nervous tissue and donate their mitochondria through EVs to sensory neurons to support
pain resolution [79]. This discovery opens a novel set of strategies to resolve chronic pain
through the restoration of mitochondrial homeostasis in neurons or by enhancing the
transfer of the mitochondria from the macrophages. Moreover, it has been reported that in
a model of cerebral ischemia, astrocytes release MitoEVs to protect neurons from hypoxia
and glucose deprivation [80].
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The following sections are dedicated to review the current use of MitoEVs as thera-
peutic tools, as well as their role as biomarkers for disease diagnosis.

4. Potential Use of MitoEVs as Diagnostic Markers

Similar to other subtypes of EVs, MitoEVs are altered in several diseases, including
cancer, neurodegenerative disorders, and cardiovascular disease [69]. MitoEVs contain
a variety of molecular components from releasing cells, including proteins, lipids, and
nucleic acids, which may serve as indicators of disease status [69]. Here, we discuss how
differences in the content and markers of these vesicles could thus be used as diagnostic
tools for distinct conditions.

4.1. Cancer

The search for new methods to diagnose cancer in its early stages and distinguish
between states of the disease has led to the development of liquid biopsies. The analysis
of body fluids such as blood or urine to gather information about a person’s cancer status
has emerged as a powerful tool for cancer diagnosis, prognosis, and treatment monitoring,
as it allows for the detection of cancer-related genetic alterations in a minimally invasive
manner [81,82].

Cancer cells often release various types of molecules into the bloodstream, including
DNA, RNA, and proteins [83]. These molecules can be used to detect cancer cells and
track their progression over time. The results of a liquid biopsy can provide important
information about the type and stage of cancer, as well as help monitor the effectiveness of
the treatment and detect the early signs of cancer recurrence [82].

The analysis of EVs in liquid biopsies has emerged as a novel method to provide new
insights into the role of EVs in several diseases, as the content in EVs varies across disease
status [84]. Currently, the main application of the analysis of EVs in liquid biopsies is in
the detection and characterization of cancer-specific biomarkers [84,85]. This approach
offers several advantages over traditional diagnostic methods, such as tissue biopsy or
imaging. Firstly, EVs are readily available in the bloodstream, making liquid biopsy with
EVs a minimally invasive and convenient option for cancer diagnosis and monitoring.
Secondly, EVs contain a wealth of information about cancer cells, including their genetic
and epigenetic alterations, which can provide valuable insights into cancer’s biology,
progression, and treatment response [86].

The mitochondria, the cellular organelles responsible for energy production, have
emerged as crucial players in the development and progression of cancer. Growing evidence
links mitochondrial dysfunction to various aspects of cancer biology, including metabolism,
apoptosis, and signaling pathways [87]. In this context, it has been shown that cancer
cells release EVs that contain specific mitochondria-derived molecules, such as proteins or
mtDNA [18,88,89].

mtDNA present in EVs has an important role in cancer biology and progression,
making it an interesting source in cancer diagnosis. mtDNA transfer between cancer cells
acts as an oncogenic signal, promoting the escape of cells from metabolic quiescence [20].
Similarly, mtDNA contained in metastatic tumor cells is transferred to low-metastatic tumor
cells via MitoEVs, enhancing the metastatic potential during tumor progression [22]. In a
more recent study, the authors showed that the protein PINK1 mediates the packaging of
mtDNA in EVs from cancer cells and that this mtDNA can promote invasiveness through
the activation of Toll-like receptor 9 in recipient cells [21].

Some studies have proposed that MitoEVs could serve as new biomarkers of cancer.
Jang et al. discovered that EVs released by melanoma tissue contain higher levels of
mitochondrial membrane proteins when compared with non-cancerous cells. In addition,
they found that patients with melanoma or other types of cancer such as ovarian or
breast cancer have a higher concentration in the plasma of these MitoEVs [25]. Regarding
mtDNA, it was recently shown that patients with pancreatic ductal adenocarcinoma have
a higher enrichment of mtDNA in circulating EVs, detecting specific mtDNA mutations
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that could serve as a tool for early cancer detection [90]. Moreover, mtDNA contained in
MitoEVs obtained from the plasma exhibit different characteristics among patients with
hepatocellular carcinoma, hepatitis, or healthy individuals, indicating a potential role as a
diagnostic biomarker in these conditions [91].

