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SUMMARY
Diabetic kidney disease (DKD) is the most common cause of renal failure. Therapeutics development is
hampered by our incomplete understanding of animal models on a cellular level. We show that ZSF1 rats
recapitulate human DKD on a phenotypic and transcriptomic level. Tensor decomposition prioritizes prox-
imal tubule (PT) and stroma as phenotype-relevant cell types exhibiting a continuous lineage relationship.
As DKD features endothelial dysfunction, oxidative stress, and nitric oxide depletion, soluble guanylate
cyclase (sGC) is a promising DKD drug target. sGC expression is specifically enriched in PT and stroma.
In ZSF1 rats, pharmacological sGC activation confers considerable benefits over stimulation and is mecha-
nistically related to improved oxidative stress regulation, resulting in enhanced downstream cGMP effects.
Finally, we define sGC gene co-expression modules, which allow stratification of human kidney samples
by DKD prevalence and disease-relevant measures such as kidney function, proteinuria, and fibrosis, under-
scoring the relevance of the sGC pathway to patients.
INTRODUCTION

Chronic kidney disease (CKD) is the fourth fastest growing cause

of death, affecting >850 million people worldwide.1 Patients with

CKD have 3- to 5-fold increased mortality.2 The survival rate for

kidney failure (end-stage renal disease [ESRD]) is often worse

than for many solid tumors, underscoring the importance and ur-

gency of the disease.3 Therapies to prevent progression of CKD

are mostly based on inhibition of the renin-angiotensin-aldoste-

rone system, introduced >20 years ago, and on blockade of a so-

dium glucose transporter, introduced recently. Although these

therapies clearly slow progression, not all CKD patients benefit

to the same degree and even non-responders are emerging.

CKD remains a major unmet medical need, for which therapeu-

tics are desperately needed.

One critical limitation has been that animal models poorly

recapitulate human diabetic kidney disease (DKD). Most

strains of mice when made diabetic (e.g., by streptozotocin in-

jection) do not develop phenotypes observed in patients with
Cell R
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DKD, such as mesangial expansion, glomerular basement

membrane thickening, tubulointerstitial damage, and endothe-

lial hyalinosis.4 Animal models often do not show progressive

kidney function decline and other microvascular complications

of diabetes such as hypertension and heart failure. DKD is

associated with reduced nitric oxide (NO) bioavailability and

endothelial dysfunction, similar to other cardiovascular disor-

ders such as hypertension, heart failure, and metabolic

syndrome.5,6

NO-soluble guanylate cyclase-cyclic guanosine monophos-

phate (NO-sGC-cGMP) signaling plays a critical role in

regulating renal function.7,8 Defects in NO availability (e.g.,

endothelial NO synthase [eNOS] deletion) can lead to severe

kidney function deterioration and CKD.8 Endogenous NO is

generated from L-arginine by eNOS. After release from the

endothelium, NO binds to sGC, which is a heterodimeric

enzyme consisting of an a and b subunit carrying

an N-heme-NO binding domain. The major isoforms are

sGCa1b1 and sGCa2b1 encoded by GUCY1A1, GUCY1B1,
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and GUCY1A2, respectively. NO-dependent sGC stimulation

triggers formation of cGMP, which is the cellular second mes-

sanger.9 sGC is therefore a key signal transducer of NO-medi-

ated organ effects. NO-sGC-cGMP signaling can be impaired

by increased reactive oxygen species production, scavenging

of NO via the reaction of NO and O2� to form peroxynitrite, or

direct scavenging by free hemoglobin but also by oxidation of

Fe2+ (ferrous) sGC to its NO-insensitive Fe3+ (ferric) state.10,11

Moreover, sGC transcription and mRNA stability are affected

by oxidative stress.12

Agonizing sGC directly has become a promising therapeutic

approach. Current sGC agonists are categorized into two

distinct classes based on their molecular mode of action. sGC

stimulators (sGCstim) propel cGMP formation by binding to

sGC, allosterically to the N-NOX domain, NO-independently

and synergistically with NO. However, their efficacy depends

on the ferrous state of the prosthetic heme group. In contrast,

sGC activators (sGCact), by binding to the H-NOX domain

directly, induce cGMP production preferentially at the

oxidized/heme-free apo form of the enzyme, which is no longer

responsive to NO and sGC stimulators9,13 (Figure 1A). Hence,

maintaining sGC heme in the ferrous state is essential for sGC-

cGMP signaling via NO and sGCstim, whereas sGCact can act

independently of the ferrous heme group, bound to the b1 sub-

unit (encoded by GUCY1B1), potentially explaining higher

sGCact activity under pathophysiological and high oxidative

stress conditions, such as DKD, compared with sGCstim.14

Both sGCstim and sGCact have shown kidney-protective ef-

fects in preclinical CKD and DKD models8,15–18 and have been

advanced to clinical studies.9 Despite the positive effect of sGC

modulation on clinical outcomes, the target cell types and molec-

ular mechanism of action for sGC are poorly understood. Here,

we studied the pharmacological effects of sGCstim and sGCact

in the ZSF1 rat as a representative DKD model at the single-cell

level in the kidney. Through unbiased tensor decomposition anal-

ysis, we prioritize podocytes, proximal tubule (PT) cells, and stro-

mal cells asmost disease-relevant cell types in DKD and describe

the latter two as sGC-expressing cells. We highlight a continuous

transcriptional lineage relationship of PT and stromal cells, start-

ing with differentiated PT cells to injured (PTinj) and profibrotic PT

(ProfibPT) states toward mesenchymal cells (Mesench). Finally,

we use unbiased weighted gene correlation network analysis

(WGCNA) to build a score, which successfully stratified 991 hu-

man kidney bulk RNA sequencing (RNA-seq) samples by DKD

prevalence, and functional (degree of proteinuria, glomerular

filtration rate) and structural (fibrosis) kidney impairment.
Figure 1. Diabetic ZSF1 rats recapitulate phenotypic changes of DKD

(A) Representation of the importance of heme-containing (native) sGC and hem

efficacy depends on the ferrous, Fe(II), state of the heme group at the b subunit o

form of sGC. Similar to other cardiovascular disorders, DKD is associated w

dysfunction. cGMP, cyclic guanosine monophosphate; DKD, diabetic kidney dis

peroxynitrite; sGCact, soluble guanylate cyclase activator; sGCstim, soluble gua

(B) Experimental ZSF1 rat model setup. sGCact, soluble guanylate cyclase activ

(C–E)Metabolic (serum cholesterol, glucose, and plasmaHbA1c) (C), kidney funct

either one-way ANOVA or Kruskal-Wallis test (both Benjamini, Krieger, Yekutieli

(F) Histopathology changes in hematoxylin/eosin (left) and Sirius red/fast green (

(G) Histopathology scoring; p values are given for Kruskal-Wallis test (Benjamini
RESULTS

Diabetic ZSF1 rats recapitulate phenotypic changes of
DKD with marked disease improvement by sGC
activators
It has been suggested that the obese ZSF1 rat model exhibits

many of the phenotypic characteristics of human DKD, such as

proteinuria, structural renal lesions, hyperglycemia, dyslipide-

mia, hypertension, oxidative stress, and obesity.18–22 We

analyzed ZSF1 obese diabetic rats at 25–26 weeks of age (Fig-

ure 1B). In line with previous publications, diabetic ZSF1 rats

demonstrated marked obesity, hypercholesterolemia, hypergly-

cemia, elevated hemoglobin A1c (HbA1c), and hypertension

(Figures 1C and S1A; Table S1), reflecting the pronouncedmeta-

bolic disturbances reminiscent of the metabolic syndrome in hu-

mans.23,24 Obese ZSF1 rats demonstrated impaired kidney

function, as measured by elevated serum creatinine and urea,

as well as marked proteinuria and albuminuria (Figures 1D and

S1B). We noted higher levels of circulating kidney injury markers

such as kidney injury molecule 1 (KIM-1)25 and neutrophil gelat-

inase-associated lipocalin (NGAL)26 (Figure 1E) in diabetic ZSF

rats. We performed explorative proteomics analysis of 92

plasma proteins using a multiplexed proximity extension assay

(Olink) (Data S1). Plasma proteins showing higher levels in dia-

betic rats included Delta-like 1 (DLL1) and ectodysplasin A2 re-

ceptor (EDA2R) (Figure S1C), both of which were recently found

in a human proteomics study analyzing four independent cohorts

of individuals with type 1 and type 2 diabetes and early and late

DKD to be associated with progression to kidney failure.27 Of the

46 proteins that Kobayashi et al. reported to be strongly associ-

ated with progression to kidney failure,27 eight were included in

our Olink panel. Interestingly, the levels of all eight proteins

(100%) were significantly higher in diabetic ZSF1 rats (Data

S1), again underscoring the similarities of the ZSF1 rat model

to human DKD. These proteins had diverse biological functions

including development (DLL1, MATN2), inflammation (EDA2R,

IL17F, CCL5, TNFSF12), and transforming growth factor b

(TGFb) signaling (FSTL3, TGFBR3). Functional impairment in dia-

betic ZSF1 rats wasmirrored by renal histopathological changes

such as increased interstitial fibrosis, tubular degeneration, hya-

line cast formation, and glomerulopathy (Figures 1F and 1G).28,29

Next, we aimed to characterize the effects of sGCact and

sGCstim on renal and metabolic parameters of ZSF1 rats. While

sGCact significantly alleviated metabolic changes, sGCstim did

not (Figure 1C). The degree of renal function improvement was

similar (as measured by urea) or greater (as measured by
with marked disease improvement by sGC activators

e-free (dysfunctional) form of sGC and its redox equilibrium. sGC stimulator

f sGC, while sGC activators bind directly to oxidized, Fe(III), or heme-free apo

ith reduced NO bioavailability, increased oxidative stress, and endothelial

ease; NO, nitric oxide; NOS, nitric oxide synthase; O2
�, superoxide; ONOO�,

nylate cyclase stimulator. Adapted from Sandner et al.9

ator; sGCstim, sGC stimulator.

ion (D), and kidney injury markers (E) after 12 studyweeks; p values are given for

corrected). Ob, obese; ns, not significant. Color legend as in (B).

right) stained kidney sections. Scale bars, 500 mm.

