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Abstract: HIV and HBV infection are both serious public health challenges. There are more than
approximately 4 million patients coinfected with HIV and HBV worldwide, and approximately
5% to 15% of those infected with HIV are coinfected with HBV. Disease progression is more rapid
in patients with coinfection, which significantly increases the likelihood of patients progressing
from chronic hepatitis to cirrhosis, end-stage liver disease, and hepatocellular carcinoma. HIV
treatment is complicated by drug interactions, antiretroviral (ARV) hepatotoxicity, and HBV-related
immune reconditioning and inflammatory syndromes. Drug development is a highly costly and time-
consuming procedure with traditional experimental methods. With the development of computer-
aided drug design techniques, both machine learning and deep learning have been successfully
used to facilitate rapid innovations in the virtual screening of candidate drugs. In this study, we
proposed a graph neural network-based molecular feature extraction model by integrating one
optimal supervised learner to replace the output layer of the GNN to accurately predict the potential
multitargets of HIV-1/HBV coinfections. The experimental results strongly suggested that DMPNN
+ GBDT may greatly improve the accuracy of binary-target predictions and efficiently identify the
potential multiple targets of HIV-1 and HBV simultaneously.

Keywords: HIV-1/HBV coinfection; graph neural network; gradient boosting decision tree; multitarget
prediction; drug discovery

1. Introduction

HIV-1 is the human immunodeficiency disease, or AIDS virus type 1, which is cur-
rently the dominant strain in the global epidemic. HIV remains a major global public health
problem, claiming approximately 40.1 million lives to date [1–6]. Hepatitis B virus, or HBV,
is one of the smallest DNA viruses known to infect humans but is also one of the most
difficult-to-cure viruses. It is well known that HIV and HBV share similar transmission
routes, including sexual transmission, contaminated needles, transmission from mother
to child, and the therapeutic use of blood [7]. Disease progression is more rapid in pa-
tients with coinfection, which significantly increases the likelihood of patients progressing
from chronic hepatitis to cirrhosis, end-stage liver disease, and hepatocellular carcinoma.
Moreover, HIV treatment is complicated by drug interactions, antiretroviral (ARV) hepato-
toxicity, and HBV-related immune reconditioning and inflammatory syndromes [8,9]. Some
related studies have demonstrated that liver disease caused by coinfection of HIV and HBV
has become the second leading cause of death from HIV [10,11]. Moreover, HIV requires
lifelong medication; meanwhile, patients with HIV infection have low immunity, while
HBV infection can lead to a corresponding immune response. Therefore, for coinfection
patients, the simultaneous treatment of both HIV and HBV is very complicated. Many re-
searchers have noted that the most effective therapy is two of the three drugs used in highly
effective combined antiretroviral therapy (HAART) for HIV that act against HBV [12–14].
However, drug toxicity, liver and kidney damage, osteoporosis, and other side effects
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should be considered in drug combinations. For example, the presence of HBV resistance
mutations upon initiation or during antiretroviral therapy (ART) in HIV-coinfected patients
is a common and inevitable treatment response [15]. Therefore, in view of the above factors,
the discovery of inhibitors with dual antiviral effects and multiple targets is important and
a unique strategy for the treatment of HIV/HBV coinfection.

The conventional strategies to obtain the properties of a given molecule usually require
a series of complicated biochemical reactions, and with accumulated chemical molecules
and rapidly emerging novel molecules, experimental methods become an impossible
mission to determine a specific property of all molecules [16,17]. Machine learning methods
have proven to be useful in multiple areas of drug discovery by calculating the quantitative
structure–activity relationship (QSAR) models based on the molecules’ three-dimensional
structures [18–21], including support vector machine (SVM) [22], random forest (RF) [23],
naive Bayes (NB) [24], etc. In recent years, deep learning algorithms have rapidly developed
and become very successful in various biochemical prediction areas. Deep learning with
the use of deep neural networks may replace conventional machine learning algorithms
and achieve performance improvements. However, standard CNN [25] and RNN [26]
networks cannot handle feature representations such as nonsequentially ordered graph
inputs. In view of the three-dimensional molecular properties, graph neural networks
(GNNs) have achieved one of the major breakthroughs in detecting interatom connections.
Various GNN subtypes have achieved efficiency in capturing internode relationships, such
as graph convolutional network (GCN) [27,28], gated graph neural network (GGNN) [29],
and direct message passing neural network (DMPNN) [30].

