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Multiple myeloma (MM) bone disease is a significant cause of morbidity but there is a paucity of data on the impact of malignant
plasma cells on adjacent trabecular bone within the BM. Here, we characterize the proteome of trabecular bone tissue from BM
biopsies of 56 patients with monoclonal gammopathy of undetermined significance (MGUS), smoldering (SMM), newly diagnosed
(NDMM), relapsed MM (RMM), and normal controls. Proteins involved in extracellular matrix (ECM) formation and immunity
pathways were decreased in SMM and active MM. Among the proteins most decreased were immunoglobulins, type IV collagen,
and TIMP3, suggesting increased immunoparesis and decreased ECM remodelling within trabecular bone. Proteins most increased
in SMM/MM were APP (enhances osteoclast activity), ENPP1 (enhances bone mineralization), and MZB1 (required for normal
plasmablast differentiation). Pathway analyses showed that proteins involved in gamma -carboxylation, a pathway implicated in
osteocalcin function, osteoblast differentiation, and normal hematopoiesis, were also overexpressed in SMM/MM. This study is the
first comprehensive proteomic atlas of the BM bone proteome in dysproteinemias. We identify new key proteins and pathways for
MM bone disease and potentially impaired hematopoiesis, and show for the first time that gamma -carboxylation pathways are
increased in the bone tissue of SMM/MM.
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INTRODUCTION
Multiple myeloma (MM) is an incurable cancer characterized by
clonal proliferation of long-lived plasma cells within the bone
marrow (BM). Prior to the development of extramedullary disease,
MM cells are dependent on the BM microenvironment for survival
and progression from monoclonal gammopathy of undetermined
significance (MGUS) and smoldering MM (SMM) to MM [1, 2]. The
BM microenvironment is a complex interconnected network of
cellular (e.g., mesenchymal stem or stromal cells (MSCs),
osteoclasts/osteoblasts/osteocytes, endothelial cells, immune
cells) and noncellular (e.g., extra-cellular matrix (ECM) proteins,
cytokines, exosomes, growth factors) components [1]. The tumor
milieu is not a static bystander and alterations occur as early as the
MGUS stage [2]. Despite being a significant cause of MM-related
morbidity, with up to 70% of patients presenting with myeloma
bone disease at diagnosis [3], there is a paucity of studies
investigating the role that trabecular bone plays in MM
pathogenesis.
Congruent with Stephen Paget’s “seed and soil” hypothesis

which maintains that cancer cells (seeds) will only metastasize to
sites where the local microenvironment is favorable (i.e., the
premetastatic niche), MM cells transform the local BM niche by
dysregulating the release of soluble factors and exosomes,
remodeling the BM ECM proteome, and altering the composition,
function, and interactions of surrounding cellular compartments

[4, 5]. It is well known that MM cells disrupt bone homeostasis by
inhibiting osteoblast production, maturation, and activation in
favor of osteoclastogenesis, ultimately leading to bone destruction
[2]. However, a more in-depth analysis of the unique bone tissue
proteome of myeloma is lacking owing to challenges in bone
tissue enrichment, demineralization of its calcified matrix, and
detection of low-abundance proteins.
Trabecular bone is composed of a highly calcified bone matrix

and cellular components comprising osteocytes, osteoblasts, and
osteoclasts (osteocytes make up 90–95% of cells embedded in the
mineralized bone matrix) [6]. The bone matrix is roughly
comprised of 40% ECM and related proteins (of which 90% is
type I collagen and 10% noncollagenous proteins) and 60%
calcium hydroxyapatite [7]. Bone is a highly dynamic and
metabolically active tissue that undergoes constant remodeling
[8]. Proteomics has recently emerged as a powerful tool to study
bone metabolism and disease [8–10]. However, this method has
not been applied to cancer-related bone disease, and specifically
to bone disease in MM which is a prototypic model of a cancer
that grows within the BM and can cause extensive bone damage.
In this study, we characterize the proteome of trabecular bone

tissue in BM biopsies from patients with MGUS, SMM, newly
diagnosed and relapsed MM, as well as localized amyloidosis (AL)
controls. Our findings provide the first comprehensive proteomic
atlas of the BM bone proteome in dysproteinemias. We identify
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new key proteins implicated in MM bone disease and show, for
the first time, that proteins involved in gamma-carboxylation
pathways are overexpressed in the trabecular bone in patients
with SMM/MM compared to normal controls and MGUS.