, Krieger, Yekutieli corrected). Color legend as in (B).
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creatinine, albuminuria, and proteinuria) upon treatment with

sGCact than with sGCstim (Figure 1D). Increased kidney injury

and kidney disease progression markers were largely rescued

by sGCact but not by sGCstim (Figures 1E, 1F, S1B, and S1C).

Both tubulointerstitial and glomerular histopathological changes

were markedly lower upon sGCact treatment, whereas we only

saw a reduction in glomerulopathy upon sGCstim treatment

(Figures 1F and 1G).

In summary, we found that obese, diabetic ZSF1 rats recapit-

ulated functional and renal histopathological changes of human

DKD. Pharmacological sGCact ameliorated functional and histo-

logical changes of DKD, while sGCstim had modest effects on

ZSF rats.

Single-cell transcriptomic landscape of the diabetic
ZSF1 rat kidney
To elucidate key cell types and DKD driver pathways, we next

performed single-nuclei RNA-seq (snRNA-seq) on three rat kid-

ney samples per group. After stringent quality control of each in-

dividual sample, including ambient RNA correction, doublet

removal, nuclei filtering based on UMI, counts, and mitochon-

drial percentage (STAR Methods and Figures S2A–S2D), we in-

tegrated transcriptomes of high-quality single cells into a single

dataset following batch correction (STARMethods) and retained

217,132 high-quality single kidney nuclei (Figures 2A and S2E).

Unsupervised clustering indicated 25 cell clusters (Figures 2B

and S2E). After cluster-specific differential gene-expression

analysis (Figure S2f, Data S2), we grouped clusters into

coarse-grained, high-level cell types: podocytes (Podo), endo-

thelial cells (Endo), stroma cells (Stroma), proximal tubule cells

(Prox tub, PT), non-proximal tubule cells (Non-prox tub) such

as loop of Henle (LOH), distal convoluted tubule (DCT), connect-

ing tubule (CNT), collecting duct principal cells (PC), and collect-

ing duct intercalated cells (IC), as well as immune cells (Immune)

(Figures 2A and 2C). Each cell type was present in every sample
Figure 2. Single-cell transcriptomic landscape of the diabetic ZSF1 ra

(A) Integrated UMAP of 217,132 high-quality nuclei from twelve rat kidney sample

tubule; Podo, podocytes; Prox tub, proximal tubule; Stroma, stromal cells.

(B) Heatmap of top ten differentially expressed genes for low-level clustering.

(C) Marker gene expression for high-level clustering. Dot size denotes percen

expression values.

(D) Pearson correlation coefficient (PCC) matrix of average cell type gene expre

human snRNA-seq dataset with control and DKD kidney samples. CD-ICA/IC-A

calated cell type B; CD-PC/PC, collecting duct principal cell; CNT, connecting

leukocyte; LOH, loop of Henle; MES, mesangial cells; PCT, proximal convoluted

(E) Tensor decomposition analysis heatmap (center left) representing factor loadin

explained variance (exp_var) in the whole dataset is displayed on the bottom le

(uPCR, urinary protein/creatinine ratio in mg/mmol) and histopathology outcomem

mononuc_infiltr, mononuclear infiltration, glomerulopathy, each scored from 0 to

data, genotype (lean vs. obese), and treatment status (sGCm, sGC modulator tre

(F) Heatmap representing factor 1 loading scores by cell type (columns) and gen

nificance levels are shown on the right. The top five significant genes for every c

(G) Expression dot plot for NO/sGC/cGAMP pathway genes. Dot size denotes pe

expression values.

(H) Expression ofGUCY1B1 in humanmicrodissected kidney tubule bulk RNA-seq

given for one-way ANOVA (Tukey corrected). TPM, transcripts per million.

(I) Expression dot plot for NO/sGC/cGAMP pathway genes in a humanDKD snRNA

and blue color scales represent average gene-expression values in DKD and c

TPM1+ PT cells).
and in all groups, indicating the lack of major batch effect and

negligible within-group heterogeneity (Figures S3A–S3C). Differ-

ential proportion analysis showed significant differences in cell

fractions between groups for almost all cell types (p < 0.001 for

obese vs. lean comparisons in Endo, Stroma, Prox tub, Non-

prox tub, and IC; p < 0.05 for Immune; not significant for Podo)

(Figure S3D). Next, we identified differentially expressed genes

(DEGs) between disease states and treatment groups. PT and

stromal cells showed the highest number of DEGs between

treatment groups (Figures S4A–S4C; Data S3, S4, and S5).

Importantly, individual cell-cluster transcriptomes in our ZSF1

rat DKD model demonstrated strong correlation with corre-

sponding cell-cluster transcriptomes in two independent human

single-cell DKD datasets30 including the Kidney Precision Med-

icine Project (KPMP)31 and served as an excellent reference on

which all cell types present in the human DKD query dataset

could be projected with high prediction accuracy (Figures 2D

and S5A–S5D).

As the disease state was associated with important differ-

ences in both cell fractions and cell-type-specific gene expres-

sion, we used tensor decomposition analysis on our single-

nuclei dataset (Figure 2E; Data S6, S7, and S8) for an unbiased

determination of critically important cell types associated with

phenotypic changes. High-level cell-type identity, histopatho-

logical, and proteinuria metadata served as input for this unsu-

pervised analysis that allowed us to retrieve main factors associ-

ated with phenotypic outcomes of the respective samples in an

unbiased manner. Factor 1 explained by far the most (48.7%)

transcriptomic variation across all samples and was significantly

associated with interstitial fibrosis, tubular degeneration, hyaline

cast formation, glomerulopathy, and proteinuria. Consistently,

untreated ZSF1 obese samples had the lowest factor 1 scores,

the highest proteinuria levels, and most severe histological dam-

age. Factor 2 explained 19.0% of variation and was associated

with rat genotype (ZSF1 lean vs. ZSF1 obese), suggesting that
t

s; Endo, endothelial cells; Immune, immune cells; Non-prox tub, non-proximal

tage of cells expressing the marker. Color scale represents average gene-

ssion between ZSF1 rats (lean and obese samples only) and a corresponding

, collecting duct intercalated cell type A; CD-ICB/IC-B, collecting duct inter-

tubule; DCT, distal convoluted tubule; Endo/ENDO, endothelial cell; LEUK,

tubule; Podo/PODO, podocytes; Prox tub, proximal tubule.

g score of rat kidney (RK) samples (rows) onto tensor factors (rows). Degree of

ft. Significance level (�log10(p value)) of tensor factor association with clinical

easures (interst_fibrosis, interstitial fibrosis; tub_degen, tubular degeneration;

4) is displayed on the top left. Sample rows are color-annotated by outcome

atment, or no treatment).

es (rows) (left). Explained variance is colored in shades of gray (top left), sig-

ell cluster are annotated.

rcentage of cells expressing the marker. Color scale represents average gene-

samples, stratified by control, early DKD, and advanced DKD cases; p value is

-seq dataset. Dot size denotes percentage of cells expressing themarker. Red

ontrol samples, respectively; PTinj, injured PT (composite of VCAM1+, CFH+,
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the phenotype was a more important determinant of gene

expression than the genotype. More detailed analysis of factor

1 loadings revealed that themajority of genes loading onto factor

1 were specific to three cell types: podocytes, PT, and stromal

cells (Figure 2F). Gene ontology (GO) analysis of factor

1-loading genes in PT and stromal cells revealed that repair

(e.g., wound healing, regeneration, negative regulation of cell

adhesion) and electron transport processes (e.g., mitochondrial

respiratory chain complex assembly, electron transport chain,

ATP metabolic process, proton transmembrane transport)

were the top enriched pathways (Figure S6A).

As we sought to study effects of pharmacological sGC modu-

lation, wewere reassured to find sGCgenes (Gucy1a1,Gucy1a2,

Gucy1b1, Gucy1b2) to be expressed almost exclusively in PT

and stromal cells (Figures 2G, S6B, and S6C). PT and stroma

specificity for sGC and downstream cGMP effectors such as

PDE3A and PDE5A was also observed in recent human and

mouse DKD snRNA-seq datasets30,32 (Figure S6D), suggesting

conservation across species. In addition, microdissected kidney

tubule RNA-seq samples from human individuals with advanced

DKD showed higher sGC mRNA expression (Figure 2H). Finally,

reanalysis of a human DKD snRNA-seq dataset30 confirmed

increased sGC expression in DKD stroma compared with control

stroma (annotated as ‘‘MES,’’ mesangial, by the authors) as well

as expression in PTinj (Figure 2I).

Pharmacological sGC modulation improves gene
expression in multiple cell types
As our unsupervised tensor decomposition analysis prioritized

podocytes, PT, and stromal cells as key cell types for improved

structural and functional outcome, we focused on these cells. Af-

ter three iterative rounds of clustering, we subset 2,065 podocyte

nuclei that formed five clusters, establishing a continuous trajec-

tory (Figures S7A and S7B). Pathway enrichment analysis

demonstrated that the start of the trajectory (Podo1–Podo3)

was defined by nephrin, glomerular epithelium, glomerular

development, or actin filament pathways, which is typical for

healthy podocytes. Cluster Podo4 was specifically enriched

for, e.g., FAK, p53, and apical junction pathways, whereas clus-

ter Podo5 (at the end of the trajectory) was enriched specifically

for, e.g., oxidative phosphorylation, ribosomal, and glutathione

metabolism pathways (Figure S7C). Clusters Podo1–Podo4

positively correlated with each other (Figure S7D). Diabetic
Figure 3. Pharmacological sGC modulation improves gene expression
(A and B) Integrated UMAP (A) and marker gene expression (B) for PT and stroma

tubule (segment 2); PST, proximal straight tubule; PTinj, injured PT; ProfibPT, pro

PT(Spp1+), Spp1+ PT; Int, interstitial cell; Mesench, mesenchymal cell; SMC, smo

Color scale (B) represents average gene-expression values.

