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Key Points

• EVI1 exerts distinct
roles in AML, including
resistance,
pathogenicity of
aggressive diseases
independent of
stemness, and immune
evasion.

• ERG and cyclin D1 are
leukemia-specific
targets of EVI1,
providing potential
therapeutic
vulnerability of EVI1-
associated AML.
Aberrant expression of ecotropic viral integration site-1 (EVI1+) is associated with very poor

outcomes in acute myeloid leukemia (AML), mechanisms of which are only partially

understood. Using the green fluorescent protein reporter system to monitor EVI1 promoter

activity, we demonstrated that Evi1high KMT2A-MLLT1–transformed AML cells possess

distinct features from Evi1low cells: the potential for aggressive disease independent of stem

cell activity and resistance to cytotoxic chemotherapy, along with the consistent gene

expression profiles. RNA sequencing and chromatin immunoprecipitation sequencing in

EVI1-transformed AML cells and normal hematopoietic cells combined with functional

screening by cell proliferation–related short hairpin RNAs revealed that the erythroblast

transformation–specific transcription factor ERG (E26 transformation-specific [ETS]-related

gene) and cyclin D1 were downstream targets and therapeutic vulnerabilities of EVI1+ AML.

Silencing Erg in murine EVI1+ AML models severely impaired cell proliferation,

chemoresistance, and leukemogenic capacity. Cyclin D1 is also requisite for efficient

EVI1-AML development, associated with gene expression profiles related to chemokine

production and interferon signature, and T- and natural killer–cell exhaustion phenotype,

depending on the interferon gamma (IFN-γ)/STAT1 pathway but not on CDK4/CDK6.

Inhibiting the IFN-γ/STAT1 pathway alleviated immune exhaustion and impaired EVI1-AML

development. Overexpression of EVI1 and cyclin D1 was associated with IFN-γ signature

and increased expression of chemokines, with increased exhaustion molecules in T cells

also in human AML data sets. These data collectively suggest that ERG and cyclin D1 play

pivotal roles in the biology of EVI1+ AML, where ERG contributes to aggressive disease

nature and chemoresistance, and cyclin D1 leads to IFN-γ signature and exhausted T-cell

phenotypes, which could potentially be targeted.
Introduction

Acute myeloid leukemia (AML) represents a heterogeneous group of neoplasms.1 Although molecular-
targeted therapy has been realized for some disease types with targetable gene mutations,2-4 many
refractory subtypes of AML still remain.
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Ecotropic viral integration site-1 (EVI1) is encoded by the MDS1
and EVI1 complex locus (MECOM).5 In mice, aberrant expres-
sion of EVI1 causes myelodysplasia-like conditions or AML.6-8

Increased expression of EVI1, found in approximately 8% of
de novo AML, has been related to very poor clinical out-
comes.9,10 In EVI1high (EVI1+) AML, inv(3)(q21q26) or
t(3;3)(q21;q26) are recurrently identified, both of which result in
translocation of a distal enhancer of GATA2 gene to
MECOM,11,12 leading to overexpression of EVI1 and decreased
GATA2 expression.13,14 Other mechanisms of EVI1 over-
expression in AML include atypical translocation of 3q26 and
translocations affecting KMT2A on 11q23, whereas not all
mechanisms have been clarified.15 Despite the need for specific
targeting measures against EVI1+ AML, they have not yet been
achieved, mainly owing to a lack of knowledge about its
downstream targets,16,17 whereas some metabolic vulnerabilities
have been reported.18,19

ERG (E26 transformation-specific [ETS]-related gene) is a member
of the erythroblast transformation–specific (ETS) transcription
factor family, implicated in the function of the hematopoietic stem
cells (HSCs).20,21 ERG has also been reported as an oncogene in
multiple malignancies.22-25 Despite numerous studies, the mecha-
nisms by which ERG is upregulated in each subtype of AML, the
molecular action by which ERG contributes to leukemogenesis,
and the potential of ERG as a therapeutic target remains only
partially understood.26-28

Cyclin D, a major oncogenic driver in many tumors, is an allosteric
regulator of CDK4/CDK6 kinases, controlling cell cycle progres-
sion from G1 to S phase.29,30 Recent studies have demonstrated
various oncogenic functions of cyclin D1 besides cell cycle regu-
lation, including transcriptional regulation.31,32 Cyclin D1 and
associated kinases have multifaceted functions, including antitumor
immunity.33-36 Despite rapidly expanding knowledge of cyclin D1 in
cancer biology, the role of cyclin D1 in AML remains poorly
understood.37-40

Recently, immune escape of AML cells has been receiving
increasing attention.41 Despite advances in anti-AML treatments,
only a limited proportion can be cured without allogeneic HSC
transplantation, underscoring the potential efficacy of immuno-
therapies. However, complex mechanisms of AML immune
escape have hampered the development of immunotherapies. In
addition to cell-intrinsic factors, the importance of altered
immunologic milieu has been reported,42 as shown mainly in solid
tumors.43,44 Interferon gamma (IFN-γ)-related gene expression
profiles have recently been associated with resistance in AML,45

which is of great interest because much attention has lately been
paid to the role of IFN-γ in promoting immune exhaustion through
the expression of inhibitory molecules that limits antitumor
immunity,46,47 although IFN-γ was initially thought to be an anti-
tumor cytokine.48,49 However, the mechanisms by which the
tumor microenvironment leads to the refractoriness of AML and
the role of IFN-γ in shaping this microenvironment are still
unclear.