MATERIALS AND METHODS
We included 68 patients with MGUS (n= 12), smoldering MM (SMM;
n= 11), MM within 6 months of diagnosis (n= 15) and relapsed MM (RMM;
n= 18) as well as localized AL amyloidosis control samples (AL; n= 12). For
patients with MGUS and SMM, all samples were collected at time of
diagnosis. For patients with MM, samples were collected within 6 months
of diagnosis or at time of relapse. All patients had consented to have their
BM samples and clinical data used for research purposes, and this study
was approved by the Mayo Clinic Institutional Review Board. The electronic
medical records were reviewed to obtain clinical characteristics and
treatment information for included subjects. Control samples were from
patients with localized amyloidosis without evidence of a clonal plasma
cell or B cell population in their BM or a circulating monoclonal protein in
their serum or urine. Hematologic response and progression/relapse were
defined according to IMWG criteria [11].Triple refractory patients were
defined as patients refractory to a proteasome inhibitor, an immunomo-
dulating agent and an anti-CD38 monoclonal antibody.
All but one of the RMM and MM within 6 months of diagnosis (total of

32 patients) also had paired cytometry by time of flight (CyTOF) data from
BM immune cells, transcriptomic data from BM malignant cells and
Luminex data for 65 proteins from BM plasma obtained from the same BM
sample as the bone proteome. Details on CyTOF, Luminex and
transcriptomic analyses of these samples have been previously published
[12].

Processing of samples and label-free MS
Eight-millimeter sections from demineralized formalin fixed paraffin
embedded BM biopsy tissues were collected on polyethylene naphthalate
membrane slides (ThermoFisher Scientific). The slides were deparaffinized and
rehydrated before sample collection. Areas of trabecular bone were selected,
cut, and captured by laser pressure catapulting (Zeiss MicroBeam) into the cap
of a 0.5mL tube containing 35 μL of digest buffer (100mM Tris, pH 8.2/0.005%
Zwittergent Z3-16). Approximately 2 cm2 area of tissue was collected per
sample. Tubes were inverted and spun at 14 000 × g for 2min to pellet the
buffer and tissue. Samples were heated at 98 °C for 1 h with shaking at
800 rpm in a ThermoMixer C equipped with an insulating ThermoTop to
ensure even heating and no evaporation of the buffer. Proteins were reduced
and alkylated with 5mM Tris (2-carboxyethyl) phosphine hydrochloride
(Sigma) and 5mM iodoacetamide, respectively. Sample volumes were
increased to 100 μL, and samples subjected to ultrasonication using the
BioRuptor Pico (Diagenode) for 5 cycles (30′ on, 30 s off) to further extract
protein from the tissue. 0.5 μg of Trypsin (Promega) was added to each
sample tube and incubated at 37 °C for 18 h with shaking at 800 rpm. Samples
were acidified with trifluoroacetic acid and desalted on C18 cartridges using
the Bravo automated liquid handling platform (Agilent). Final peptide
concentrations were determined by fluorescent peptide assay (ThermoFisher)
and 1.5 μg of each sample was aliquoted for nano liquid chromatography-
tandem mass spectrometry (LC-MS/MS).
LC-MS/MS data was acquired on an Orbitrap Exploris480 mass spectro-

meter (Thermo Fisher, Bremen Germany), interfaced with a Dionex 3000
RSLC liquid chromatograph. Peptides were separated on a 100 µm i.d. by
40 cm long fused silica column self-packed with Acclaim RSLC 2.2 µm,
120 Å C18 stationary phase using an exponential gradient (curve 6) of 2%B
mobile phase to 35% B at 80min, followed by an exponential gradient
from 35 to 45% B over 5min, followed by a 3minute ramp to 85% B, held
for 3 min, then re-equilibrated at 2% B. Mobile phase A was 2% acetonitrile
in water with 0.2% formic acid, mobile phase B was 80% acetonitrile, 10%
isopropanol, 10% water with overall 0.2% formic acid. Column flow rate
was 400 ƞL/min. Samples were loaded via autosampler and pre-
concentrated on a 0.33 µL EXP2 stem trap packed with Halo 2.7 µm
Peptide ES-C18 (Optimize Technologies, Oregon City, Oregon) for 5 min at
10 µL/min before switching the trap in-line with the separation column
during the gradient.
Mass spectrometry data were collected using data dependent acquisi-