Specially, MPNNs [30] are a framework for learning local and global features from
irregular forms of data (especially in molecular predictions), which are invariant to per-
mutations. This network performs iterative massaging operations on each object and its
neighbors, then obtains the final output from all messages regardless of their orders. In
chemical prediction tasks, molecular characteristics can be learned directly from molecular
graphs without being affected by isomorphism of graphs. Furthermore, in view of the
outstanding performance of machine learning algorithms in target prediction of small
molecules, we attempted to replace the output layer by the supervised learning method
to improve the prediction performance, which has been effective in the following results.
Particularly, one well-established machine learning algorithm, gradient boosting deci-
sion tree (GBDT) [31], is an efficient iterative decision tree algorithm, which constructs
a set of weak learning machines (trees) and sums up results of multiple decision trees
as the final predictive output. This algorithm combines the decision tree and integration
idea effectively.

In this study, we proposed a graph neural network-based molecular feature extraction
model by integrating one optimal machine learning classifier (by comparing the supervised
learning ability with five-fold cross-validations), GBDT, to fish multitarget anti-HIV-1 and
anti-HBV therapy. By comparing three different graph neural networks, GCN, GGNN, and
DMPNN, in binary-target classification tasks with five-fold cross-validation, the DMPNN
+ GBDT ensemble model was adopted as the multitarget prediction model. To verify the
application of this model, DMPNN + GBDT was employed to predict the potential multi-
targets of 22 approved HIV-1 drugs and 8 approved HBV drugs, as well as 10 compounds
known to be active against at least 1 of the HIV-1 (/HBV) targets but not active against
any of the HBV (/HIV-1) targets. The predicted results demonstrated eight approved
drugs, which have been verified by the previous references, and six new compounds
to be potential HIV-1/HBV coinfection multitarget inhibitors, which have been further
confirmed by molecular docking simulations. Therefore, our study indicated that graph
neural network-based multitarget prediction from molecular structures could potentially
be applied to the discovery of HIV-1/HBV co-inhibitors.
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2. Results

The workflow is shown in Figure 1. In this study, we first evaluated the performance
of conventional machine learning methods including support vector machine (SVM) [22],
random forest (RF) [23], naive Bayes (NB) [24], extreme gradient boosting algorithm (XG-
Boost) [32,33], and gradient boosting decision tree (GBDT) [31], based on the Morgan
fingerprint [34]. Second, we developed three graph neural network-based molecular feature
extraction models by integrating the optimal machine learning classifier GBDT, and binary
classification models were constructed. Third, five-fold cross-validation was used to select
the most suitable GNN model, which is DMPNN in this study. Finally, DMPNN + GBDT
ensemble feature extraction and a target prediction model were used to predict drug multi-
targets of HIV-1 and HBV-related targets. The detailed results are shown below:
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Figure 1. Workflow of our study.

2.1. Experimental Data Sets

In this study, a total of seven targets related to HIV-1 and five targets related to
HBV were obtained from the ChEMBL database [35] (version 32, https://www.ebi.ac.uk/
chembl/ (accessed on 1 May 2022)) (shown in Table 1). The number of active compounds
for each target is shown in Figure 2 (the criteria of “active” and “inactive” associations are
shown in Section 4). The number of active compounds acted on HIV-1 and HBV targets
were 13,627 and 2093, respectively, the number of inactive compounds related to HIV-1 and
HBV targets were 4142 and 1120, respectively. Each of these 12 data sets was randomly
divided into the training, validation, and test data sets by proportions of 0.8, 0.1, and 0.1,
respectively. Table 1 shows the number of compounds in the training and test sets from the
12 data sets.

https://www.ebi.ac.uk/chembl/
https://www.ebi.ac.uk/chembl/
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Table 1. Detailed statistical analysis of the 15 data sets.