In this study, we comprehensively investigated the potential
downstream targets of EVI1 and examined the role of ERG and
cyclin D1 in an EVI1+ AML model as possible candidate genes.
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Methods

Mice

All experiments were approved by The University of Tokyo Ethics
Committee for Animal Experiments and strictly adhered to the
guidelines for animal experiments.

Retrovirus production, transduction, and cell

selection

The production of retroviruses and transduction was performed as
previously described with a slight modification.8

Flow cytometry

The list of antibodies used is provided in supplemental Table 1.
Stained samples were sorted with FACS Aria II, Aria III, or analyzed
with FACSCelesta (BD).

Chromatin immunoprecipitation sequencing

(ChIP-seq) analysis

ChIP experiments were carried out as previously described.8 The
list of primers used in quantitative polymerase chain reaction
(qPCR) is provided in supplemental Table 2. Sequencing libraries
were prepared using NEBNext Ultra II DNA library kit for Illumina
(NEB) according to the instruction manual, and sequenced, single-
end 65-bp reads, on the Illumina HiSeq2500 system. The data
were analyzed as previously described.19

RNA sequencing (RNA-seq) analysis

RNA-seq for green fluorescent protein–high (GFPhigh) and –low
(GFPlow) cells from KMT2A-MLLT1 AML mice were performed
using freshly isolated 2 × 105 leukemic granulocyte-monocyte
progenitor (L-GMP) cells (n = 2 for GFPhigh and GFPlow, each).
The top 5% and bottom 5% of cells were collected based on
GFP intensity. To obtain each sample, 2 different AML mice were
used.

RNA-seq for shErg and shCcnd1 was performed using 2 × 106

puromycin-selected EVI1-AML cells (n = 2). RNA-seq for shCcnd1
was performed using freshly isolated 2 × 106 EVI1-AML GFP+

c-kit+ bone marrow (BM) cells (n = 5-6). TPMCalculator was used
to calculate the transcript per million value of a gene in each
sample with the default parameters.50

Data analysis using publicly available genetic data

The genetic data of The Cancer Genome Atlas and Oregon
Health & Science University cohorts51,52 were obtained via
cBioPortal.53,54

CIBERSORTx analysis

CIBERSORTx analysis was performed according to the authors’
instructions.55 Signature matrix files publicly provided by the
authors were used.

Statistical analysis

Statistical significance of differences was assessed using a two-
tailed unpaired Student t test. For the survival analysis, a log-rank
test was used on the R software (version 4.0.5).
25 APRIL 2023 • VOLUME 7, NUMBER 8



Results

Evi1high cells show distinct features in murine AML

models

To investigate the expression pattern of EVI1 in AML, we used
human AML single-cell RNA-seq data.56 In patients with EVI1+ AML
with inv(3)(q21.3q26.2) and t(9;11)(p21;q23), EVI1 expression in
AML cells was heterogeneous (Figure 1A-B and supplemental
Figure 1A-B). We generated an AML mice model using lineage−

Sca-1+ c-kit+ (LSK) cells from Evi1-GFP KI mice, in which the Evi1-
IRES-GFP allele was inserted into the MECOM locus to allow
monitoring of Evi1 expression by GFP intensity.57 Oncogenic fusion
gene KMT2A-MLLT1, known to upregulate Evi1,58 was transduced
into KI LSK cells with Kusabira-Orange (KuO) and transplanted into
syngeneic mice (Figure 1C). Each AML mouse showed heteroge-
neous positivity of GFP, whereas GFPhigh cells were not enriched in
L-GMPs with high leukemia stem cell activity (Figure 1D and
supplemental Figure 1C). GFPhigh L-GMPs demonstrated higher
expression of Evi1 than GFPlow L-GMPs with comparable KuO
levels (Figure 1E and supplemental Figure 1D).

Because Evi1high cells were associated with high stem cell activity
in normal hematopoiesis,57 we investigated the hierarchical struc-
ture of KMT2A-MLLT1 AML. Both GFPhigh and GFPlow cells can
generate both GFPhigh and GFPlow L-GMPs in secondary recipi-
ents (supplemental Figure 1E). The colony-forming activity of
GFPhigh L-GMPs differed between individual mice, whereas GFPlow

L-GMPs showed consistently high activity (Figure 1F). Similarly,
when GFPhigh and GFPlow L-GMPs were transplanted into recip-
ient mice, the leukemogenic potential of GFPhigh L-GMPs was
variable. When GFPhigh L-GMPs reconstituted AML, the recipient
mice succumbed more rapidly than those engrafted with GFPlow L-
GMPs (Figure 1G-H and supplemental Figure 1F). These results
are independent of low stem cell activity, indicated by the low
frequency of mice showing AML engraftment followed by the
development of fatal AML after infusion of GFPhigh L-GMPs
(Figure 1I and supplemental Figure 1G-H). When we administered
cytarabine to mice with KMT2A-MLLT1 AML harboring the Evi1-KI
allele, GFPhigh cells were enriched in the BM live cells of
cytarabine-treated mice (Figure 1J).