4.2. Other Diseases

Although cancer is currently the most studied disease in terms of liquid biopsies and
MitoEVs, recent studies have found that the content in MitoEVs can be altered in other
diseases, such as neurological or cardiovascular conditions [69].

Multiple lines of evidence suggest that mitochondrial dysfunction plays a key role in
the pathogenesis of Parkinson’s disease (PD). Post-mortem studies have shown that there
is a reduction in the number and size of mitochondria in the substantia nigra region of PD
patients’ brains [92]. Additionally, there is evidence of decreased mitochondrial respiratory
chain activity and increased ROS generation in PD patients [93]. Furthermore, mutations
in genes that regulate mitochondrial function, such as PINK1 and Parkin, are associated
with some forms of PD [94]. Recently, it was shown that these proteins are involved
in mitochondrial quality control through the regulation of mitochondria-derived vesicle
trafficking [64,95]. Along with these results, a clinical study with PD patients suggested
that circulating EVs were altered in the disease; more specifically, they found that a specific
mitochondrial signature was present in these patients [96].

Another neurological condition characterized by mitochondrial dysfunction is Down
syndrome (DS). Patients have impairments in mitochondrial function, which leads to a
decrease in energy production that may contribute to the cognitive impairments seen in
individuals with Down syndrome [97]. Additionally, studies have shown that people
with Down syndrome have an increased susceptibility to oxidative stress [98]. A recent
study that presents a new approach to isolate and separate EV subpopulations from the
brain extracellular matrix, identifies a unique subset of EVs of a mitochondrial origin,
which they term mitovesicles. The authors found that the number and composition of
brain mitovesicles are altered in individuals with DS, indicating their possible role in the
neuropathological process [27].

In cardiovascular disease, mitochondrial dysfunction has been linked to the develop-
ment of key pathological changes such as heart failure or atherosclerosis [99,100]. MitoEVs
regulate mitochondrial quality control in the cardiovascular system [101,102] and serve as
pro-inflammatory signaling between monocytes and endothelial cells in cardiovascular
disease [103]. This particular subtype of vesicles has a crucial role in the maintenance of mi-
tochondrial homeostasis in the heart, as cardiomyocytes release dysfunctional mitochondria
taken up by resident macrophages [104].

Thereby, MitoEVs can be detected in biological fluids and seem to play a role in the
regulation of mitochondrial biology and intercellular communication, making them an
interesting subtype of EVs that could be used as diagnostic markers for several diseases
(Figure 2 and Table 1).
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Table 1. Summary of applications of MitoEVs in human diseases, regarding the sources of the vesicles
and the key findings in different studies.

Application Disease Source Findings References

Diagnosis

Melanoma, ovarian and
breast cancer Plasma

Mitochondrial protein enriched EVs
from cancerous cells are present at
higher concentrations in patients’

plasma

[25]

Pancreatic ductal
adenocarcinoma Plasma

EVs from mitochondria carrying
specific mtDNA mutations from

cancer cells are present can be
detected in patients’ plasma

[90]

Hepatocellular
carcinoma and hepatitis Plasma

mtDNA profile in plasma MitoEVs
differs between patients with

hepatocellular carcinoma, hepatitis,
and healthy individuals

[91]

Parkinson’s disease Plasma Circulating EVs from PD patients have
a specific mitochondrial signature [96]
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Table 1. Cont.