Object Target Total
Training Set Test Set

Active Inactive Total Active Inactive Total

HIV-1

CCR5: C-C chemokine receptor type 5 2296 1478 129 1607 633 56 689
CXCR4: C-X-C chemokine receptor type 4 92 57 7 64 25 3 28

80s Ribosome 55 27 11 38 12 5 17
IN: Integrase 4161 1584 1328 2912 679 570 1249
PR: Protease 5005 3162 341 3503 1356 146 1502

Protein Tat: Human immunodeficiency virus 38 22 4 26 10 2 12
RT: Reverse transcriptase 6122 3207 1078 4285 1375 462 1837

HBV

PARB 350 237 8 245 101 4 105
HBV-D: HBV genotype D 73 45 6 51 19 3 22

NS5B: RNA-dependent RNA polymerase 64 16 28 44 8 12 20
CRL4: E3 ubiquitin ligase 2614 1096 733 1829 470 315 785

CD299: Core antigen of hepatitis 124 70 16 86 31 7 38

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 4 of 17 
 

 

 

Figure 2. Size and composition of the target-associated compound data sets. The number of com-

pounds in the upper panel is displayed on a logarithmic scale. 

Table 1. Detailed statistical analysis of the 15 data sets. 

Object Target Total  
Training Set Test Set 

Active Inactive Total Active Inactive Total 

HIV-1 

CCR5: C-C chemokine receptor type 5 2296 1478 129 1607 633 56 689 

CXCR4: C-X-C chemokine receptor type 4 92 57 7 64 25 3 28 

80s Ribosome 55 27 11 38 12 5 17 

IN: Integrase 4161 1584 1328 2912 679 570 1249 

PR: Protease 5005 3162 341 3503 1356 146 1502 

Protein Tat: Human immunodeficiency virus 38 22 4 26 10 2 12 

RT: Reverse transcriptase 6122 3207 1078 4285 1375 462 1837 

HBV 

PARB 350 237 8 245 101 4 105 

HBV-D: HBV genotype D 73 45 6 51 19 3 22 

NS5B: RNA-dependent RNA polymerase 64 16 28 44 8 12 20 

CRL4: E3 ubiquitin ligase 2614 1096 733 1829 470 315 785 

CD299: Core antigen of hepatitis 124 70 16 86 31 7 38 

2.2. Comparison of the Classification Performance of Different Machine Learning Methods 

The most popular strategy for molecular property prediction is to calculate the Mor-

gan fingerprints of the given molecules and then use machine learning classifiers to train 

the prediction model. This study first compared the classifying performance of these tra-

ditional supervised learner methods: SVM, RF, NB, XGBoost, and GBDT, proving that 

GBDT outperformed them on all of the 12 data sets (100%) in the area under receiver op-

erating characteristics curve (AUC) values, and on 11 out of 12 (91.67%) for the F1 metric, 

which is defined as the harmonic mean of precision (PPV) and recall (TPR) for the active 

class (Figure 3), which would be used to replace the output layers of GNNs for prediction. 

Figure 2. Size and composition of the target-associated compound data sets. The number of com-
pounds in the upper panel is displayed on a logarithmic scale.

2.2. Comparison of the Classification Performance of Different Machine Learning Methods

The most popular strategy for molecular property prediction is to calculate the Morgan
fingerprints of the given molecules and then use machine learning classifiers to train the
prediction model. This study first compared the classifying performance of these traditional
supervised learner methods: SVM, RF, NB, XGBoost, and GBDT, proving that GBDT
outperformed them on all of the 12 data sets (100%) in the area under receiver operating
characteristics curve (AUC) values, and on 11 out of 12 (91.67%) for the F1 metric, which
is defined as the harmonic mean of precision (PPV) and recall (TPR) for the active class
(Figure 3), which would be used to replace the output layers of GNNs for prediction.
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2.3. Performance Evaluation of Feature Extraction between Graph Representations and
Supervised Learners