(C) Bar graphs representing the number of genes differentially expressed (DEGs)

indicate absent or present rescue effect (normalization) for DEG comparison bet

(D) Dot plots representing the effect size of DEG normalization by sGCact (blue) an

mesenchymal cells (Mesench). The top ten upregulated and top ten downregulate

dot size denotes significance level, color represents the effect of genotype (le

respectively.

(E–G) UMAP (E), top ten DEGs per cluster (F), and marker gene expression (G

apparatus cell; Fib, fibroblast; PT, proximal tubule; GEC, glomerular endothelial c

Dot size (G) denotes percentage of cells expressing the marker. Color scale (G)

(H) Feature plots for Gucy1a1 and Gucy1a2 in UMAP space.
ZSF1 obese rats showed considerably lower fractions of differ-

entiated Podo1 nuclei, which was rescued by sGCact but not

by sGCstim (Figure S7E). Vice versa, Podo5 was lowest in

sGCact-treated rats and was enriched for oxidative phosphory-

lation (Figures S7E and S7F).

Next, we turned to PT and stromal cells, which demon-

strated proximity in uniform manifold approximation and pro-

jection (UMAP) space (Figure 2A), suggesting a close and

potentially continuous transcriptomic relationship. We there-

fore chose to analyze these two cell types together. After sub-

clustering, we retrieved 13 cell clusters (Figures 3A and S8A–

S8G). Based on the high expression of their cluster-specific

DEGs (Figure 3B and Data S9) we annotated them as proximal

convoluted tubule (PCT, Slc5a2), proximal straight tubule S2

segment (PST S2, Zmat4, Slc25a25), and proximal straight tu-

bule (PST, Slc1a1), which represented healthy PT cells with

typical marker gene expression. Other clusters included

injured PT (PTinj, Il34, Klf6, Havcr1) and profibrotic PT

(ProfibPT, Havcr1, Nfkbiz, Pdgfb, Fn1), which shared most of

the typical injury signature from previous literature.33–35 Other

clusters showed features of cellular dedifferentiation with low

or absent expression of typical PT markers (DediffPT_1,

Slc12a3, Umod; DediffPT_2, Nid2, Myo5c, Tbc1d4; De-

diffPT_3, Akap12, Shroom3, Robo2), high mitochondrial gene

content (mitoPT, Cd74), or high osteopontin (PT Spp1+,

Spp1). A fourth group of cells represented interstitial (Int,

Mgp, Dcn, Bgn), mesenchymal (Mesench, C7, Pdgfrb), and

smooth muscle cells (SMC, Myh11, Acta2), respectively.

Next, we analyzed the number of DEGs ‘‘normalized’’ (their

expression changed to healthy level) by sGCact and sGCstim

treatment (Data S10, S11, and S12). We found that the fractions

of DEGs normalized by sGCmodulation were highly variable and

cell-type specific (Figure 3C). The expression of a larger number

of genes returned to baseline (healthy state) upon sGCact

(n = 8,240) compared with sGCstim treatment (n = 7,885), which

was consistent with the improved structural and functional

outcome upon sGCact treatment (Figures 1C–1G). Obese

ZSF1 rats (compared with lean) showed the highest numbers

of DEGs in mitoPT, PT(Spp1+), PST, and DediffPT_1. The largest

numbers of genes returning to healthy control level by sGCact

treatment were observed in DediffPT_1 (73% rescue), PST

(72%), and Int (56%). For sGCstim treatment the highest per-

centages of rescue were observed in PST (59%), Mesench
in multiple cell types
l cell subclusters. PCT, proximal convoluted tubule; PST(S2), proximal straight

fibrotic PT; DediffPT, dedifferentiated PT; mitoPT, high mitochondrial gene PT;

othmuscle cell. Dot size (B) denotes percentage of cells expressing themarker.

between obese and lean samples in PT and stroma subclusters. Percentages

ween sGC modulator-treated rats (sGCstim, sGCact) and vehicle-treated rats.

d sGCstim (purple) for proximal convoluted tubule (PCT), injured PT (PTinj), and

d genes are shown. x axis denotes the effect size of DEG rescue/normalization,

an vs. obese) and pharmacological treatment (sGCact, sGCstim vs. obese),

) for stromal cell subclusters. Mesang, mesangial cell; JGA, juxtaglomerular

ell; Myofib, myofibroblast; VSCM, vascular smooth muscle cell; Peri, pericyte.

represents average gene-expression values.
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(48%), DediffPT_1 (48%), and PTinj (47%). While sGCact treat-

ment was associated with a larger number of genes returning

to baseline level than sGCstim treatment, we did not observe

strong cell-type-specific differences between the two drugs,

suggesting a class effect of action (Figures 3C and S8H). Finally,

the effect size of top DEG normalization via sGCact was similar

to that of a control (lean) genotype (Figure 3D), which again

underlined the high effectiveness of sGCact.

We noticed a marked reduction of cGMP signaling in obese

rats (compared with lean), which was restoredmore successfully

by sGCact than sGCstim (Figure S9A). DKD is associated with

endothelial dysfunction and increased oxidative stress due to

NO depletion, leading to oxidized and heme-free sGC, which

neither NO nor sGCstim can target.9 We were therefore intrigued

to find that sGCact preserved gene expression of markers asso-

ciated with negative regulation of oxidative stress better than

sGCstim treatment (Figure S9B). This could potentially

explain—at least in part—the observed treatment benefits of

sGCact over sGCstim. Along those lines, the negative oxidative

stress regulation and cGMP effect sizes correlated positively

(Figure S9C). We further validated these findings in an external

bulk kidney RNA-seq dataset:36 advanced DKD kidneys had

significantly lower cGMP effects scores than early DKD kidneys

(p = 0.019), while controls and early DKD kidneys were not

different (p = 0.085) (Figure S9D). Similarly, kidneys from

advanced DKD patients exhibited the lowest scores for negative

regulation of oxidative stress compared with early DKD and

control cases (Figure S9E). Again we found a positive correlation

between oxidative stress response and cGMP effect size

(Figure S9F) in human kidneys.

Our single-cell gene-expression data, consistent with prior im-

munostaining and in situ hybridization studies,37 indicated sGC

expression in stromal cells. To better understand sGC expres-

sion in the renal stroma, we subclustered the stromal cells. Un-

biased clustering revealed two mesangial cell clusters (Mesang,

Itga8, Gata3); juxtaglomerular apparatus (JGA, Ren); multiple

fibroblast (Fib) clusters with previously described marker genes,

such as Mgp, Apoe, B2m, Serpine1, Pdgfra, Cxcl10, Igfbp3,

Xkr4, Igfbp5 or with an immune cell signature (Immune Fib,

Ikzf1, Ptprc); clusters with PT marker genes (PT1, PT2); glomer-

ular endothelial cells (GEC, Flt1, Ptprb); myofibroblasts (Myofib,

Tnfrsf11b, Acta2); vascular smooth muscle cells (VSMC,

Col14a1, Ntrk3); a mixture of the latter two (VSMC/Myofib,

Ntrk3, Myh11, Synpo2); and pericytes (Peri, Rgs5, Notch3)

(Figures 3E–3G and Data S13). We noted the following patterns
Figure 4. Trajectory analysis highlights dynamic changes of PT cells t

(A and B) Representative healthy and injured PT as well as stroma cell clusters su

state; 1, endpoint of lineage 1; 2, endpoint of lineage 2; PST, proximal straight tubu

interstitial cell; Mesench, mesenchymal cell.

(C) Top heatmaps showing generalized additive modeling (GAM)-derived DEGs

represent individual PT cells in bins along pseudotime. Color legend at the to

enrichment of top pseudotime-specific GO biological processes and KEGG path

(D) Scoring of gene sets corresponding to representative pathways from (C). Left

set scores by cell type. p values are given for one-way ANOVA (Tukey corrected

(E) DEGs between PTinj_1 (lineage 1) and PTinj_2 (lineage 2).

(F) Upset plot of DEGs for PTinj_1 vs. PTinj_2.

(G) Similarity measured by Jaccard index. PTinj_1 was most similar to healthy PS

DEGs, color denotes degree of similarity.
of expression of sGC pathway genes (Figures 3H, S9G, and

S9H). Serpine1+ Fib, Cxcl10+ Fib, and Igfbp3+ Fib expressed

bothGucy1a1 andGucy1b1, Mesang 2 and JGA enrichedmainly

for Gucy1a1, while Gucy1a2 was mainly expressed in Mesang 1

and Peri. sGC expression was largely absent from VSMC and

Myofib, although downstream effectors such as Pde3a and

Pde5a were expressed in these cell types. This is largely consis-

tent with prior analyses that have highlighted mesangial cells,

JGA, Fib throughout the cortical labyrinth, and Peri as main sites

of sGC expression.37

Taken together, DEG analysis with a focus on the proportion of

rescued genes suggested high variability between cell types but

with a larger number of genes returning to baseline with sGCact

in comparison with sGCstim. Negative regulation of oxidative

stress and downstream cGMP effects were better preserved

upon sGCact treatment compared with sGCstim. We found

that oxidative stress and cGMP effects correlated with clinical

outcomes in both ZSF1 rats and DKD patients. Finally, we

showed that sGC genes were mainly expressed in Mesang,

JGA, Peri, and different Fib subsets, underscoring the impor-

tance of multiple stromal cells for sGC.