Application Disease Source Findings References

Therapy

Myocardial
ischemia-reperfusion

injury
Healthy cells

Mitochondrial transfer improved
tissue regenerative capacity, enhanced

ATP production, improved cell
viability, and reduced

pro-inflammatory markers

[105]

Brain ischemia

Xenogenic and
muscle

mitochondria,
MSCs

Mitochondrial transfer improved
neurogenesis, and reduced

pro-inflammatory markers, oxidative
stress and apoptosis

[106–108]

Limb ischemia Healthy cells

Mitochondrial transplantation
improved tissue regenerative capacity,
enhanced ATP production, improved

cell viability, and reduced
pro-inflammatory markers

[109]

Lung
ischemia-reperfusion

injury
Healthy cells Mitochondrial transplantation

improved tissue regenerative capacity [110]

Acute kidney injury Healthy cells
Intra-arterial mitochondrial

transplantation improved tissue
regenerative capacity

[111]

Doxorubicin injury to
cardiomyocytes MSCs

Mitochondria-rich EVs improve cell
viability in induced cardiomyocytes

from patients with doxorubicin injury
[112]

Alzheimer’s disease Healthy cells
Mitochondrial transfer improves

cognition and lower neuronal loss and
gliosis in mice

[113]

Parkinson’s disease
Allogenic and

xenogenic
mitochondria

Mitochondrial transplantation
restored mitochondrial function and

attenuated
6-hydroxydopamine-induced

neurotoxicity in mice

[114]

Mitochondrial diseases Healthy cells

Mitochondrial transfer can improve
mitochondrial bioenergetics in cells

from patients with mutations in
mtDNA

[46,115–117]

5. MitoEVs as Therapeutic Tools

EV therapy has shown potential in a variety of applications, including regenerative
medicine, cancer treatment, and immune modulation. They play a crucial role in intercellu-
lar communication and have been recognized as potential therapeutic agents. One of the
major advantages of extracellular vesicle therapy is that it avoids some of the limitations
associated with traditional cell-based therapies. EVs have a lower risk of immunogenic-
ity compared with cells, and greater stability and longer half-lives compared with other
biological therapeutics [118–122].

As a fairly novel field, the use of MitoEVs as a therapy is not well established; the
main challenge that this approach faces is that classic isolation methods for EVs mainly
distinguish subtypes of these vesicles by size [121], making it difficult to separate a specific
subset that comes from a mitochondrial origin. Currently, the main focus of MitoEVs as
therapeutic agents is in the field of mitochondrial transfer (Figure 2 and Table 1). Mitochon-
drial transfer is a therapeutic strategy that involves transferring healthy mitochondria to
cells with dysfunctional mitochondria [123,124]. Mitochondrial transfer offers a promising
avenue for the treatment of several diseases, as it addresses the root cause of mitochondrial
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dysfunction. There are several approaches to mitochondrial transfer, including microinjec-
tion, the fusion of cells, and the use of EVs as transfer vehicles [124]. The latter strategy
seems to be the more feasible, as EVs are already being studied as therapeutics, and may
serve as mitochondria transfer vehicles in a non-invasive manner.

The mitochondrial transfer has been used in preclinical models of several diseases.
One of the most studied settings is the use of these healthy mitochondria to improve
tissue regeneration. During tissue regeneration, cells must undergo a series of complex
processes, including cell proliferation, differentiation, and migration. These processes
require high levels of energy, and the mitochondria play a crucial role in providing this
energy [125]. They also play a crucial role in regulating cell signaling during tissue re-
generation. They are involved in the production of signaling molecules, such as reactive
oxygen species, which can activate the signaling pathways that regulate cell proliferation
and differentiation [123,126]. The modulation of mitochondrial calcium trafficking has also
been highlighted as a potential target in tissue regeneration and other pathophysiological
contexts [2]. In addition, studies have shown that mitochondrial dysfunction is a key factor
that leads to impaired tissue regeneration in aging [127].