tion of tandem mass spectra (MS2) from peptide precursor masses (MS1)
using a 2 second cycle. MS1 data were collected from m/z 340–1800
Thompson (Th) using resolving power of 60,000 (fwhm at m/z 200),
normalized automatic gain control (AGC) of 300%, with a maximum

ionization time (maxIT) of 100ms. MS2 spectra were collected from a
precursor range of 340–1400 Th, charge range (z)= 2–5, at 30000 resolving
power, using a precursor isolation window of 1.2 Th, maxIT= 70ms,
normalized collision energy of 30%, minimum precursor intensity of 7E4,
normalized AGC= 70%, and MS2 first mass = 120 Th. Precursor masses
selected for MS2 spectra were subsequently excluded for 30 s.
Representative pictures of bone tissue before and after laser micro-

dissection demonstrate the accuracy of this method and are shown in
supplementary Fig. 1.

Bioinformatics and statistical analysis
A previously published bioinformatics pipeline was utilized to process the
raw LC–MS/MS data and perform peptide intensity-based label-free
quantification of proteins present in the samples [13]. Raw data files were
loaded into MaxQuant software (version 1.6.0.16) configured to search the
MS/MS spectra against a database containing Uniprot human protein
sequences and common contaminants [14]. Reversed protein sequences
were appended to the database to estimate peptide and protein false
discovery rates (FDRs). MaxQuant was instructed to use trypsin as digestion
enzyme and the following posttranslational modifications when matching
the MS/MS against the sequence database: carbamidomethyl cysteine
(+57.021 Da), oxidation of methionine (+15.995), and deamidation of
asparagine (+0.985). The software identified the peptides and proteins
present in the samples at an FDR ≤ 1%, grouped protein identifications into
groups and reported protein group intensities. Spectral counts, normalized
to the total spectral counts in each sample, were used as a semi-
quantitative measure of abundance.
A previously published, in-house developed R script was utilized to

process the reported protein group intensities and identify differentially
expressed proteins between any two experimental groups [13]. For this,
protein group intensities of each sample were log2 transformed and
normalized using trimmed mean of M-values (TMM) method [15]. For each
protein group, the normalized intensities observed in any two experi-
mental groups of samples were modeled using a Gaussian-linked
generalized linear model. An ANOVA test was utilized to detect the
differentially expressed protein groups between pairs of experimental
groups. Differential expression p-values were FDR corrected using
Benjamini–Hochberg–Yekutieli procedure. Protein groups with an FDR <
0.05 and an absolute log2 fold change of at least 0.5 were considered
significantly differentially expressed and were saved for further analysis.
JMP 14.1 was used for statistical analyses (SAS Institute, Cary, NC). The

Kruskal–Wallis statistical test was used to describe differences between
groups. Kaplan–Meier survival analysis was used to estimate the overall
survival (defined as time between sample collection and death or last
follow-up) and progression-free survival (defined as time between sample
collection and death/disease progression or last follow-up). Pearson’s
correlation was used to test correlations between continuous variables.
Correlation analyses were performed using the cluster variables function of
JMP. This algorithm creates groups of the most highly correlated proteins
and ranks groups according to how much of the variability of the dataset
each group explains. Dimensionality reduction was performed using
Uniform Manifold Approximation and Projection (UMAP) in the omiq.ai
online platform [16].

Pathway analyses
Pathway analyses were performed using WebGestalt [17], using only the
differentially expressed proteins between the groups of interest and using
the Reactome (pathway) as the functional database and an FDR corrected
p-value of <0.05 when identifying significantly over-represented pathways.
The protein-coding genome was used as the reference set and weighted
set cover as a redundancy reduction method. In addition, gene set
enrichment analyses (GSEA) [18] using the Reactome database, was
performed to identify differentially expressed (FDR < 0.05) gene pathways
between groups and as a confirmatory method. A comprehensive list of
proteins within each pathway will not be provided but can be easily
reproduced using available raw data (see supplemental file: raw protein
MS1 count.xlsx).