Trajectory analysis highlights dynamic changes of PT
cells toward profibrotic and mesenchymal cell states
Our analysis consistently highlighted PT and stromal cells as

potential disease-driving cell types (Figure 4A). Dimension

reduction after diffusion mapping revealed two consecutive tra-

jectories. Lineage 1 originated from the healthy root state (PST),

via PTinj toward ProfibPT (Figure 4B). DEGs specifically higher

along this trajectory (Data S14) enriched for typical PT functions

such as organic anion transport, small molecule, and amino

acid metabolism at the start of the lineage (PST) toward path-

ways associated with adherens junctions, extracellular matrix

(ECM)-receptor interaction, focal adhesion, and epithelial-to-

mesenchymal transition (EMT) at the end of the lineage

(ProfibPT) (Figures 4C and 4D; Data S15). The second trajectory

followed a path from ProfibPT, enriching for tight junction, TGFb

signaling, and adherens junction signaling, via a second PTinj

cluster and DediffPT toward Int and Mesench, enriched, e.g.,

for EMT, cell adhesion, collagen fibril organization, and wound

healing (Figures 4B–4D and Data S15). To understand the sta-

bility and reproducibility of this trajectory, we used two different

orthogonal methods (monocle2, monocle3) and obtained

similar cell-trajectory profiles (Figures S9I–S9N). Interestingly,

DEG analysis revealed that PTinj cells separated into two
oward profibrotic and mesenchymal cell states

bjected to trajectory analysis in UMAP (A) and diffusion map space (B). R, root

le; PTinj, injured PT; ProfibPT, profibrotic PT; DediffPT, dedifferentiated PT; Int,

along lineage 1 (R/1) and lineage 2 (1/2). Rows represent DEGs, columns

p corresponds to clusters from (B). Bottom heatmaps show corresponding

ways.

panels show pathway enrichment along the trajectory. Right panels show gene

); violin colors correspond to cell clusters in (B) along the trajectory.

T, while PTinj_2 was most similar to ProfibPT. Dot size denotes the number of
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clusters on either lineage 1 or lineage 2 (Figure 4E). These two

subgroups showed a large number of non-overlapping, i.e.,

individually unique, DEGs (Figure 4F and Data S16), indicating

separate transcriptomic states. Genes in the transcriptomic

state of PTinj_1 were enriched for pathways such as cellular

amino acid metabolism, oxidative phosphorylation, and organic

anion transport (Figure S9O). These genes are essential for

healthy PT function. PTinj_2 was enriched for VSMC migration,

positive regulation of cell adhesion, and external encapsulating

structure organization, and hence was more similar to a stromal

identity of lineage 2 (Figure S9P). Jaccard similarity analyses of

cluster-specific DEGs confirmed the highest overlap of PTinj_1

with healthy PST, whereas overlap of PTinj_2 was highest with

ProfibPT, respectively (Figure 4G), again highlighting stark tran-

scriptional differences between these two PTinj states. This was

validated by clear separation of GO terms enriched in PTinj_1

and PTinj_2, respectively, in latent semantic space (Figure S9Q

and Data S17).

In summary, we demonstrate the close transcriptional rela-

tionship of PT and stromal cell types. Upon injury in the diabetic

ZSF1 rat model, PT cells adopted a profibrotic and mesen-

chymal transcriptome.

Cell-cell communication analysis identifies a secretory
phenotype of profibrotic PT
As epithelial/stromal interplay has previously been shown to be

implicated in kidney disease development, we next performed

ligand-receptor analysis in PT and stromal subclusters (Fig-

ure 5A). ProfibPT and Mesench clusters presented with the

highest interaction weights (Figure 5B) and showed the highest

ECM signaling ligand expression (Figure 5C). ProfibPT and

PTinj_2 expressed the most ECM receptors (Figures 5C,

S10A, and S10B). The captured ligand-receptor network was

functionally diverse (Figure 5D) and we could attribute separate

patterns (Figure S10C): ProfibPT exhibited a strong secretory

phenotype (Figure 5E) and scored highly for secreted ECM fac-

tors (Figure 5F), such as Pdgfb, Tgfb2, Fgf12, Hbegf, Il19, and

Il24 (Figures 5G, S11A, and S11B). Moreover, Mesench was

associated with the strongest ECM-associated outgoing signal

(ligand expression) (Figure 5H) and scored highest for the core

matrisome (Figure 5I), as reflected by high expression of

Col1a1, Col3a1, Bgn, Prelp, Fbln5, and Fn1 (Figures 5J,

S11C, and S11D).
Figure 5. Cell-cell communication analysis identifies a secretory phen
(A) PT-Mesench trajectory clusters from Figure 4 were subjected to ligand-recepto

cell-cell interactions.

(B) Weighted total interaction strength. Line size denotes interaction strength, co

(C) Relative strength of outgoing and incoming interaction signaling is summed up

contributing pathway (rows).

(D) Dimension reduction visualizing functional and structural similarity of contribu

(E) The number of incoming and outgoing secreted signaling connections indica

(F) Scoring of gene sets corresponding to secreted ECM factors. Top panel show

factor scores by cell type. p value is given for one-way ANOVA (Tukey corrected

(G) Feature plots for representative secreted ECM factor genes (Pdgfb, Tgfb2, F

(H) The number of incoming and outgoing ECM-receptor connections indicates

(I) Scoring of gene sets corresponding to the core matrisome. Top panel shows p

scores by cell type. p value is given for one-way ANOVA (Tukey corrected).

(J) Feature plots for representative core matrisome genes (Col1a1, Bgn, Fn1) alo
Gene-regulatory network analysis highlights cell-type-
specific transcription factors driving the PT-to-
Mesench trajectory and prioritizes cell types of action
for sGC modulation
To gain insight into putative driver transcription factors (TFs) of

the PT-to-Mesench cell trajectory, we performed gene-regulato-

ry network (GRN) analysis (Figure 6A). The root state and end-

points of lineages 1 and 2 showed the highest regulon density

(Figures 6B, S12A, and S12B), again underscoring the richness

within the transcriptomic states of differentiated PST, ProfibPT,

and Mesench, respectively. The GRN logic that we inferred

from cis-regulatory motif analysis clearly demonstrated that bi-

narized regulon activity was able to independently differentiate

and cluster all cells along the trajectory (Figure 6C), suggesting

high data quality and validating our prior clustering and trajectory

analysis results. For example, we found highly specific regulons

for PST (Gcm1, Stat5a, Bcl6, Lmx1b, Trps1), ProfibPT (Tead2,

Bach2, Stat3, Gli3, Fosl2), and Mesench (Gli2, Gata6, Fli1,

Tcf7l2, Hoxc6) (Figures 6D, S12C, and S12D; Data S18). Taken

together, our GRN analysis confirmed many known key TFs

important for kidney disease development and attributed spe-

cific cell types to them. We also found novel cell-type-specific

TFs, such as Nr1h4 for PTinj_1, Nfyc for DediffPT_1, and Foxn3

for PTinj_2, which are interesting candidates for studying their

roles in renal disease development and warrant validation in

future studies.

Finally, we asked whether we could infer specific cell types of

action for sGCmodulator treatment from our GRN. To this effect,

we filtered for TFs that were predicted to target sGC genes (Fig-

ure 6E). We found marked enrichment of these regulons in PST,

ProfibPT, and Mesench, with the highest regulon specificity

scores for TFs Gcm1, Zmiz1, and Srebf2, respectively, targeting

eitherGucy1a2 orGucy1b2 (Figure 6F). Reassuringly, Zmiz1was

the top specific TF for ProfibPT. We have shown in a recent

expression quantitative trait loci meta-analysis in human micro-

dissected kidneys that ZMIZ1 is an eGene associated with

several genome-wide association study variants significantly

associated with kidney function.38 ZMIZ1 has already been iden-

tified to be strongly associated with ESRD attributed to type 139

and type 2 diabetes.40 Along those lines, regulon cell-type spec-

ificity tracked TF expression:Gcm1 enriched only in healthy PST,

Zmiz1 in ProfibPT, and Srebf2 in Mesench (Figures 6G and

S12E). We found sGC genes to be expressed in PST, PTinj_1,
otype of profibrotic PT
r analysis. Cell-cell interactions comprised secreted, ECM-receptor, and direct

lor represents cell clusters from (A).

for clusters along the trajectory (columns) as well as summed up and ranked by

ting signaling pathways in all clusters of the trajectory.

tes the secretory phenotype of ProfibPT.

s pathway enrichment along the trajectory. Bottom panel shows secreted ECM

).

gf12) along the trajectory in diffusion map space.

the strong matrisome signature of Mesench.

athway enrichment along the trajectory. Bottom panel shows core matrisome

ng the trajectory in diffusion map space.
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ProfibPT, and Mesench (Figure 6H), further highlighting these

probable cell types of action for pharmacological sGC modula-

tion. To our knowledge, our report is the first to attribute cell-

type specificity of ZMIZ1 to ProfibPT, linking genetic discoveries

with functional studies, and warrants validation in future studies.