In our study, three kinds of GNNs were used to construct graph representations to
extract molecular features of compounds; subsequently, the output layers were further
improved by a selected supervised learner GBDT for classification. Consequently, three
different binary classification ensemble models (GCN + GBDT, GGNN + GBDT, and
DMPNN + GBDT) were built for each of the target-associated compound data sets. All three
GNNs achieved the satisfied convergence results, converging within 200 epochs on both
training and validation samples, shown in Figure 4. Moreover, the 5-fold cross-validation
tasks in the context of 12 single-target binary classifications were used to compare the
performance of these 3 ensemble models. For each algorithm and target, hyperparameters
were optimized from an exhaustive search, and detailed information is shown in the
Section 4.
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The performance of different kinds of classifiers in the 12 single-target predictions
is detailed in Figure 5. Overall, the ensemble models performed better in the single-
target prediction task than the simplex graph neural models or machine learning methods.
Furthermore, the DMPNN-based ensemble model outperformed the other two GNNs on
10 out of the 12 data sets (83.3%) in the AUC values, and also 10 out of the 12 (83.3%) in
the F1 metric, suggesting that it has more significant extracting ability for the current sets
of HIV-1 and HBV target studies. Thus, ensemble graph-based models using integrated
features can effectively improve the extraction efficiency of molecular features. Meanwhile,
it is essential to evaluate the performance of different graph neural network-based feature
extraction algorithms on a specific prediction problem before further analysis.
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2.4. Multitarget Prediction

In this study, we aimed to exploit drugs with dual antiviral agents to HIV/HBV coin-
fection. Correspondingly, based on the previous cross-validated predictions of 12 individual
binary classifiers, the most efficient predicting ensemble model, DMPNN + GBDT, was
adopted to finish HIV-1 and HBV multitarget prediction. However, each classifier was
trained and tested on compound data sets that do not coincide completely. Because some
compounds’ response information to certain targets does not exist in the ChEMBL database,
we had to mark them as no response. Therefore, such negative labels do not indicate truly
negative cases. For this reason, we used 5 compound sample data sets, in which elements
containing no less than 3 active interactions between compounds and targets for all the
12 targets. Their sample sizes were between 110 and 150 with no more than 20 repeated
compounds among them. For each sample, the selected ensemble graph neural network-
based prediction model from the preceding step was used to predict multitargets on the five
compound samples. In addition, this model was re-trained on the whole compound data
sets excluding these five data samples. The distribution of the performance of DMPNN +
GBDT across these five compound samples is shown in Figure 6. By reason of in a practical
medicinal chemistry application, the correct identification of active compounds is often
more important than the identification of inactive ones. In this case, metrics considering the
correct identifications of the active compound–target associations, negative predictive value,
and the false negative rate (FNR) were calculated: TPR, NPV, and FNR (TPR = TP

TP+FN ,
NPV = TN

TN+FN , FNR = FN
TP+FN ). The ensemble model can achieve relatively high TPR

and NPV values, meaning there is a high accuracy of detection for positive interactions.
Additionally, they show extremely low FNR values, meaning nearly no omission of true
active interactions in our prediction.
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Case 1: Retrospective polypharmacology prediction of known HIV-1/HBV drugs

To explore the potential multiple targets of the known HIV-1/HBV drugs, a
DMPNN + GBDT prediction model based on the 12 key targets related to HIV-1 and
HBV was used to predict potential multiple bioactivities among them for the approved
22 HIV-1 drugs (abacavir, emtricitabine, lamivudine, viread (TDF), zidovudine, doravirine,
efavirenz, etravirine, nevirapine, rilpivirine, atazanavir, darunavir, fosamprenavir, riton-
avir, tipranavir, enfuvirtide, maraviroc, catotegravir, dolutegravir, raltegravir, fostemasavir,
cobicistat) and 8 HBV drugs (baraclude, tenofovir, viread, lamivudine, hepsera, adefovir,
tenofovir alafenomide (TAF), peginterferon alfa-2b). Figure 7 shows the multitarget distri-
bution of these drugs, identified by our ensemble model. To verify the prediction results,
the predicted targets were analysed using the PubChem BioAssay database [36], eight
approved drugs and the corresponding experimental records are shown in Table 2.
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Table 2. Known experimental verification of approved HIV-1 and HBV drugs.