RESULTS
Patient characteristics
We included a total of 56 patients (12 MGUS, 11 SMM, 15 MM
within 6 months of diagnosis, 18 RMM) and 12 normal controls.
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Their baseline characteristics are shown in the Table 1. There was
no significant age difference between the median age of cases
compared to that of controls (66 years vs 61 years, respectively,
p= 0.18). High risk patients were overrepresented in this study
(53%), which was reflected in the short time to progression for
newly diagnosed and relapsed patients (median of 15 and
5 months, respectively).

The BM bone proteome is a diverse ecosystem of proteins that
varies significantly across patients
We identified a total of 1951 distinct proteins across all samples (raw
protein MS1 counts.xlsx, supplementary material). There was no
difference in the total proteomic content (total number of normal-
ized spectral counts for all proteins in a sample) according to
diagnosis type (data not shown). WebGestalt analyses of the top
pathways associated with the entire proteome and the top 5% most
abundant proteins are shown in Fig. 1. Proteins involved in structural
support (“ECM organization” pathway) were, not surprisingly, over-
represented. Notably, proteins involved in protein translation
machinery and immunity (the majority of which were immunoglo-
bulins) were also overrepresented, suggesting that the bone tissue is
a metabolically and immunologically active tissue. To visualize major

patterns in the data across patients we performed a UMAP analysis of
all patients using their entire proteome and normalized spectral
counts as semiquantitative measures of abundance. No significant
grouping of patients was apparent (supplemental Fig. 2), suggesting
significant variability in the BM bone proteome even within the same
diagnostic categories (e.g., MGUS or SMM or MM). To identify which
proteins were responsible for most of the variability across patients
we performed PCA. The first 2 principal components explained 15.1%
and 6.4% of the variability in the data, respectively. We then
performed WebGestalt pathway analyses in the top 5% of proteins
with the highest and lowest loadings, respectively for each principal
component (supplemental Figs. 3, 4). This demonstrated that
proteins with high loadings within principal component 1, were
mostly proteins involved protein translation whereas those with low
loadings were proteins involved in the activation of the complement
cascade, keratinization, and ECM formation. Similarly, proteins with
high loadings within principal component 2, were involved in ECM
formation and those with low loadings were involved in protein
translation.

Normal controls and MGUS patients have a distinct proteome
compared to those with higher plasma cell burden states
Given the high level of variability observed and the limited number
of cases within each group, we combined normal controls and MGUS
cases together (i.e., low plasma cell burden) and compared them to
SMM and MM cases (i.e., high plasma cell burden) to increase
statistical power. The results of a WebGestalt analysis are shown in
Fig. 2. The abundance of proteins involved in ECM formation
pathways were decreased whereas proteins involved in gammacar-
boxylation pathways were increased in SMM/MM. Amongst the
proteins (supplemental material) most decreased in SMM/MM were
immunoglobulin genes, collagen 4 and tissue inhibitor of metallo-
proteinase 3 (TIMP3). Among the proteins most increased in SMM/
active MM were amyloid precursor protein (APP), ectonucleotide
pyrophosphatase/phosphodiesterase 1 (ENPP1), Lectin, Mannose
Binding 2 (LMAN2), Marginal Zone B And B1 Cell Specific Protein
(MZB1) and X-Prolyl Aminopeptidase 1 (XPNPEP1). A GSEA analysis
largely confirmed the above findings (Figs. 3 and 4, full list of proteins
within each pathway is provided as supplemental data).
Within the most upregulated pathways in the MGUS/control

groups were immunoglobulin proteins (dominating all pathways
except those relating to keratinization or ECM formation).
Protein pathways upregulated in SMM/MM cases again included
those involved in gamma-carboxylation, endoplasmic reticulum
(ER) stress response, and protein trafficking within cells. All
differentially expressed proteins and a ranked list used for
WebGestalt and GSEA analyses, respectively, are included as
supplemental data. No significant pathway differences were
identified between patients with newly diagnosed MM and
relapsed or smoldering MM. We also compared the following
groups: males versus females, patients receiving osteoclast
inhibitors (bisphosphonates or denosumab) versus not, high risk
versus non-high risk active MM patients (per IMWG criteria) and
patients with a bone fracture within 6 months from sample
collection but found no differences.
We have previously published CyTOF data from immune cells,