When we performed RNA-seq of freshly isolated GFPhigh and
GFPlow L-GMPs within the same KMT2A-MLLT1 primary AML mice
to characterize GFPhigh cells, gene set enrichment analysis showed
enrichment of several pathways (Figure 1K-L). Intriguingly, GFPhigh

L-GMPs showed an opposite expression pattern to leukemic stem
cells (Figure 1M and supplemental Figure 1I). Gene sets associ-
ated with resistance to chemotherapeutic drugs are upregulated in
GFPhigh L-GMPs (Figure 1N and supplemental Figure 1J).
Consistently, additive retroviral overexpression of EVI1 in estab-
lished KMT2A-MLLT1 AML cells led to decreased colony-forming
and leukemogenic capacity (Figure 1O and supplemental
Figure 1K-L). These findings suggest that EVI1high L-GMPs are
associated with aggressive disease features and chemoresistance
rather than stem cell activity.

EVI1 binds to promoter regions of ERG and CCND1 in

AML cells

To identify the target genes of EVI1 in AML, we performed ChIP-
seq analysis using EVI1-transformed AML (EVI1-AML) cells
25 APRIL 2023 • VOLUME 7, NUMBER 8
generated by transduction of 3× FLAG-tagged EVI1 into murine
HSCs and progenitor cells followed by transplant.8 In this model,
AML develops after a long period of myelodysplastic syndrome or
myeloproliferative neoplasm-like disease. EVI1-AML cells demon-
strated approximately 8 times Evi1 mRNA compared with normal
LSKs (supplemental Figure 2A). After confirming the enrichment of
previously reported EVI1-binding regions in the anti-FLAG ChIP
samples (supplemental Figure 2B), these samples were applied to
sequencing.19 EVI1-binding regions tended to cluster around gene
promoters (supplemental Figure 2C). To identify AML-specific
regions, the results were compared with a murine myeloid pro-
genitor cell line 32D-cl3, where a 3× FLAG-tag was inserted at the
3′-end of the Evi1 locus (A.C., Y.M., H.M., M.B., K.S., and M.K.,
unpublished data, October 2022). They shared a relatively small
number of binding regions (Figure 2A). Database for annotation,
visualization and integrated discovery analysis revealed that AML-
specific regions were enriched in genes involved in immune-
related processes (Figure 2B).

To further narrow the list, we utilized RNA-seq data obtained from
BM cells transduced with EVI119 (Figure 2C) and human tran-
scriptome data.9 We chose the common genes as candidates:
binding of EVI1, upregulation by EVI1 transduction, and positive
correlation with EVI1 in human AML (Figure 2D-E). Short hairpin
RNAs (shRNAs) against these candidate genes were transduced
into EVI1-AML cells, along with fluorescent protein DsRed. Genes
of which shRNA resulted in a continuous decrease in the frequency
of DsRed+ cells, were considered positive (Figure 2F). Silencing of
Erg and Ccnd1 decreased DsRed+ cell populations, leading us to
focus on ERG and cyclin D1 (Figure 2G). Importantly, EVI1-
GFPhigh L-GMPs in the KMT2A-MLLT1 AML mice showed high
expression of Erg and Ccnd1, suggesting the possibility that these
factors act as mediators of EVI1 (Figure 2H).

The ChIP-seq analysis showed that FLAG-EVI1 bound to the
regulatory regions of Erg and Ccnd1, confirmed by ChIP-qPCR
(Figure 3A-B and supplemental Figure 2D). Among them, a
known cis-regulatory region of Erg, 85 kb downstream from the
transcription start site (ERG+85) and a putative cis-regulatory
region 4 kb downstream from the Ccnd1 transcription start site
(both to which multiple major HSC-regulating transcription factors
bind), were activated by EVI1 in a luciferase reporter assay,
whereas the EVI1 binding motif was not required for the activation
(supplemental Figure 3A-F).59-61 The corresponding regions in
humans are DNase I sensitive in primary human AML cells with
inv(3) and are bound by EVI1 in HNT-34, a human EVI1+ AML cell
line (Figure 3C and supplemental Figure 3G-H). shRNAs against
transduced EVI1 decreased the expression of Erg and Ccnd1,
suggesting the role of EVI1 in activating these genes (Figure 3D).
Although the correlation between MECOM and ERG was not
significant in the public expression data of human AML as a whole,
there was a strong correlation in patients with 3q26 abnormalities
(Figure 3E). The single-cell RNA-seq data from a patient with
inv(3)(q21.3q26.2) AML demonstrated concordant expression
between MECOM and ERG also at the cell level56 (Figure 3F).
GFPhigh L-GMPs showed upregulation of ERG-fusion–associated
as well as EWS/ETS-fusion–associated genes (supplemental
Figure 3I-J). As for CCND1, the correlation with MECOM was
confirmed in the whole cohort and patients with 3q26 rearrange-
ment (Figure 3G-H).51 Patients with EVI1+ AML expressed a higher
level of CCND1 (Figure 3I). The decreased colony-forming activity
EVI1 CONFERS RESISTANCE AND EVASION VIA ERG/CCND1 1579
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Figure 1. Evi1high cells show distinct features in murine AML models. (A) Uniform manifold approximation and projection (UMAP) plot of single-cell RNA-seq (scRNA-seq)

data of AML cells from patient AML328 with inv(3)(q21.3q26.2), showing 9 clusters. (B) Violin plot of MECOM expression in the 9 clusters. (C) The scheme of the experimental

model of EVI1-GFP KMT2A-MLLT1 AML mice. (D) Frequency of GFP+ cells in the whole live KuO+ AML cells and L-GMPs from the BM of EVI1-GFP KMT2A-MLLT1 AML mice.