WGCNA-derived sGC co-expression modules correlate
with human DKD outcome
Next, we sought to understand cell-type-specific changes in

gene groups. To this end, we used WGCNA to identify modules

correlating with sGC expression. We first created a WGCNA-

compatible metanuclei dataset (Figure 7A and STAR Methods),

from which we retrieved seven gene modules (Figures 7B and

S13A; Data S19). Some of these modules showed high kME

values for sGC genes (Figures 7C and S13B), indicating sGC

genes as important hub genes for their corresponding co-

expression modules. We noticed overall high specificity of mod-

ules for cell clusters along the PT-Mesench trajectory

(Figures 7D, S13C, and S13D). For example, the turquoise mod-

ule was enriched in healthy PST. Blue, yellow, and black

modules were enriched in ProfibPT. Green and red modules

were enriched in Mesench. Module-specific phenotypes were

consistent with Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway and GO term analysis, suggesting pathway

enrichment representing healthy PT function in the turquoise

model, profibrotic processes in blue, yellow, and black models,

dedifferentiation to non-proximal tubule in the brownmodel, and

ECM/Mesench processes in green and red modules, respec-

tively (Figure S14A and Data S20). Based on cell-type-specific

sGC expression, we created a composite sGC co-expression

WGCNA score of those genemodules demonstrating the highest

co-expression with sGC in non-healthy PT and stromal cells

along the trajectory (Figure S14B). This WGCNA score showed

highest enrichment in ProfibPT and Mesench (Figure 7E). We

were reassured that ProfibPT and Mesench clusters had the

highest overlap of this composite WGCNA score with cluster-

specific DEGs (Figure 7F), suggesting that these two cell

identities were most associated with sGC gene expression in

non-healthy injury states.

Finally, we wanted to understand the relevance of sGC-asso-

ciated changes to patient samples. We asked whether we could

leverage this unbiased orthogonal dataset to a group with 991

microdissected kidney tubule RNA-seq samples from human in-

dividuals with and without DKD to infer disease-relevant param-
Figure 6. Gene-regulatory network analysis highlights cell-type-specifi

prioritizes cell types of action for sGC modulation

(A) Cell clusters from the PT-Mesench trajectory were subjected to gene-regulat

(B) Regulon density as a surrogate for stability of regulon states along the traject

(C) Heatmap of cell-type-specific binarized regulon activity. Rows represent regul

cells along the trajectory, colored by cell clusters as in (A). Top specific TFs per

(D) Binarized regulon activity for top cluster-specific TFs along the trajectory in d

(E) The GRN dataset was filtered for TFs predicted to target sGC genes (Gucy1a

(F) Heatmap visualizing specificity of regulons (rows) for cell clusters along the tra

color-annotated for normalized enrichment score (NES), number of motifs, and th

regulons are annotated.

(G) Expression dot plot for sGC genes and top cell-cluster-specific TFs from (

represents average gene-expression values.

(H) Feature plots for sGC genes (Gucy1a1, Gucy1a2, Gucy1b1, Gucy1b2) along
eters (Figure 7G and Data S21). Indeed, WGCNA scores were

significantly higher in individuals with high albuminuria (Fig-

ure 7H), low glomerular filtration rate (GFR) (Figure 7I), and high

degrees of fibrosis on histopathological examination (Figure 7J).

Furthermore, unsupervised clustering analysis of 991 patient

samples was able to clearly group patients into two clusters

based on sGCco-expression-derivedWGCNAscore (Figure 7K).

Reassuringly, although these two groups were matched with

respect to clinical characteristics such as age, gender, race,

blood pressure, and—most importantly—prevalence of dia-

betes, samples with high WGCNA score had significantly higher

prevalence of DKD, albuminuria, fibrosis, and glomerulosclero-

sis than samples with low WGCNA score, as well as significantly

lower GFR (Figure 7L). These results suggest that the WGCNA

sGC co-expression score was able to stratify subjects by clinical

disease-relevant parameters. Accordingly, principal component

analysis plots stratifying human samples into control, early DKD,

and advanced DKD largely overlapped with WGCNA scoring

(Figures S14C and S14D). We also validated these results in an

independent human kidney bulk RNA-seq dataset including indi-

viduals with early and advanced DKD36 (Figure 7M).

Next, we built several multiple regression models to estimate

the relative contribution of WGCNA score to disease-relevant

parameters. Multiple linear regression models demonstrated

that the WGCNA score estimated fibrosis (b = 1.144,

p < 0.001), glomerulosclerosis (b = 0.616, p < 0.001), and GFR

(b = �0.546, p < 0.001) independent of other clinical variables

(Data S22). Ordinal logistic regression showed the WGCNA

score to independently estimate albuminuria (odds ratio =

1.045, p < 0.001) (Data S22), such that a high WGCNA score

was associated with albuminuria (Figure S14E).

Having established the sGC co-expression WGCNA score as

a valuable tool for assessing kidney outcomes relevant to DKD,

we finally asked how pharmacological sGC modulation in the

ZSF1 rat model would influence WGCNA score. Indeed, we

observed lower WGCNA scores for rats treated with sGCact

compared with untreated obese diabetic rats, while sGCstim

had little effect (Figure 7N), and we observed a negative correla-

tion between WGCNA score and cGMP effects (Figure S14F),

suggesting that WGCNA score was a useful measure for esti-

mating treatment effect size following sGC modulation. Our ob-

servations might also partially explain the improved kidney func-

tional and structural outcome seen following sGCact treatment

when compared with sGCstim.
c transcription factors driving the PT-to-mesenchymal trajectory and

ory network (GRN) analysis.

ory in diffusion map space.

ons of transcription factors (TFs) and their predicted targets, columns represent

cluster are annotated.

iffusion map space.

2, Gucy1b2).

jectory (columns). Color denotes regulon specificity score (RSS). Regulons are

eir predicted sGC target gene (Gucy1a2 or Gucy1b2). Top cell-cluster-specific

F). Dot size denotes percentage of cells expressing the marker. Color scale

the trajectory in diffusion map space.
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DISCUSSION

Here we present the first comprehensive single-cell resolution

atlas of DKD in the ZSF1 rat model. Not only does the ZSF1

rat recapitulate human DKD phenotypically, it also exhibits

excellent correlation of cell-type-specific transcriptomes with

that of human DKD,30,31 underscoring the value of the ZSF1

rat for human DKD translational and pharmacological studies.

To the best of our knowledge, we are the first to present a sin-

gle-cell resolution head-to-head comparison of a sGCstim and

sGCact treatment. In our model, we find superiority of sGCact

over sGCstim in attenuating functional and structural DKD. We

highlight key cell types; podocytes, PT, and mesenchymal cells

showed the largest changes in the single-cell data, coinciding

with the expression of sGC pathway genes. We demonstrate

that sGC co-expression gene modules can be successfully

used to stratify patient kidney samples by DKD renal outcome

measures such as GFR, albuminuria, glomerulosclerosis, and

interstitial fibrosis, indicating the relevance of the sGC pathway

to patients.

Animal models play a key role in human disease understand-

ing. While recently gene and pathway discovery approaches

have heavily focused on patient samples, animal models remain

critical for pharmacological gene and pathway modulation and

proof-of-concept studies. Here we provide a comprehensive

phenotypic, histological, biochemical, and single-cell gene-

expression description of the ZSF1 rat model. Comparison of

rat samples with human DKD shows very strong similarities but

also differences, indicating that the model is useful to analyze

specific disease manifestations. Detailed single-cell and omics

analysis of animal models will be critical for therapeutics discov-

ery. We present our data for our users via an easy-to-use inter-

face at http://www.susztaklab.com/ZSF1_sGC_snRNA/.

Furthermore, we present here an important tool for examining

therapeutic effectiveness, target cell types, and mechanism of

action via single-cell sequencing. We have been lacking a

detailed understanding of individual sGC modulation effects on

a cellular level, despite consistent kidney phenotypic improve-
Figure 7. WGCNA-derived sGC co-expression modules correlate with

(A) Metanuclei aggregation of cell clusters from the PT-Mesench trajectory as a pre

(B) Hierarchical cluster tree showing gene co-expression modules identified byW

coded).

(C) Intramodular connectivity (kME) values show Gucy1a1 as a hub gene for bro

(D) Heatmap demonstrating high specificity of WGCNA modules (rows) for cell c

(E) Composite sGC co-expression WGCNA score along the trajectory in diffusion

(Tukey corrected).

(F) Percentage overlap of composite sGC co-expression WGCNA genes with clu

(G) The composite sGC co-expression WGCNA module gene set was used to

individuals with and without DKD. WGCNA scores were then correlated with clin

(H–J)WGCNA score in human kidney tubules by degree of albuminuria (H), glomer

for one-way ANOVA (Tukey corrected).

(K) Dendrogram (top) representing hierarchical clustering of 991 human kidney

module genes (rows) displayed in the corresponding heatmap (below).

(L) Clinical and kidney functional and structural outcome characteristics of patient

given for either Student’s t, Wilcoxon-Mann-Whitney (for continuous variables), or

blood pressure; DBP, diastolic blood pressure; T1D/T2D, type 1/type2 diabetes; D

estimated glomerular filtration rate.

(M and N) WGCNA score in human kidney bulk RNA-seq samples by degree of

trajectory by treatment group (N). p values are given for one-way ANOVA (Tukey
ment by sGC agonists in preclinical DKD models.8,15–18 Single-

cell transcriptomics with an unbiased tensor decomposition

approach highlighted PT and stromal cells as key target cell

types of sGC-cGMP-mediated effects. This is mostly consistent

with the cell-type expression of sGC pathway genes. Further-

more, we robustly demonstrate the close transcriptomic rela-

tionship between PT and stromal cells: During diabetic injury,

formerly healthy PT cells transition via several cell states (PTinj,

ProfibPT) toward a Mesench phenotype. Numerous studies

have implicated EMT in renal fibrosis;41–44 however, a potential

connection to NO-sGC-cGMP signaling has not been described

so far and mechanistic animal studies will be needed for future

validation. In summary, while multiple cell types show changes

in disease state and following drug treatment, novel single-cell

tools are still able to identify key disease-driving cell types.