Drugs Experimental Factor Ontology (EFO) Terms Max Phase for Indication * References

tenofovir HIV-1 infection 3 [37]
tenofovir Hepatitis B virus infection 3 [38], FDA
hepsera Chronic hepatitis B virus infection 4 [39],
hepsera Hepatitis B virus infection 4 [40], FDA
hepsera HIV infection 3 [41]
adefovir HIV infection 1 [42]
adefovir Hepatitis B virus infection 3 [40], FDA

tenofovir alafenamide HIV-1 infection 4 [43]
tenofovir alafenamide Hepatitis B virus infection 4 [44], FDA

interferon alfa-2b HIV-1 infection 3 [45]
interferon alfa-2b Hepatitis B virus infection 4 [46], FDA

abacavir HIV-1 infection 4 [47], FDA
emtricitabine HIV-1 infection 4 [48], FDA
emtricitabine Hepatitis B virus infection 3 [49]

ritonavir Hepatitis B virus infection 2 [50]
ritonavir HIV-1 infection 4 [51], FDA

*: Denotes the maximum phase of development for the compounds across all indications.

Case 2: Multitarget prediction of new compounds

One of the most important applications of establishing a new prediction model is drug
discovery. In our research, we aimed to find twin target directional drugs for HIV-1/HBV
coinfection. Therefore, after the above verification of a potential new pharmacy of known
approved clinical medicine, a set of ten compounds with known activity targeting at least one
of the seven targets (PARB, CD299, CXCR4, IN, PR, RT) that was not involved in the training
of the DMPNN + GBDT model was retrieved from the PubChem database. Among these
prediction results, six compounds (the 2D structures and bioactivity data from ChEMBL
data set are shown in Figure 8) were predicted to be simultaneously active against multiple
HIV-1 and HBV targets, as shown in Figure 9. Moreover, some new predictions have been
verified from previous research, such as CHEMBL38700 (name: Elvucitabine), which has
been tested for the ability to inhibit HBV DNA synthesis using human hepatablastoma
cell line HepG2 2.2.15 [52]; we also found the evidence of the inhibitory activity against
growth of HIV-infected DLD-1 cell line and Hela CD4 cells with activity < 1 µm [53,54].
Moreover, in order to verify more detailed binding modes of these six compounds’ targets
on the predicted targets, the molecular docking analysis provided more detailed inspection
and evidence of the multibinding relationships of compounds and HIV-1/HBV targets
(Figure 10), where all of these compounds occupied one stabilized hydrophobic pocket or
hydrogen bonds formed by the targeting proteins, with detailed results shown in Figure 11.

CHEMBL38700 was predicted to be an HBV CD299 and HIV-1 CXCR4 PR in inhibitor,
as shown in Figure 11a–c. The carboxyl group of CHEMBL38700 forms hydrogen bonds
with the main chain carbonyl oxygen of residues GLN-276, GLY-277, TRP-339 and GLV-352
in target CD299 (Figure 11a) and ASP-30 and ASP-29 in target PR (Figure 11c). CHEM-
BLE38700 was occupied a hydrophobic pocket formed by residues ARG-1014, TYR-1018,
and TYR-1024 in target CXCR4 (Figure 11b).

CHEMBL1223975 and CHEMBL1223977 were predicted to target with IN and PARB.
CHEMBL1223975 occupied a hydrophobic pocket formed by residues LYS-127, LEU-101,
and ILE-135 in target IN (Figure 11d), and linked by hydrogen bonds with residues
ASN-142, THR-62, and ASP-141 in target PARB (Figure 11e). CHEMBL1223977 was occu-
pied a hydrophobic pocket formed by residues F121, W131, K136, and L101 in target IN
(Figure 11f), and forms hydrogen bonds with the residues ARG-64, and ASP-141 in target
PARB (Figure 11g).