(E) qPCR showing the relative expression of Evi1 in GFPhigh and GFPlow AML cells compared with normal LSKs. (F) Colony-forming units of GFPhigh and GFPlow L-GMPs from 3

independent AML mice. (G-I) A Kaplan-Meier survival curve for secondary recipient mice that underwent transplantation with an indicated number of GFPhigh or GFPlow L-GMPs,

after exposure to 6.5 Gy total body irradiation (TBI). Significance between the same number of cells was examined by a log-rank test. (J) Frequency of GFP+ cells in L-GMPs in

secondary recipient mice intravenously treated with vehicle (phosphate-buffered saline ) or cytarabine (AraC; 100 mg/kg) for 5 days through days 15 and 19 after transplant. Mice

were analyzed on day 19. (K) Top-ranked differentially expressed genes between GFPhigh and GFPlow L-GMPs. (L) Top-ranked pathways enriched in GFPhigh L-GMPs. (M-N)

Gene set enrichment analysis (GSEA) showing that downregulated genes in leukemia stem cells (M) and multiple drug-resistant–related genes (N) are upregulated in GFPhigh

L-GMPs. (O) Colony-forming units of 200 KMT2A-MLLT1 AML cells with or without exogenous EVI1 expression from 3 independent primary recipients (supplemental Figure 1K).

Mean ± standard deviation (SD). *P < .05, **P < .01, ***P < .001. FDR, false discovery rate (q value); NES, normalized enrichment score.
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Figure 1 (continued)
of Evi1-silenced c-kit+ normal hematopoietic progenitors did not
seem to be mediated by Erg or Ccnd1 (supplemental Figure 3K).
These findings collectively indicate the promise of ERG and cyclin
D1 as candidates for potential specific targets in EVI1-AML.

Evi1high AML cells are dependent on ERG

The proliferation of EVI1-AML cells was susceptible to Erg
silencing (Figure 4A and supplemental Figure 4A-B). EVI1-AML
cells expressing shErg demonstrated diminished clonogenic
activity (Figure 4B). Knockdown of Erg led to cell cycle arrest and
apoptosis (supplemental Figure 4C-D). Silencing of Erg dramati-
cally abrogated the leukemogenic potential of EVI1-AML cells
in vivo (Figure 4C and supplemental Figure 4E).

To elucidate the functional relationship between EVI1 expression
and dependency on ERG, we established immortalized cell lines
25 APRIL 2023 • VOLUME 7, NUMBER 8
by introducing KMT2A-MLLT1 into Evi1-GFP KI c-kit+ cells, fol-
lowed by single-cell isolation (supplemental Figure 4F-G); an
Evi1high clone (CL2) with high GFP expression and dependency
on EVI1, and an Evi1low clone (CL1) without EVI1-dependency
(Figure 4D and supplemental Figure 4H) was produced. The dif-
ferential effect of Erg silencing was analyzed by using these lines.
Knockdown of Erg in CL1 led to a marginal decrease in prolifer-
ation and no change in clonogenic ability (supplemental Figure 4I-
J). In contrast, when Erg was silenced in CL2, substantial inhibition
in cell growth and colony-forming activity was observed
(Figure 4E-F). To assess the role of ERG in various AML models,
we established MOZ-TIF2 and HOXA9-MEIS1 AML mice by
retroviral transduction, both of which did not express Evi1.62,63

Silencing of Erg did not affect the proliferation of MOZ-TIF2 and
HOXA9-MEIS1 AML cells, like Evi1low KMT2A-MLLT1-
transformed cells (Figure 4G).
EVI1 CONFERS RESISTANCE AND EVASION VIA ERG/CCND1 1581
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Figure 2. A combination of multimodal screening showed potential targets of EVI1 in AML cells. (A) Venn diagram of ChIP-seq data using anti-FLAG antibody,

showing FLAG-EVI1 binding regions. Two 3× FLAG-tagged EVI1-AML samples and a sample from 32D-cl3 murine hematopoietic progenitor cells where FLAG-tag was

knocked in to the 3′-end of the Mecom locus. (B) Database for Annotation, Visualization and Integrated Discovery (DAVID) analysis showing AML-specific EVI1-binding regions.

(C) A model of RNA-seq experiments. Genes upregulated at both early and late points after EVI1 introduction were chosen for further analysis. (D) Venn diagram of genes with

EVI1-binding (ChIP-seq), upregulation after EVI1 transduction (RNA-seq), and positive correlation between EVI1 expression (microarray). (E) The list of genes in the common

population of Figure 2D. (F) A scheme of the screening assay using DsRed. (G) Relative enrichment of DsRed+ cells expressing shRNA against each gene through days 3 and 10,

adjusted by the shLuciferase control. Significance was examined in comparison with the shLuciferase control. (H) qPCR showing the relative expression of Evi1, Erg, and Ccnd1

in GFPhigh and GFPlow AML cells. Mean ± SD. *P < .05.
Knockdown of Erg significantly retarded Evi1-expressing KMT2A-
MLLT1 AML development (Figure 4H). Corresponding to the
persistence of Evi1high cells after cytotoxic chemotherapy, we
analyzed the effect of ERG on cell growth of EVI1-AML cells under
1582 MASAMOTO et al
daunomycin treatment in vitro. Although Erg knockdown signifi-
cantly inhibited basal cell proliferation, it further enhanced sensi-
tivity to daunomycin (Figure 4I). In contrast, the development of
HOXA9-MEIS1 AML was not affected by Erg silencing
25 APRIL 2023 • VOLUME 7, NUMBER 8
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(supplemental Figure 4K). These findings suggest that ERG is
necessary to maintain a transformed phenotype of EVI1+ AML.