Furthermore, we identified important differences between

sGCstim and sGCact. Studies have established the role of reac-

tive oxygen species production, oxidative stress coupled with

compromised NO bioactivity, and endothelial dysfunction.45–47

To this effect, it is important to note that sGCstim and sGCact

differ in their ability to generate cGMP under pathophysiological

conditions such as the high oxidative stress state in DKD.9 While

sGCstim depend on a reduced iron (Fe2+) state of sGC, sGCact

preferentially target sGC at the heme-free or oxidized, NO-unre-

sponsive sGC enzyme, explaining their higher pharmacological

activity under conditions of high oxidative stress and NO deple-

tion.14 Our ZSF1 rat model results corroborated this hypothesis,

demonstrating stronger attenuation of the DKD phenotype, such

as increased kidney function, reduced kidney injury markers,

glomerulosclerosis, proteinuria, and interstitial fibrosis, upon

sGCact treatment compared with sGCstim. Moreover, we

confirmed (in kidneys from both diabetic ZSF1 rats and human

subjects with advanced DKD) that lower cGMP effects, a proxy

of decreased downstream sGC action, correlated positively

with the inability to negatively regulate oxidative stress. Most

importantly, cGMP effects measured on a transcriptomic level

were restored to a larger extent by sGCact than sGCstim. These

results indicate that single-cell gene-expression analysis is able
human DKD outcome

requisite for performing weighted gene correlation network analysis (WGCNA).

GCNA in cells along the PT-Mesench trajectory revealed seven modules (color-

wn, black, green, and red modules.

lusters along the trajectory (columns).

map space (left) and per cell cluster (right). p value is given for one-way ANOVA

ster-specific DEGs.

score 991 bulk microdissected kidney tubule RNA-seq samples from human

ical and histopathology outcome variables.

ular filtration rate (GFR) (I), and percentage kidney fibrosis (J). p values are given

tubule samples (columns) based on their expression of composite WGCNA

s clustered by composite WGCNA module gene expression in (K). p values are

Fisher’s exact test (for categorical variables). HTN, hypertension; SBP, systolic

KD, diabetic kidney disease; uACR, urinary albumin-to-creatinine ratio; eGFR,

disease severity (M) as well as in ZSF1 rat kidney cells from the PT-Mesench

corrected).

Cell Reports Medicine 4, 100992, April 18, 2023 15

http://www.susztaklab.com/ZSF1_sGC_snRNA/


Article
ll

OPEN ACCESS
to identify not only disease-driving cell types but also disease-

critical pathways and drug mechanisms of action.

In summary, we present the first single-cell resolution atlas for

the ZSF1 rat DKD model and a head-to-head comparison of

sGCact and sGCstim effects in DKD. Our single-cell analysis

was able to highlight key disease-driving cell types (podocyte,

PT, and stromal cells) and disease-driving mechanisms. Finally,

we show the potential relevance of animal model observations to

patient samples and show that sGC co-expression can be used

to stratify human DKD kidney samples by parameters relevant

for kidney functional and structural outcomes.
Limitations of the study
Our study has some limitations. We provide consistent data

demonstratinghigher efficacyof sGCact comparedwith sGCstim

on several readouts, but we lack data on dose-response relation-

ships of sGCact and sGCstim, whichmight be important for fine-

tuningof theefficacyparameters. Toavoidpotential biasbyblood

pressure reduction through sGCact, we used doses that had no

or minimal effects on blood pressure, while kidney-protective ef-

fects of sGCstim in ZSF1 rats are known to require higher dos-

ages that are active on blood pressure. Future studies should

address this limitation by comparing sGCact and sGCstim with

a wider dose range and a more extensive set of physiological

readouts. Additionally, the renoprotective effects in our ZSF1

model may be partially attributed to improvements in glycemia,

but it is difficult to estimate the extent of this contribution.48

Furthermore, given the specific expression of sGC subunit

mRNAs in stromal and PT cells, it is difficult to distinguish direct

sGC agonism in specific kidney cells from indirect effects such

as changes in renal hemodynamics and glucose/lipid meta-

bolism, which warrant further mechanistic studies.
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Boutet, A., Arévalo, M., Rowe, R.G., Weiss, S.J., López-Novoa, J.M.,
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Chemicals, peptides, and recombinant proteins

NonidetTM P40 Substitute Sigma 74385

Magnesium chloride Sigma M1028

Ultrapure BSA (50 mg/mL) Thermo Fisher AM2616

Protector RNase inhibitor Sigma 3335399001

RNAlater Ambion AM7020

RNeasy RNA tissue lysis buffer Qiagen 74106

Critical commercial assays

Chromium Next GEM chip G Single Cell Kit 10X Genomics PN-1000120

Chromium Next GEM Single Cell 30 GEM Kit v3.1 10X Genomics PN-1000121

Chromium Controller 10X Genomics PN-120223

Chromium Single Index Kit T Set A 10X Genomics PN-120262

RNeasy kit Qiagen 74106

Bioanalyzer RNA 6000 Pico kit Agilent Technologies 5067-1513

Bioanalyzer High Sensitivity DNA kit Agilent Technologies 5067-4626

TruSeq RNA library prep kit v2 Illumina RS-122-2001

Kidney Injury Panel 1 Rat Kit Meso Scale Discovery K15162C

Target 96 Mouse Exploratory Reagent Kit Olink 95380

96.96 Integrated Fluid Circuit for Protein Expression Olink 95007

Deposited data

Human diabetic kidney disease bulk RNA-seq data Fan et al.36 GSE128736; https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE128736

Human diabetic kidney disease snRNA-seq data Lake et al.31 https://atlas.kpmp.org/repository/

Human diabetic kidney disease snRNA-seq data Wilson et al.30 GSE131882; https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE131882

Software and algorithms

CellChat v1.1.3 open source https://github.com/sqjin/CellChat

Cell Ranger v5.0.1 10X Genomics https://support.10xgenomics.com/single-cell-gene-

expression/software/downloads/latest

cluster v2.1.0 open source https://cran.r-project.org/web/packages/cluster/

index.html

clusterProfiler v3.16.1 open source https://guangchuangyu.github.io/software/clusterProfiler/

destiny v3.1.1 open source https://github.com/theislab/destiny

DoubletFinder v2.0 open source https://github.com/chris-mcginnis-ucsf/DoubletFinder

EnhancedVolcano v1.6.0 open source https://github.com/kevinblighe/EnhancedVolcano

gam v1.20 open source https://cran.r-project.org/web/packages/gam/index.html

genesorteR v0.4.3 open source https://github.com/mahmoudibrahim/genesorteR

GOFigure v1.0.1 open source https://gitlab.com/evogenlab/GO-Figure#installation

Harmony v0.1.0 open source https://github.com/immunogenomics/harmony

MASS v7.3-51.6 open source https://cran.r-project.org/web/packages/MASS/

index.html

monocle2 v2.14.0 open source http://cole-trapnell-lab.github.io/monocle-release/

monocle3 v0.1.3 open source https://cole-trapnell-lab.github.io/monocle3/

RSEM v1.3.0 open source https://github.com/deweylab/RSEM

rrvgo v1.0.2 open source https://ssayols.github.io/rrvgo/

SCENIC v1.2.4 open source https://aertslab.org/#scenic
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scITD v1.0.2 open source https://github.com/kharchenkolab/scITD

Seurat v4.0.3 open source https://satijalab.org/seurat/

SeuratObject v4.0.2 open source https://cran.r-project.org/web/packages/SeuratObject/

index.html

SingleCellExperiment v1.10.1 open source https://bioconductor.org/packages/release/bioc/html/

SingleCellExperiment.html

Slingshot v1.6.1 open source https://bioconductor.org/packages/release/bioc/html/

slingshot.html

SoupX v1.4.5 open source https://github.com/constantAmateur/SoupX

STAR v2.7.3a open source https://github.com/alexdobin/STAR

WGCNA v1.70-3 open source https://github.com/cran/WGCNA
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Katalin

Susztak (ksusztak@pennmedicine.upenn.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Raw and metadata are available at GEO accession number GSE209821.

d Processed data are available via an interactive website (http://www.susztaklab.com/ZSF1_sGC_snRNA/).

d Suppl. data files are deposited in Zenodo.49

d Code to reproduce all parts of the analysis is deposited in GitHub (https://github.com/ms-balzer/ZSF1_sGC/).50

d Any additional information required to reanalyze the data reported in this work is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

ZSF1 rat model
Male ZSF1 lean and ZSF1 obese rats (ZSF1-LeprfaLeprcp/Crl) were obtained fromCharles River Laboratories Inc. (251 Ballardvale St,

Wilmington, Massachusetts). The animals were housed in a temperature- (22 ± 2�C) and humidity-controlled environment with a 12h

light/dark cycle. Access to water and high energy rodent chow Purina 5008 was provided ad libitum. Animal studies were conducted

at the Wuppertal Research Center of Bayer AG. The protocol was approved by the institutional animal care and use committee of

Bayer AG and was in compliance with the guidelines of the local animal welfare authorities for the German state of North-RhineWest-

phalia (Landesamt f€ur Natur, Umwelt und Verbraucherschutz (LANUV) Nordrhein-Westfalen; N0400a022). At the age of 13-14 weeks,

ZSF1 obese rats were randomly assigned to a 12-week daily treatment with vehicle (10% ethanol, 40% Kolliphor� HS15, and 50%

water), 3 mg/kg BID sGCact = BAY 1101042 = Runcaciguat, or 3 mg/kg QD sGCstim = BAY-747); n=10 each. ZSF1 lean rats (n=6)

were not treated and served as controls. In week 12, urine collection was performed in metabolic cages for 6–8 h. At the end of the

study, animals were kept in deep anesthesia (isoflurane, 5–10%) and first, blood was collected from peripheral veins to obtain serum

and plasma. Then, animals were sacrificed by exsanguination via a cut of axillary vessels. Kidneys were harvested, weighed, rinsed,

and then fixed for histological evaluation or immediately snap frozen for single nuclei sequencing.