CHEMBL1223979 was predicted to target CXCR4 and PARB. It occupied the hy-
drophobic pocket formed by the residues ARG-30, TRP-94, HIS-281, ASP-262, VAL-196,
and GLN-200, and also linked by a hydrogen bond formed by residue ASP-262 in target
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CXCR4 (Figure 11h). The interaction with target PARB was formed by the hydrogen bonds
directly with residues GLU-146, ASN-143, ASP-143, and ALA-143 (Figure 11i). Similarly,
CHEMBL2092833 was predicted to be active on targets CD299, CXCR4, and IN. While
CHEMBL2092835 was predicted to be active on targets CD299, CXCR4, and RT. The detailed
docking information is shown in Figure 11j–n.
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Figure 10. The binding modes of six compounds in their respective binding sites. (a): CHEMBL38700-
CD299. (b): CHEMBL38700-PR. (c): CHEMBL1223975-PARB. (d): CHEMBL1223977-IN. (e): CHEMBL
1223977-PARB. (f): CHEMBL1223979-CXCR4. (g): CHEMBL1223979-PARB. (h): CHEMBL1223985-IN.
(i): CHEMBL2092833-CD299. (j): CHEMBL2092833-CXCR4. (k): CHEMBL2092833-IN. (l): CHEMBL20
92835-CD299. (m): CHEMBL2092835-CXCR4. (n): CHEMBL2092835-RT. (o): CHEMBLE38700-CXCR4.
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Figure 11. The detailed binding modes corresponding to Figure 10. (a): CHEMBL38700-CD299.
(b): CHEMBL38700-PR. (c): CHEMBL1223975-PARB. (d): CHEMBL1223977-IN. (e): CHEMBL1223977-
PARB. (f): CHEMBL1223979-CXCR4. (g): CHEMBL1223979-PARB. (h): CHEMBL1223985-IN. (i): CHE
MBL2092833-CD299. (j): CHEMBL2092833-CXCR4. (k): CHEMBL2092833-IN. (l): CHEMBL2092835-
CD299. (m): CHEMBL2092835-CXCR4. (n): CHEMBL2092835-RT. (o): CHEMBLE38700-CXCR4.

3. Discussion

Approximately 2 billion people worldwide have been infected with hepatitis B virus
(HBV), of whom more than 350 million suffer from chronic infection and between 500,000



Int. J. Mol. Sci. 2023, 24, 7139 12 of 17

and 700,000 people die from HBV infection each year. Additionally, as of 2019, an estimated
38 million people worldwide were living with HIV, including 1.8 million children under
age 15. In 2019, nearly 690,000 people worldwide died from AIDS-related illness. Because
of the similar transmission routes of HIV and HBV, the two blood-borne viruses, the high
incidence of coinfection leads to major global health problems. In contrast to single infections
of these viruses, coinfections can lead to a variety of liver-related diseases, nonliver organ
dysfunction, and death. Treatment of coinfected patients is complicated due to the side
effects of antiviral drugs, resulting in drug resistance, liver toxicity, and lack of an effective
response. Moreover, coinfected individuals must be treated with multiple drugs at the
same time, which results in the complex diagnosis, treatment, and control of HIV and HBV
coinfections. Therefore, the research and development of novel drugs with multiple targets
is an urgent problem.

However, traditional drug discovery methodology using experiments to screen candi-
date drugs is expensive and time consuming. With the development of machine learning
and deep learning algorithms, rapid innovations in virtual screening have been realized.
One of the most important procedures for the application of machine learning models for
large-scale compound screening is molecular feature extraction. Graph neural networks
(GNNs) opened up breakthroughs for learning interatom connections because of their
representation ability for the spatial graph structures of molecules.

In this study, we compared three kinds of graph neural networks for their ability to
extract molecular features by replacing the output layers of these neural networks with
one optimal supervised learning algorithm, GBDT. The ensemble model DMPNN + GBDT
was selected for HIV-1/HBV multitarget fishing based on the combination of 12 binary
classifiers. The proof-of-principle study demonstrated that the integration of DMPNN
and GBDT may efficiently improve the prediction performance regarding HIV-1 and
HBV targets compared with single machine learning or single neural network algorithms.
Furthermore, 22 approved HIV-1 drugs and 8 approved HBV drugs were predicted to have
potential multitargets, with 8 of them validated by references.