Genes involved in the ribosomal process are

enriched in genes associated with ERG

We performed RNA-seq using EVI1-AML cells after the trans-
duction of shErg. When we compared the differentially regulated
genes in our AML models with those in normal HSCs after deletion
of Erg,21 there was no apparent correlation (supplemental
Figure 4L). In addition, the fact that a relatively small number of
genes were differentially expressed in our AML model and that
MYC target genes were downregulated after Erg knockdown, in
contrast to the upregulation after Erg deletion in normal HSCs,21

led us to search for genes regulated by ERG in an AML-specific
manner (supplemental Figure 4M-N). The RNA-seq revealed that
ribosome-related processes are enriched in downregulated genes
upon Erg knockdown (Figure 4J-K). Using publicly available anti-
ERG ChIP-seq data of human hematopoietic cells,27,64-66 we
identified genes involved in translation and ribosomal formation as
possible differentially binding regions of ERG between normal cells
and AML cell lines (supplemental Figure 4O). Along with these
findings, gene expression correlation analysis using the human
AML data set revealed that gene sets associated with ribosomes
and translation were also identified as genes whose expression
levels correlate with ERG (supplemental Figure 4P).

Cyclin D1 plays a key role inmurineEVI1+ AMLmodels

Despite the established multihued functions of cyclin D1 in several
malignancies,67 its role in AML is poorly understood. Silencing of
Ccnd1 in EVI1-AML cells decreased in vitro proliferation with
marginal cell cycle delay (Figure 5A and supplemental Figure 5A-
C). Knockdown of Ccnd1 also inhibited the colony-forming activity,
indicating the functional needs in EVI1-AML (Figure 5B). KMT2A-
MLLT1 CL2 cells were mildly dependent on cyclin D1, whereas
CL1 was not (Figure 5C-D and supplemental Figure 5D-E). Ccnd1
silencing did not affect MOZ-TIF2 and HOXA9-MEIS1 AML cells
(supplemental Figure 5F). These cells also showed different
sensitivity to pharmacological inhibition of CDK4/CDK6 with pal-
bociclib and fascaplysin (supplemental Figure 5G-I).

We assessed the effect of Ccnd1 silencing on the leukemogenic
potential of EVI1-AML cells in vivo. Although homing to the BM was
not affected by Ccnd1 silencing, the frequency of GFP+ EVI1-AML
cells in the peripheral blood expressing shRNAs against Ccnd1
was lower 4 weeks after transplantation (Figure 5E and
supplemental Figure 5J). Development of EVI1 and KMT2A-MLLT1
AML was hampered by Ccnd1 knockdown (Figure 5F-G). These
data suggest that cyclin D1 plays a vital role in AML development in
murine EVI1+ AML models.
Figure 3. ERG and CCND1 are targets of EVI1 in Evi1high AML cells. (A-B) Illustration

Erg locus around the alternative transcription start site (A) and the murine Ccnd1 promot

analysis using anti-EVI1 antibody and HNT-34 AML cells showing the binding of EVI1 to t

samples. Neighborhood sequences without enrichment in the ChIP-seq were used as a ne

EVI1-AML cells expressing shRNA against Evi1. (E) Gene expression correlation analysis be

with 3q26 abnormalities. (F) A 2-color dot plot showing coexpression of MECOM and ER

correlation analysis between MECOM and CCND1 in The Cancer Genome Atlas (TCGA) A

in OHSU AML cohorts with 3q26 abnormalities. (I) A box plot showing CCND1 expressio
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Cyclin D1 is associated with IFN signatures and

immune exhaustion in EVI1-AML

To explore downstream processes of cyclin D1, RNA-seq analysis
using EVI1-AML cells was performed after transduction of
shCcnd1. Surprisingly, silencing of Ccnd1 led to downregulation of
genes associated with chemokine production and response to IFN
instead of cell cycle–related genes (Figure 6A and supplemental
Figure 6A-C). In RNA-seq of the c-kit+ fraction of AML cells
freshly isolated from EVI1-AML mice expressing shRNAs, gene set
enrichment analysis also demonstrated that gene sets associated
with chemokine and IFN were downregulated in shCcnd1 cells
(Figure 6B and supplemental Figure 6D). The expression of Stat1,
the primary signaling mediator for type I and II IFN, was decreased
in cells with shCcnd1 (Figure 6C). Intriguingly, it has been sug-
gested that EVI1 may directly upregulate STAT1.68 In addition to
the decrease in Stat1 mRNA after Evi1 knockdown, the reporter
assay suggested that EVI1 upregulates STAT1 through direct
mechanisms as well (supplemental Figure 6E-G). As IFN-γ has
been implicated in promoting the immunosuppressive tumor
microenvironment, T cells from shCcnd1 EVI1-AML mice were
analyzed for expression of exhaustion markers. Spleen T cells from
the secondary EVI1-AML recipients on day 19, engrafted with
freshly isolated shCcnd1 EVI1-AML cells, showed decreased
expression of molecules associated with exhaustion, including
Lag3, Pdcd1, and Tigit (Figure 6D and supplemental Figure 6H).
CD4 and CD8 T cells infiltrating the liver from shCcnd1 EVI1-AML
mice also demonstrated lower positivity of PDCD1 and TIGIT,
suggesting a role of cyclin D1 expressed by AML cells in T-cell
exhaustion (Figure 6E-F and supplemental Figure 6I). To confirm
the validity of our findings, we assessed whether the relationship
found in our murine AML models was also observed in human AML
by utilizing public gene expression data.51,52 IFN-γ score, as a
substitute indicator for IFN-γ level,44 was positively correlated with
MECOM and CCND1, whereas CCND1 was more strongly
correlated (Figure 6G-H and supplemental Figure 6J-K). The
expressions of STAT1 and CD274, an immune checkpoint mole-
cule regulated by the IFN pathway and also known as PD-L1, were
also positively correlated to those of MECOM and CCND1
(Figure 6I-J and supplemental Figure 6L-N).