Human sample procurement
The collection of human kidney tissue was approved by the University of Pennsylvania institutional review board. Un-affected por-

tions of nephrectomies mostly due to malignancy were obtained. Consent was exempted because the samples collected were

considered as medical discard. An honest broker collected the related clinical information from chart reviews. Part of the collected

tissues was formalin-fixed and paraffin-embedded and sectioned and stained with periodic acid–Schiff. Unbiased pathological

scoring of glomerular, interstitial, and vascular parameters was done by a local renal pathologist.
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ZSF1 rat model
Functional parameters and biomarkers

Using the ADVIA Chemistry XPT Systems (Siemens Healthineers), the following parameters were measured: total protein, albumin,

and creatinine in urine from day 77; creatinine, urea, and plasma HbA1c from serum and plasma taken on day 84. Total cholesterol

also from day 84 serum was measured by Cobas 6000 analyzer series module c501 (Roche Diagnostics). All urinary parameters and

biomarkers were normalized to corresponding urinary creatinine values. With regard to biomarkers, all assays were performed ac-

cording to manufacturers’ instructions: Plasma KIM-1 and neutrophil gelatinase-associated lipocalin (NGAL) were measured using a

customized Rat Kidney Injury Panel (Meso Scale Discovery).

Histopathological analysis. Kidney samples for histology were fixed in Davidson’s solution and embedded in paraffin. Paraffin sec-

tions (5 mm) were prepared and stained with hematoxylin and eosin (HE), periodic acid–Schiff (PAS) and Sirius Red/Fast Green (SR/

FG). The slides were analyzed using a semiquantitative scoring, ranging from grade 1 to 5 (grade 1, minimal/very few; grade 2, slight/

few/small; grade 3,moderate; grade 4,marked/many; grade 5,massive). The gradingwas applied for each of the predominant kidney

lesions like glomerulopathy, tubular degeneration, protein casts, and interstitial fibrosis by a certified pathologist, who conducted the

histopathologic examination without the knowledge of treatment assignment but with the overall knowledge of the study design. For

the grading of glomerulopathy, altered glomeruli were counted on the PAS slide and the fraction of altered glomeruli was calculated.

The mean glomeruli count was determined upfront by counting the glomeruli in 8 of 10 obese ZSF1 rats and averaging the total

number. The severity scores represent the percentage of altered glomeruli (up to 5% = grade 1; 5-10% = grade 2; 10-20% =

grade 3; 20-30% = grade 4; >30% = grade 5). All other predominant kidney lesions (tubular degeneration, protein casts, and

interstitial fibrosis) were graded according to the described scoring system (grades 1-5; grade 1 = minimal/very few lesions;

grade 2 = slight/few/small lesions; grade 3 = moderate lesions; grade 4 = marked/many lesions; grade 5 = massive lesions)

without any further counting/measuring.

Olink proteomic analyses. The proximity extension assay (PEA) system from Olink (Uppsala, Sweden) was used to measure the

mouse exploratory panel containing 96 protein analytes in plasma of ZSF1 rat samples. A detailed protocol has been described pre-

viously.51 In brief, 1 mL of biosample, negative control or interplate control samples was analyzed with 3 mL of incubation mix in a

96-well plate and incubated with the extension mix in a thermal cycler. The measurement real-time PCR was run using a 96.96

Dynamic Array IFC in the Fluidigm BioMark system (Fluidigm). Data were expressed as normalized protein expression (NPX)

values after processing and qualification by normalization using the extension control, interpolate control and a correction faction

with the Olink NPX manager.

Preparation of rat single-nuclei suspension
Kidneys were harvested, cut into quarters, snap frozen and stored at -80 �C for further analysis. Nuclei were isolated using lysis buffer

containing 50%ST buffer (292mMNaCl, 20mM Tris-HCl pH 7.5, 2mMCaCl2 and 42mMMgCl2 in ultrapure water), 2%Nonidet P40

Substitute, 0.2% ultrapure BSA (50 mg/mL, AM2616, Thermofisher Scietific) and 1% Protector RNase inhibitor (3335399001, Sigma

Aldrich). 10-30 mg of frozen kidney tissue was minced with a razor blade into 1-2 mm pieces in 1 mL of lysis buffer. Then, chopped

tissue was transferred to a dounce homogenizer. After adding 1 mL of lysis buffer tissue was homogenized using pestle A and B

(10 times each). The homogenized tissue was filtered through a 40 mm strainer (08-771-1, Fisher Scientific) and the strainer was

washed with 2 mL wash buffer (containing 50% ST buffer, 0.2% ultrapure BSA 50 mg/mL, and 1% protector RNase inhibitor).

The washed content was centrifuged at 500 g for 5 minutes at 4 �C. Next, the pellet was resuspended in wash buffer, filtered through

a 40 mm Flowmi cell strainer (BAH136800040-50EA, Sigma Aldrich). Intact nuclei shape was confirmed under a microscope, and

nuclei were counted.

Rat single-nuclei RNA-seq
10,000 nuclei were loaded into the ChromiumController (10XGenomics, PN-120223) on a ChromiumNext GEMchip GSingle Cell Kit

(10X Genomics, PN-1000120) to generate single-cell gel beads in the emulsion (GEM) according to the manufacturer’s protocol (10X

Genomics, PN-1000121). The cDNA and library were made using the Chromium Next GEM Single Cell 30 GEM Kit v3.1 (10X Geno-

mics, PN-1000121) and Single Index Kit T Set A (10X Genomics, PN-120262) according to the manufacturer’s protocol. Quality con-

trol for the libraries was performed using Agilent Bioanalyzer High Sensitivity DNA kit (Agilent Technologies, 5067-4626) for qualitative

analysis. Libraries were sequenced on an Illumina Novaseq 6000 systemwith 2 3 150 paired-end kits using the following read length:

28 bp Read1 for cell barcode and UMI, 8 bp I7 index for sample index and 91 bp Read2 for transcript.

Human kidney microdissection and bulk RNA-sequencing
Kidney tissue biopsies were immersed in RNAlater solution (Ambion AM7020) and stored at -80 �C. Specimens were thawed slowly

on ice, put into RNAlater, and microdissection was performed manually under a microscope. For every tissue sample, �80-100

glomeruli were released from their surrounding capsule and the remaining tissue was considered as tubule and was put in RNeasy

RNA tissue lysis buffer solution (Qiagen #74106) as per the manufacturer’s instructions. The total RNA of 10 mg samples was

isolated using Qiagen RNeasy kit (#74106) according to manufacturer’s instructions. Agilent Bioanalyzer RNA 6000 Pico kit (Agilent
e3 Cell Reports Medicine 4, 100992, April 18, 2023
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Technologies #5067-1513) was used to check RNA quality. All samples with an RNA integrity number (RIN) >6 were used for cDNA

preparation. Strand specific RNA-seq libraries were generated using TruSeq RNA library prep kit v2 (#RS-122-2001) following the

manufacturer’s protocol. RNA-seq libraries were sequenced to a depth of 20 million 2 3 150 pair end reads.

Single-nuclei RNA-seq data analysis

Individual sample alignment, ambient RNA correction, and doublet removal. Raw fastq files were aligned and quantified with

CellRanger using a custom pre-mRNA GTF built from the ENSEMBL rn6 genome to include intronic regions.

Seurat was used for data quality control, preprocessing, and dimensional reduction. In short, for every sample, a separate gene-

cell datamatrix was generated and poor-quality cells with <200 or >3,000 expressed genes andmitochondrial gene percentages >15

were excluded. Remaining barcodes of high-quality nuclei were log-normalized and the top 3,000 highly variable genes were iden-

tified with the vstmethod. After data scaling, linear dimension reduction was performed using principal component analysis (PCA). A

shared nearest neighbor network was created based on Euclidian distances between cells in multidimensional PC space using the

first 15 dimensions before clustering using FindClusters and dimension reduction using RunUMAP functions, respectively.

Doublet-like cells were identified using DoubletFinder.52 Assuming no ground truth to facilitate an unbiased approach, pK was

identified using paramSweep_v3 function with PCs=1:15. Homotypic doublet proportion was estimated with function modelHomo-

typic using above clustering information. Finally, function doubletFinder_v3 was run with pN=0.25, pK and nExp as identified by the

functions above and Uniform Manifold Approximation and Projections (UMAPs) were manually inspected for singlet/doublet status.

Sample integration and batch correction. After determining high quality ambient RNA-corrected singlet barcodes for every sample

individually, 10X filtered output matrices of all 12 samples were again corrected for ambient RNA and subset to singlet barcodes, as

determined above, before merging of Seurat objects. The Seurat preprocessing pipeline was then rerun on the merged object

(normalization, identification of highly variable genes, scaling, linear dimension reduction), regressing out nCount_RNA during

scaling. Harmony53 was used to correct for potential batch effects. The first 30 Harmony-corrected principal components were

used for nearest neighbor network creation, clustering, and dimension reduction. A clustering resolution of 0.9 was chosen to

best reflect separate cell identities without artificial over-clustering.

Identification of marker genes and differentially expressed genes. Differentially expressed genes in cell clusters were identified in

Seurat using FindAllMarkers function with parameters test.use=MAST, min.pct=0.1 and logfc.threshold=0.2 and a manually curated

list of marker genes from prior publications54–60 was used for manual annotation of the 24 resulting cell clusters in the final dataset

including 217,132 rat kidney nuclei. Genes differentially expressed between experimental groups were determined with function Find-

Markers for each cell type separately with the same thresholds.