Furthermore, to verify our target predictions of the ten new compounds, molecular
docking simulations were adopted to provide a detailed inspection of the binding mode
for each compound, where six compounds were predicted to have twin relationships with
HIV and HBV targets, which have been verified by the molecular docking algorithm. Thus,
the results showed that it is possible to design specific inhibitors that target HIV-1 and
HBV simultaneously. In addition, our ensemble model has the possibility to effectively
detect multitargeted co-inhibitors of HIV/HBV coinfection and has potential applications
for virtual screening multitarget drugs for the treatment of other complex diseases.

4. Materials and Methods
4.1. Data Set Preparation

The ChEMBL Database [35] (version 32) and Therapeutic Target Database (TTD) were
used to select the clinical targets related to HIV-1 and HBV. The keywords “HIV-1”, “Human
Immunodeficiency Virus type-1”, “HBV”, and “Hepatitis B Virus” were used as retrieval
conditions. Then, the search results were further filtered if the number of compounds
related to the target was less than 30. Meanwhile, compounds with a quantitative measure
of biological activity (IC50, EC50, Ki, or Kd) lower than or equal to 10 µM were labelled
“active”; in contrast, those with a quantitative measure of biological activity higher than
10 µM were labelled “inactive”.

4.2. Molecular Feature Extraction by Graph Neural Network

The Simplified Molecular Input Line Entry System56 (SMILES) [55] of compounds was
downloaded from the ChEMBL database, and the tool RDKit [56] was used to process these
SMILES encoding compounds to obtain molecular graphs and Morgan finger prints [34].
Then, three graph neural network models (GCN, GGNN, DMPNN) were adopted to learn
the representation of the molecular structures, where each graph is composed of nodes and
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edges. Nodes are described by the type of atom, atom elements, number of additional atoms,
number of valence electrons, aromatic properties, and other properties. The adjacency
matrix represents the connectivity between pairs of atoms, regardless of single or double
bonds. In the graph convolutional neural network (GCN), the states of the graph nodes
are updated using the embedding method: ht

i = U(ht−1
i , mt

i), where the ith node was
updated by the previous node state ht−1

i with the message state mt
i . The gated graph neural

network (GGNN) utilizes the gate recurrent units (GRUs) [57] in the propagation step.
Furthermore, the directed MPNN contains three major operations: message passing, node
update, and readout:

mt
i = ∑

j∈N(i)
Mt(ht

i , ht
j, eij)

ht+1
i = Ut(ht

i , mt
i)

where Mt is the message function, Ut is the node update function, and N(i) is the set of
neighbors of node i in graph G. The readout phase uses a readout function R to calculate
the feature vector of the whole graph:

ŷ = R(hT
v

∣∣∣v ∈ G)

The message function, update function, and the readout function are all differentiable.
R operates on the set of states of nodes and is insensitive to the arrangement of nodes, which
lead to MPNN invariant to graph isomorphism. Rather than using messages associated
with vertices (atoms) in the generic MPNN, Directed MPNN (DMPNN) uses messages
associated with directed edges (bonds) in the molecules, which would avoid the messages
being totters, that is, to prevent unnecessary loops in the message passing trajectory [58]. In
our study, DMPNN demonstrated superior performance in molecular property extraction.

4.3. Multitarget Prediction Model

In this study, to generate a multitarget classifier, three graph neural network-based
ensemble models integrating graph representation and Morgan representation of molecular
structures were evaluated in 12 binary classifier data sets. The original output layer of
each GNN was replaced by the gradient boosting decision tree (GBDT), which achieved
the best prediction performance among all the other supervised learners: SVM, RF, and
XGBoost. Then, by combining these 12 binary classifiers, the multitarget predictor for
identifying HIV-1/HBV target-compound associations was generated, which is named
DMPNN + GBDT.