IFN-γ and STAT1 axis plays a crucial role in the

development of EVI1-AML

In agreement with the reported antitumor activity of STAT1 as a
general rule,69 silencing of Stat1 in EVI1-AML cells did not affect
in vitro proliferation (supplemental Figure 7A-B). However, knock-
down of Stat1 or Ifngr, the receptor of IFN-γ, substantially impaired
the leukemogenic capacity of EVI1-AML in vivo (Figure 7A-B),
whereas silencing of Ifnar, the receptor of IFN-α/β, had no effect
of anti-FLAG and anti-H3K4me3 ChIP-seq results for FLAG-tagged EVI1 in the murine

er region (B). Yellow bars represent significantly enriched regions. (C) ChIP-qPCR

he corresponding human regions identified in the ChIP-seq of the murine EVI1-AML

gative control. (D) qPCR showing the relative expression of Evi1, Erg, and Ccnd1 in

tweenMECOM and ERG in Oregon Health Sciences University (OHSU) AML cohorts

G in the scRNA-seq data from a patient with AML (AML328). (G) Gene expression

ML cohorts. (H) Gene expression correlation analysis between MECOM and CCND1

n in TCGA EVI1+ and EVI1− AML cohorts. Mean ± SD. *P < .05, **P < .01.
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Figure 4. Evi1high AML cells are dependent on ERG. (A) Relative cell proliferation of EVI1-AML cells expressing shRNAs against Luciferase and Erg in vitro. (B) Colony-

forming units of EVI1-AML cells expressing shRNAs against Luciferase and Erg. (C) A Kaplan-Meier survival curve for recipient mice that underwent transplantation with 1 × 106
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Figure 4 (continued) EVI1-AML cells expressing shRNAs against Luciferase and Erg after being exposed to 6.5 Gy TBI. P value was examined by a log-rank test. (D) Relative cell

proliferation of EVI1-AML and KMT2A-MLLT1 clone 1 (CL1) and CL2 cells expressing shRNAs against Luciferase and Evi1 in vitro, showing EVI1-dependency of these cells.

(E) Relative cell proliferation of KMT2A-MLLT1 CL2 cells expressing shRNAs against Luciferase and Erg in vitro. (F) Colony-forming units of KMT2A-MLLT1 CL2 cells expressing

shRNAs against Luciferase and Erg. (G) Relative cell proliferation of several AML cells and KMT2A-MLLT1-transformed cell lines with shErg compared with those with

shLuciferase, through days 0 to 3. A comparison was made within the same original cell between shLuciferase and shErg. (H) A Kaplan-Meier survival curve for recipient mice that

underwent transplantation with 1 × 104 KMT2A-MLLT1 AML cells expressing shRNAs against Luciferase and Erg after being exposed to 6.5 Gy TBI. (I) Relative live cell

numbers of EVI1-AML cells with shRNAs against Luciferase or Erg treated with daunomycin, compared with those cultured in media without daunomycin. (J) A list of top-ranked

gene sets with decreased expression in shErg-transduced EVI1-AML cells. (K) GSEA showing structural constituent of the ribosome is downregulated in shErg. Mean ± SD;

*P < .05, **P < .01, ***P < .001.
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Figure 5. Cyclin D1 is necessary for the efficient development of EVI1-AML in vivo. (A) Relative cell proliferation of EVI1-AML cells expressing shRNAs against Luciferase

and Ccnd1 in vitro. The data for shLuciferase are common to those in Figure 4A. (B) Colony-forming units of EVI1-AML cells expressing shRNAs against Luciferase and Ccnd1.

The data for shLuciferase are common to those in Figure 4B. (C) Relative cell proliferation of KMT2A-MLLT1 CL2 cells expressing shRNAs against Luciferase and Ccnd1 in vitro.