Luminex data from BM plasma proteins, and transcriptomic data
from malignant plasma cells collected from the same 15 patients
with MM diagnosed within 6 months and all but one RMM patient
(n= 17) [12]. We hypothesized that bone proteins having a high
correlation with any of these other BM components (immune cells,
BM plasma proteins or malignant cell genes) would be more likely
to coregulate or influence each other. We interrogated a
correlation matrix of bone proteomic data with the previously
reported CyTOF, Luminex and transcriptomic data from BM
immune cells, plasma proteins and malignant plasma cells
respectively, and, using a cutoff of Pearson’s R > 0.9 (R 2 > 0.8),
however we identified no significant correlations.

Table 1. Baseline characteristics of patients.

Median (range) or N (%)

Total number of patients 68 (100%)

Diagnosis type

Localized AL controls 12 (18%)

MGUS 12 (18%)

Smoldering MM 11 (16%)

MM within 6 months from diagnosisa 15 (22%)

Relapsed MMb 18 (26%)

Age at sample collection, years 65 (43–85)

Female sex 31 (46%)

High risk FISHc 20 (53%)

Follow-up from diagnosis, months
(controls excluded)

57 (3–154)

BMPC % at sample collection

MGUS 2.5% (0–7.5%)

Smoldering MM 14% (8–50%)

Active MM 50% (0–90%)

Time to hematologic progression from sample collection, months

MM within 6 months from diagnosis 15 (5–68)

Relapsed MM 5 (1–33)

Received osteoclast inhibitors within
6 monthsd (controls excluded)

20/56 (36%)

MGUS 1/12 (8%)

SMM 2/11 (18%)

Active MM 17/33 (52%)

Any skeletal fracture within 6 months
from sample collectione

15 (45%)

FISH fluorescent in-situ hybridization, MM multiple myeloma.
aOf which 12 were newly diagnosed and 3 patients were after induction
therapy (1 partial response and 2 very good partial responses).
bOf which 12 triple-refractory.
cConsidered for smoldering and active MM and only for the 38 patients
with complete FISH data. Defined as presence of deletion 17p, t (4;14),
+1q, t(14;16) or t(14;20).
dOf which 14 patients received zoledronic acid, 3 alendronate and 3
pamidronate.
eConsidered for the 33 patients with active MM.
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DISCUSSION
This study represents the first comprehensive proteomic atlas of the
bone marrow bone proteome in various dysproteinemias. We show
that the bone is a metabolically and immunologically active tissue.
We demonstrate that bone from patients with active or smoldering

MM has lower levels of ECM related proteins compared to those from
controls and MGUS, suggesting that the loss of ECM proteins is
associated with decreased structural rigidity found in more advanced
dysproteinemias. We also show that gamma-carboxylation pathways
are activated in SMM and active MM, and identify several novel

Fig. 1 Overview of the diversity of the bone marrow bone proteome. A WebGestalt analysis of all proteins identified across all samples
using the Reactome pathway and presenting the top 20 pathways. B WebGestalt analysis of the top 5% most abundant proteins. (top 10
pathways).

Fig. 2 Proteomic differences between patients with low and high plasma cell burden. A WebGestalt analysis of all proteins differentially
expressed between controls/MGUS and smoldering active multiple myeloma using the Reactome pathway and presenting the top 10
pathways. MM multiple myelom.
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proteins involved in bone physiology that are differentially expressed
between the two groups.
Metalloproteinases are collagenases that promote collagen

breakdown and bone destruction. MM cells have the ability to
induce expression of metalloproteinases in the surrounding BM
stromal cells [19]. Interestingly, we identified that a collagenase-
inhibitor, TIMP3, was amongst the most abundant proteins in
control and MGUS patients suggesting that TIMP3 may be
downregulated in active MM. Of note, TIMP-3 is unique among

TIMP family members in that it becomes tightly bound to the ECM
shortly after secretion [20, 21], which may explain why overall
TIMP3 expression was higher in AL/MGUS, which also express
much higher levels of normal ECM proteins, as compared to SMM/
MM. Functionally, TIMP3 regulates ECM remodeling and deficient
mice have decreased overall bone integrity [22]. TIMP3 is
associated with lower levels of inflammatory cytokines in normal
tissue [23] and in MM, since it can inhibit soluble IL-6 receptor
production by MM cells [24]. This suggests that TIMP3 loss may be

Fig. 3 Gene set enrichment analyses of proteins in MGUS and control samples compared to smoldering and active myeloma samples
(only the top 20 pathways are reported). The values on the X axis are normalized enrichment scores and all were significant at an FDR
corrected p value of <0.05.