The transfer of healthy mitochondria has been successfully used to improve tissue
regeneration in models of myocardial ischemia and reperfusion injury (IRI) [105], brain
ischemia [106,107], limb ischemia [109], lung IRI [110], and acute kidney failure [111]. In
brain ischemia, transplanted mitochondria are incorporated into various cells, resulting
in increased ATP content, complex IV expression, and neurogenesis, while also reducing
oxidative stress, apoptosis, and inflammatory responses [106–108,128]. In cardiac and limb
ischemia, transplanted mitochondria enhance ATP production and synthesis, improve cell
viability, and activate proteomic pathways for energy production, mitochondrial function,
and cellular respiration, while reducing pro-inflammatory markers and inhibiting endo-
plasmic reticulum stress and caspase-3 expression [105,109,129]. Further research is needed
to determine the effects of these mitochondria on other tissues and damaging agents. In-
terestingly, researchers recently identified a stress response in adipocytes that prevents
oxidative damage in the heart through the release of EVs with mitochondrial content [26].
In the same line, mitochondria-rich EVs from autologous cardiomyocytes derived from
stem cells have been shown to improve the bioenergetics of the ischemic heart [31], as well
as an increment of the viability of cardiomyocytes in a model of doxorubicin injury [112].

It is interesting to note that many of these pathways affected by the treatment with a
mitochondrial transfer, such as decreasing the inflammatory response, lowering oxidative
stress, or regulating apoptosis, are also affected by treatment with EVs in models of tissue
damage and regeneration [130], suggesting that there may be common mechanisms of
action between these two approaches.

Moreover, as stated earlier, neurodegenerative diseases are characterized by a sharp
increase in dysfunctional mitochondria. The transfer of healthy mitochondria has demon-
strated positive effects in mouse models of Alzheimer’s and Parkinson’s disease [113,114].
These effects include decreases in neuronal loss, reduced gliosis in the hippocampus, and
the amelioration of mitochondrial dysfunction in the brain.

One of the most promising domains of mitochondrial transfer may have a curative
role in the field of mitochondrial diseases. Mitochondrial diseases are caused by mutations
in mtDNA and affect the function of mitochondria and oxidative phosphorylation. These
mutations can lead to a wide range of clinical manifestations, including muscle weakness,
neurological symptoms, developmental delay, and organ failure. The severity and pattern
of symptoms can vary widely depending on the nature and location of the mtDNA mutation
and the level of heteroplasmy [131]. The transfer of healthy mitochondria to cells that have
defective mitochondria with mtDNA mutations could help to restore cellular function, as
small changes in the ranges of heteroplasmy could lead to improved tissue function [132].
This approach has shown beneficial effects in genetic diseases related to mutations in
mtDNA, improving bioenergetics in cells that carry mutated mitochondria [115–117].



Int. J. Mol. Sci. 2023, 24, 7005 11 of 17

6. Conclusions and Future Perspectives

MitoEVs carry a diversity of mitochondria and mitochondrial components (mtDNA,
mtRNA, rRNA, tRNA, and protein complexes). This cargo can be a part of mitochondria
quality control, where cells release the trash to the extracellular space. However, this cargo
can also be a rescue package for damaged cells uptaking these MitoEVs. Therefore, the
exact function of MitoEVs depends on the context of the donor and target cells. To date, the
exact mechanism for the selective package of mitochondrial components within MitoEVs is
still in its infancy, and more research in the field is needed.

MitoEVs carrying damaged mitochondria components are currently being investigated
for their usefulness as early disease biomarkers. There has been a particular emphasis
on cancer, neurodegenerative disorders, and cardiovascular diseases regarding diagnosis,
prognosis, and treatment monitoring. Currently, the main use of MitoEVs as therapeutic
agents is mitochondrial transfer, which involves transferring healthy mitochondria to
cells with dysfunctional mitochondria, restoring their energetic profile, and improving the
tissue’s regenerative potential.

These findings provide a future pathway for MitoEVs-based therapies and the use of
this subtype of EVs as biomarkers. Moreover, the ability of MitoEVs to modulate important
pathways and processes, such as immune response, has been highlighted. However, there
are still many questions that need to be addressed before expanding the use of MitoEVs
is expanded, such as how to separate vesicles from the mitochondrial origin and other
subtypes of EVs.
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