The data for shLuciferase are common to Figure 4E. (D) Colony-forming units of KMT2A-MLLT1 CL2 cells expressing shRNAs against Luciferase and Ccnd1. The data for

shLuciferase are common to Figure 4F. (E) Frequency of GFP+ AML cells in the peripheral blood in recipient mice that underwent transplantation with EVI1-AML cells

expressing indicated shRNAs. (F) A Kaplan-Meier survival curve for recipient mice that underwent transplantation with 1 × 106 EVI1-AML cells expressing shRNAs against

Luciferase and Ccnd1, after being exposed to 6.5 Gy TBI. P value was examined by a log-rank test. The data for shLuciferase are common to Figure 4C. (G) A Kaplan-Meier
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6.5 Gy TBI. P value was examined by a log-rank test. The data for shLuciferase are common to Figure 4H. Mean ± SD. *P < .05, **P < .01, ***P < .001.
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Figure 6. Cyclin D1 is associated with IFN signatures and immune exhaustion in EVI1-AML. (A) GSEA showing that gene sets associated with chemokine activity are

downregulated after silencing Ccnd1 in vitro. (B) GSEA showing that gene sets associated with IFN-γ signaling are upregulated by silencingCcnd1 in vivo. (C) qPCR showing the
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(supplemental Figure 7C-E). Knockdown of Ifngr and Stat1, but not
Ifnar, also decreased the expression of exhaustion-related mole-
cules such as PDCD1 and TIGIT on T and natural killer (NK) cells
(Figure 7C-E). In other AML models, including HOXA9-MEIS1 and
KMT2A-MLLT1 without EVI1 expression, silencing of Ifngr and
Stat1 did not affect exhaustion phenotype or survival (data not
shown), suggesting the specificity of EVI1-AML. These results
collectively suggest the vital role of the IFN-γ/STAT1 pathway in the
immunosuppressive tumor microenvironment and the development
of EVI1-AML.

Because AML cells do not express Ifng, we collected CD3+ T
and CD49b+ NK cells from the spleen and found that the
expression of Ifng in T cells and NK cells was reduced in mice
engrafted with shCcnd1-EVI1-AML cells (Figure 7F). As Ccnd1
silencing was associated with decreased cytokine production in
EVI1-AML cells (Figure 6A) and various chemokines have been
implicated in the recruitment of IFN-γ–producing effector cells to
the tumor microenvironment,70,71 we determined the expression
of specific chemokines reported to be involved in the process.
qPCR, after silencing Ccnd1 in EVI1-AML cells, also demon-
strated markedly reduced expression of chemokines, including
Ccl2, Ccl4, and Ccl5 (Figure 7G). Intriguingly, in vitro treatment
of EVI1-AML cells by palbociclib, where the proliferation was
inhibited as much as genetic silencing of Ccnd1, the expression
of chemokines and Stat1 was not affected (supplemental
Figure 7F). Together with the modest difference in the sensi-
tivity to CDK4/6 inhibitors between cells with different EVI1
expression in vitro (supplemental Figure 5G-I), the only partial
recapitulation of the effect of silencing Ccnd1 by pharmacolog-
ical inhibition of CDK4/6 might suggest the multifaceted roles of
cyclin D1, including both CDK4/CDK6-dependent and indepen-
dent ones.

We validated our findings using human AML data sets to find that
high expressions of CCL4 and CCL5 were associated with inferior
survival, indicating the functional importance of these chemokines
(Figure 7H-I). The expression of CCL2 and CCL4 was also posi-
tively correlated to those of MECOM and CCND1 (Figure 7J and
supplemental Figure 7G-I). Using CIBERSORTx on these data, a
computational framework to infer cell-type–specific gene expres-
sion,55 we estimated the association between specific gene
expressions in immune cells and bulk expressions of MECOM and
CCND1. Positive correlations were seen with TIGIT in CD4 and
CD8 T cells, a checkpoint receptor involved in T-cell exhaustion,
and IFNG in CD8 T cells as expected (Figure 7K-M and
supplemental Figure 7J-L). The expression of costimulatory
receptor ICOS in CD8 T cells was negatively related to those of
MECOM and CCND1 (Figure 7N and supplemental Figure 7M).
LAG3 in NK cells was also positively correlated with MECOM and
CCND1 (Figure 7O and supplemental Figure 7N). These data
were consistent with the immunoinhibitory functions of MECOM
and cyclin D1 in human AML.
Figure 6 (continued) secondary recipient mice without TBI, followed by T-cell isolation f

Frequency of cellular subsets of CD4 T cells infiltrating the liver of EVI1-AML mice with frank

T cells infiltrating the liver of EVI1-AML mice with indicated shRNA after exposure to 4.5 Gy

IFN-γ score and MECOM/CCND1 expression in TCGA samples. (I) Pearson correlation a

correlation analysis between CD274 and CCND1 expression in TCGA samples. Mean ±
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Discussion

This study identified ERG and cyclin D1 as potential targets of EVI1
by using murine EVI1+ AML models. EVI1+ AML is known to be
highly resistant to cytotoxic chemotherapy and associated with a
very poor prognosis. The results of this study may provide potential
therapeutic targets for this type of disease.

Given the intercellular heterogeneity of EVI1 expression, we
compared the properties of EVI1-GFP-high and -low cells. The
aggressive behavior of Evi1high cells is consistent with the results of
previous studies.72,73 Although the diversity of GFPhigh cells in their
clonogenic ability may reflect the heterogeneity of the LSK fraction
used to generate the model, it is of particular interest that EVI1-
GFPhigh cells were not associated with stemness. Furthermore,
our analysis showed that the Evi1 expression was associated with
differences in the properties of AML cells on a cell basis, including
leukemogenic potential and persistence after chemotherapy.
Evi1high cells expressed a higher level of Erg and associated gene
expression profiles, and EVI1-AML cells became more sensitive to
chemotherapy upon Erg knockdown, suggesting the functional
involvement of EVI1 and ERG in EVI1+ AML.