Fig. 4 Gene set enrichment analyses of proteins in smoldering and active myeloma samples compared to MGUS and control samples
(only the top 20 pathways are reported). The values on the X axis are normalized enrichment scores and all were significant at an FDR
corrected p value of <0.05.
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permissive for the development of pro-inflammatory microenvir-
onment that is associated with MM development.
Interestingly, APP, the most differentially abundant protein in bone

tissues obtained from patients with active or smoldering MM in our
study, is also elevated in osteoporotic bone tissues where it enhances
osteoclast function [25]. This is the first report to identify increased
APP in MM or SMM and further studies are needed to clarify the
functional role of APP in this setting. ENPP1, another differentially
expressed protein in bone tissues of SMM/MM, is also preferentially
upregulated in BM long-lived plasma cells (the nonmalignant
counterpart to MM cells) [26]. Among its many functions, ENPP1
has also been shown to serve as an adhesion molecule associated
with glycosaminoglycans in the ECM and is also expressed by plasma
cells [26, 27]. Importantly, ENPP1 homozygous knockout mice
produced significantly reduced number of BM long-lived plasma
cells following immunization, showing that ENPP1 plays an important
role in long-term plasma cell survival [26]. Finally, MZB1, is required
for normal plasmablast differentiation [28]. These observations
collectively suggest that the bone tissue in MM may actively support
MM growth via MZB1 and ENPP1.
We were intrigued to identify an increase in proteins involved in

gamma-carboxylation in both smoldering and active MM. Indeed,
gamma-carboxylation is implicated in the vitamin K-stimulated
function of osteocalcin, a major noncollagenous protein of the
bone matrix that contains three gamma-caboxyglutamic acid
residues [29]. Furthermore, warfarin, a well-known inhibitor of
gamma-carboxylation of clotting factors, can also inhibit osteo-
blastic differentiation [30] and has been shown to inhibit normal
hematopoiesis in the BM partly via the decarboxylation of
periostin [31]. Furthermore, only 2 patients with SMM/MM and 3
patients with MGUS/Localized AL received warfarin, which
suggests that this would not have biased our results. Our findings
may therefore be a result of homeostatic mechanisms activated
within the bone tissue as a result of MM-induced bone loss and
myelosuppression. However, it appears that the beneficial effects
of gamma-carboxylated pathways on bone are countered by other
mechanisms of MM-induced bone loss.
Our study has several limitations. High risk patients were

overrepresented in our study which was reflected in their short
remission lengths. This likely reflects a selection bias, i.e. more
likely to come to a referral institution and to have research
samples available but limits the generalizability of our results. In
addition, we noticed significant variability across groups so our
study was not powered to detect differences across various
subgroups but can help with the design of future studies. Finally,
even though we took care to microdissect bone and avoid
surrounding tissue, the degree of “contamination” by BM plasma
or surrounding tissues and cells is unclear. Therefore, we were
unable to ascertain to what degree these proteins were exclusive
to the bone tissue or not.
In summary, we demonstrate that bone physiologic changes can

be detected and quantified in the marrow bone proteome using
shotgun proteomics. We identify new key proteins and pathways for
MM bone disease and potentially impaired hematopoiesis, and show
for the first time that gamma-carboxylation pathways are increased
in the trabecular bone tissue of patients with SMM/MM. Such
proteomic signatures can be obtained from routine BM biopsy
samples and have the potential to serve as biomarkers of MM bone
disease if validated in larger studies. Data from this study will be
made publicly available for use by the broader scientific community
for hypothesis generation.

DATA AVAILABILITY
Protein spectral counts according to diagnosis groups have been submitted as
supplemental material. Additional de-identified clinical information can be shared
upon request.
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