4.4. Machine Learning Methods

To select the cooperation of the graph neural network in the collaborating duets, six
kinds of machine learning algorithms were evaluated for the performance of the binary-
target classification task: random forest (RF), support vector machines (SVM), naive Bayes
(NB), gradient boosting decision tree (GBDT), and extreme gradient boosting algorithm
(XGBoost). The hyperparameter tuning of all machine learning methods was optimized
using 5-fold cross-validation in an exhaustive search over a limited hyperparameter space.
In RF classification, for a given sample, each decision tree predicts a label, and the final
prediction of the sample is the label of most tree predictions, in which the number of
decision trees was fixed to 1000. SVM classification constructed the best separation of two
classes by maximizing the distance (binary) between instances that belong to different
classes. For this algorithm, a “cost” hyperparameter used to control the errors was opti-
mized by the candidate values 0.01, 0.1, 1, 10, and 100. GBDT is a member of the ensemble
learning boosting family, which iterates using a forward distribution algorithm. Assuming
the strong learner from the previous iteration is ft−1(x), the loss function is L(y, ft−1(x)),
and the goal of this iteration is to find a decision tree learner ht(x), minimizing the loss
function L(y, ft(x)) = L(y, ft−1(x) + ht(x)). For this algorithm, the number of decision
trees was fixed to 1000; the maximum depth of the decision tree was selected from 3, 5,
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10; the learning rate was sampled from (0, 1); and the minimum number of samples to
split an internal node was a candidate from 2, 3, 4, and 5. Finally, 3 XGBoost parameters
were tuned, i.e., the learning rate, max depth, and minimum child weight from 5 candidate
values 0.01, 0.05, 0.1, 0.15, and 0.2.

4.5. Performance Metrics

This study evaluated the proposed framework DMPNN + GBDT with prediction
performance with the other two graph neural networks in the single-target prediction
validation. The F1 score and AUC, were adopted to assess the performance of each model.
The F1 score is the harmonic mean of precision (PPV) and recall (TPR), the AUC score
is defined as the area under the receiver operating characteristics (ROC) curve for the
classification performance metric. The ROC curve is defined as the connected curve of the
points true positive rate (TPR), and false positive rate (FPR).

F1 = 2× TP
2TP + FP + FN

TPR = TP
TP+FN

FPR = FP
FP+TN

where TP means true positives, TN means true negatives, FP means false positives, and FN
means false negatives, with positive and negative referring to active and inactive compound
labels, respectively.

To assess the global performance of our multitarget classifier combined with 12 single-
target binary classifiers in the HIV-1/HBV target prediction task, the capability of identify-
ing the known active compounds among the known compound target associations NPV,
TPR, and the ability of no missing known interactions FNR were used as metrics.

NPV = TN
TN+FN

TPR = TP
TP+FN

FNR = FN
TP+FN

4.6. Data Imbalance

As shown in Figure 2, the data sets used in this study are imbalanced. We adopted
the cost sensitive learning method to increase the importance of certain categories in the
classification training tasks by punishing classification errors in these categories specially,
by adjusting the parameters in machine learning methods. For XGBoost, the parameter
“scale_pos_weight” was set to the ratio of numbers of negative cases and positive cases. As
for SVM and RF, parameter “class_weight” was set to “balanced”. There is no technical
parameter for balancing data in the NB algorithm. However, for decision tree models, which
use partition rules based on class variables to create classification trees, they can achieve
good performance by separating samples from different categories forcibly. Therefore, in
GDBT, we set the parameter “sample_weight” according to the proportion of negative
samples and positive samples in different data sets, resulting in reducing the impact of
large sample sets artificially.

5. Conclusions

In this article, we proposed one graph neural network-based predicting model by
integrating one efficient supervised learning algorithm that is an excellent implementation
of the gradient boosting strategy, GBDT. By combing 12 binary optimal classification
data sets, 1 multiple target prediction model was constructed. In order to evaluate the
performance of our multitarget prediction ensemble model, five external data sets were
constructed for the prediction evaluations, all of which achieved the satisfied PPV and TPR,
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meaning the relatively high accurate prediction of potential targets on HIV-1 and HBV.
Furthermore, our research gave the retrospect of known HIV-1 and HBV drugs for detecting
potentially possible targets, also explored new compounds for their twin targets of HIV-1
and HBV, resulting in six new potential compounds for treating co-infection of HIV-1 and
HBV. In conclusion, the neural network model used in this study could effectively identify
co-inhibitors for HIV-1 and HBV, and have the potential application for virtual screening of
multitarget drugs for the treatment of HIV/HBV coinfection.
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