This study showed that ERG was requisite in murine EVI1+ AML,
like HSCs.21 There was, however, little overlap in genes regulated
by ERG between normal HSCs and EVI1-AML cells, collectively
suggesting that ERG plays a distinct role in AML. Supporting our
findings, a complementary article by Schmöllerl et al has identified
ERG as an important transcriptional target of EVI1 through char-
acterizing chromatin binding of Evi1 and transcriptional profiling in
a human AML model.74 The role of ERG in regulating the ribosomal
process and its implication in EVI1-AML should be investigated in
future studies.

In this study, we present a novel mechanism of immune exhaus-
tion mediated by cyclin D1. Although analysis of the direct tran-
scriptional regulation by cyclin D1 has only just begun,31,32 the
binding of cyclin D1 to multiple chemokine loci including CCL4
and upregulation of CCL2 has been demonstrated,75 in agree-
ment with our data. Because the expression of multiple chemo-
kines seems to be controlled in parallel by cyclin D1, and it has
been known to be activated by IFN-signaling itself, further studies
are needed to determine what role chemokines play in the for-
mation of IFN signature. Silencing Ccnd1 in EVI1-AML cells
in vitro also attenuated IFN-signature, suggesting additional
mechanisms might be working to regulate IFN signaling, such as a
direct, cell-intrinsic effect. In addition, pharmacological inhibition
of CDK4/6 only partially recapitulated the effect of silencing
Ccnd1, suggesting a CDK4/6-independent role for cyclin D1.
Considering that CDK4/6 inhibition enhances antitumor immunity
in solid cancers via multiple mechanisms,34-36,52 the function of
cyclin D1 seems diverse. In addition, given that EVI1 has different
effects on the IFN pathway and that it has been suggested that
EVI1 may be a direct target of STAT1 in a previous report and our
rom the spleen 19 days after transplant. Please see supplemental Figure 6H. (E)

leukemia. Please see supplemental Figure 6I. (F) Frequency of cellular subsets of CD8

TBI. Please see supplemental Figure 6I. (G-H) Pearson correlation analysis between

nalysis between STAT1 and CCND1 expression in TCGA samples. (J) Pearson

SD. *P < .05, **P < .01, ***P < .001.
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Figure 7. Overexpression of CCND1 is associated with type II IFN signature in human AML. (A-B) A Kaplan-Meier survival curve for recipient mice that underwent

transplantation with 1 × 106 EVI1-AML cells expressing shRNAs against indicated genes, after exposure to 4.5 Gy TBI. The data for shLuciferase are common in Figure 7A-B

and supplemental Figure 7E. (C-E) Frequency of cellular subsets of CD4 T (C), CD8 T (D), and CD122+ NK (E) cells infiltrating the spleen of EVI1-AML mice with indicated

shRNA after exposure to 6.5 Gy TBI. Please see supplemental Figure 6H. (F) qPCR showing the relative expression of Ifng in the spleen T and NK cells from shLuc- or shCcnd1-

EVI1-AML mice, used in Figure 6D. (G) qPCR showing the relative expression of chemokines in the EVI1-AML cells 72 hours after transduction of shLuc or shCcnd1. (H) An

overall survival of TCGA cohorts according to CCL4 expression divided at 90th percentile. (I) Overall survival of TCGA cohorts according to CCL5 expression divided at
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Figure 7 (continued) 50th percentile. (J) Pearson correlation analysis between CCL4 and CCND1 expression in TCGA samples. (K) Pearson correlation analysis between

estimated expression of TIGIT in CD4 T cells calculated using CIBERSORTx and CCND1 expression in TCGA samples. (L-M) Pearson correlation analysis between

estimated expression of IFNG in CD8 T cells calculated using CIBERSORTx and MECOM/CCND1 expressions in TCGA samples. (N) Pearson correlation analysis between

estimated expression of ICOS in CD8 T cells calculated using CIBERSORTx and CCND1 expression in TCGA samples. (O) Pearson correlation analysis between

estimated expression of LAG3 in NK cells calculated using CIBERSORTx and CCND1 expression in TCGA samples. Mean ± SD. *P < .05, **P < .01, ***P < .001.
ChIP-seq, further studies are needed to elucidate the full picture
of the relationship between EVI1, CCND1, and the IFN-γ
pathway.68,76

The impact of immune biology on the pathogenesis of AML has
received increasing attention. In AML with immune cell infiltration,
IFN-γ–related transcriptional profiles are associated with immune
exhaustion and chemoresistance, of which the molecular bases are
unclear.45 TP53 mutations are associated with immune cell infil-
tration,77 and ASXL1 mutations induce T-cell exhaustion.78

Although there might be a role of immune evasion as the basis
for refractoriness, the mechanisms might be different between
subtypes. Our study provides a possible mechanism of immune
evasion in EVI1+ AML through cyclin D1.

Althoughmodel-dependent differences in EVI1 expression levelsmight
affect the results, this work demonstrated that EVI1 confers AML cells
with dependency on ETS transcription factor ERG and immunoregu-
latory capacity in the tumor microenvironment through cyclin D1, both
of which can be therapeutic vulnerabilities of EVI1+ AML cells.
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