Integration of ZSF1 rat DKD with human DKD dataset. The ZSF1 rat DKD snRNA-seq dataset was integrated with two independent

external human DKD datasets30,31 using the FindTransferAnchors function in Seurat with n=30 dimensions. Nuclei from the human

query dataset were projected onto the unimodal ZSF1 rat UMAPwith functionMapQuery. Before correlation analysis of average clus-

ter expression genes from the human DKD dataset were converted to corresponding rat orthologues.

Tensor decomposition. To study the effects of sample stratification across treatment groups and gain a deeper understanding of

multicellular gene expression patterns, we used scITD61 to employ tensor decomposition analysis on our single-nuclei dataset. The

SoupX-corrected merged count matrix of the final dataset was provided as input, along with histopathological (interstitial fibrosis,

tubular degeneration, hyaline cast, mononuclear infiltration, glomerulopathy scores), functional (proteinuria, as measured by urine

protein-to-creatinine ratio), genotype (ZSF1 lean vs. obese), and pharmacological treatment (no treatment, sGC modulator treat-

ment) metadata. Function form_tensor was used with parameters donor_min_cells=5, scale_factor=10,000, vargenes_method=-

norm_var_pvals, vargenes_thresh=0.1, and var_scale_power=2. The number of factors was determined using function determine_r-

anks_tuckerwith 10 iterations and stability analysis demonstrated mean donor scores correlation >0.9 for all 4 factors. Tucker tensor

decomposition was performed using function run_tucker_ica with rotation_type=hybrid. Finally, genes significantly associated with

each factor were determined with function get_lm_pvals.

Gene ontology and pathway analysis. Gene ontology and pathway analyses for gene lists of interest were performed with package

clusterProfiler62 using functions enrichGO and compareCluster. HALLMARK, GO:BP, C2:KEGG, and C2:CP:PID C2:CP:BIOCARTA

gene sets were retrieved through Molecular Signatures Database (MSigDB) v7. For some analyses, GO terms were reduced using

package rrvgo functions calculateSimMatrix and reduceSimMatrix. Reduction of GO terms in semantic space was performed with

package GOFigure.

PT and stroma cell subclustering. The whole Seurat pipeline was repeated with the object subset to those barcodes of cells anno-

tated as PT and stroma cells. The same settings were used for the pipeline as stated above. Differential gene expression analysis and

subsequent manual annotation revealed that 3 cell identities represented contamination by scattered endothelial and mixed identity

clusters and were thus removed from further analyses.

scRNA-seq trajectory analysis

Slingshot. To construct single-cell pseudotime cell trajectories and to identify genes whose expression changed as the cells under-

went transition, package Slingshot63 was applied to a random sample of the following subclusters from the PT and stroma cell data-

set, for which UMAP inspection and differential gene expression analysis suggested close transcriptomic proximity: proximal straight

tubule (PST), injured PT (PTinj), profibrotic PT (ProfibPT), dedifferentiated PT (DediffPT), interstitial (Int), and mesenchymal cells

(Mesench), resulting in a total of 4,821 cells. After Seurat to SingleCellExperiment object conversion, genes were filtered for cell

type markers with at least 3 reads in at least 10 cells. Next, counts were normalized and dimensionality was reduced using
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diffusion maps with package destiny.64 Slingshot functions getLineages and getCurves were used to calculate trajectories. To

identify temporally differentially expressed genes, generalized additive modelling (GAM) was applied with a locally estimated

scatterplot smoothing (LOESS) term for pseudotime. The top genes were picked based on p value and their expression over

pseudotime was visualized in heatmaps after binning pseudotime into quantiles. Genes differentially expressed over pseudotime

were input into pathway analysis using package clusterProfiler and pathways specifically enriched over pseudotime bins, as

determined by q value calculation, were visualized in heatmaps.

Monocle2 & Monocle3. Slingshot-derived pseudotime trajectories were validated with Monocle265 and Monocle366 packages us-

ing the same cells as input. Genes for ordering cells were selected if they were expressed inR10 cells, their mean expression value

wasR0.05 and dispersion empirical value wasR2. Highly variable genes along pseudotime were identified using differentialGeneT-

est function ofMonocle2with q<0.01. Individual brancheswere analyzed usingBEAM and plot_genes_branched_heatmap functions.

In Monocle3 cells were re-clustered using a resolution of 3e-4. The trajectory was produced using default parameters of function

learn_graph. Cluster centers of samples from differentiated PST cells were set as root node before ordering cells along pseudotime

with function order_cells.

Gene set/pathway scoring. Gene expression of lists or sets of genes was scored in single-cell data as described previously for the

cell cycle67 and other gene sets,68 using normalized gene expression of a gene set/pathway of interest as input and setting the gene

correlation value to 0.1.

Jaccard similarity index. Single-cell cluster stability of PT and stroma cells was evaluated by comparing cluster-specific DEG lists

and calculating Jaccard similarity indices according to the following formula:

JðA;BÞ = jAXBj=jAWBj
where J is the Jaccard similarity index and A and B represent DEG lists of two respective clusters to be compared.

Ligand-receptor interactions. To assess cellular crosstalk between different cell types, we used CellChat69 to infer cell-cell

communication networks from single-cell transcriptome data. For the lack of a rat-specific ligand-receptor interaction database,

we used orthologous mapping to facilitate usage of the Cellchat-curated mouse database. We followed the authors’ tutorial for

comparison analysis of multiple datasets (https://htmlpreview.github.io/?https://github.com/sqjin/CellChat/blob/master/tutorial/

Comparison_analysis_of_multiple_datasets.html), filtering communication with parameter min.cells=10. We used all inferred cell-

cell communications at the level of ligands/receptors and later repeated the analysis focusing on secreted factors and ECM-

receptor interactions. Outgoing and incoming interaction weights of pairs of cell types were inferred using functions

computeCommunProbPathway and aggregateNet. Dominant senders and receivers were visualized using functions

netAnalysis_signalingRole_heatmap and netAnalysis_signalingRole_scatter. Structural and functional similarities of signaling

pathways were visualized using function netVisual_embedding.

Gene regulatory network inference. To identify TFs and characterize cell states, we employed cis-regulatory analysis using

SCENIC,70 which infers the GRN based on co-expression and DNA motif analysis. In short, TFs were identified using GENIE3 and

compiled into modules (regulons), which were subsequently subjected to cis-regulatory motif analysis using RcisTarget with two

gene-motif rankings: 10 kb around the TSS and 500 bp upstream. Regulon activity in every cell was then scored using AUCell.

Finally, binarized regulon activity was projected onto diffusion map-embedded trajectories.

Weighted gene coexpression network analysis (WGCNA). We applied WGCNA to our scRNA-seq dataset using the R package

WGCNA, as described previously.71,72 First, to circumvent the sparsity of single-cell data we constructed metanuclei with a

bootstrapped aggregation process to single-cell transcriptomes and pooled nuclei within the same cell type to retain these

metadata for WGCNA. We then created a similarity matrix, in which the similarity between genes reflects the sign of the

correlation of their expression profiles. To emphasize strong correlations and reduce the emphasis of weak correlations on an

exponential scale, we raised the signed similarity matrix to power b. The resulting adjacency matrix was transformed into a

topological overlap matrix. Modules were defined using the following specific module-cutting parameters: module size=50 genes,

deepSplit score=4, threshold of correlation=0.2. Modules with a correlation of >0.8 were . The first principal component of the

module, the module eigengene (ME), was used to correlate with cell type. Hub genes were defined using intra-modular

connectivity (kME) parameters of the WGCNA package.

Bulk RNA-seq data analysis

Quality control and alignment. Adaptor and lower-quality bases were trimmed with Trim-galore. Reads were aligned to the human

genome (hg19/GRCh37) using STAR. Gene and isoform expression levels (TPM) were estimated using RSEM. Principal component

analysis was performed to identify outliers.

Hierarchical clustering analysis. To identify potential clustering of microdissected human kidney tubule bulk RNA-seq samples

based on gene co-expression with sGC, hierarchical clustering was performed on the scaled TPMmatrix of 991 microdissected hu-

man kidney tubules with the composite WGCNA score as input. Ward’s method with Euclidean distances was used to cluster the

datasets using function hclust. The optimal number of clusters k was determined by average silhouette method. After clustering,

a cluster dendrogram was computed. Clinical and histopathological variables were compared between the clustered samples

using Wilcoxon-Mann-Whitney, t or Fisher’s exact test, as applicable. To exclude random clustering effects and demonstrate

validity of the composite WGCNA score as input for clustering analysis, we repeated the above procedure with n=3 randomly

generated gene sets with an equal number of genes. In each instance, patient samples were clustered into 2 main clusters based
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on gene expression but failed to demonstrate significant differences of DKD prevalence and outcome measures (e.g., proteinuria,

GFR, interstitial fibrosis, glomerulosclerosis).

Multiple linear and ordinal logistic regression. To estimate the relative contribution ofWGCNA score to disease-relevant parameters

in bulk RNA-seq data from human kidney samples, we built separate multiple regression models with fibrosis, glomerulosclerosis,

and GFR as dependent variable. Age, gender, race, systolic blood pressure, prevalence of diabetes, BMI, and HgbA1c were put

into the models as independent variables. Independent variables were then reduced depending on whether they were informative

for the model or not. In multiple regression models, b coefficients and F statistics were calculated. For albuminuria, we performed

ordinal logistic regression using the MASS package with function polr and computed odds ratios as well as predicted

probabilities. The proportional odds assumption was confirmed.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data are expressed as means ± SEM unless otherwise stated. Statistical analyses are indicated in the respective methods sections

and figure legends. Appropriate parametric or non-parametric tests were performed as per normality distribution. P < 0.05 was

considered to be statistically significant. No statistical method was used to predetermine sample size. No data were excluded

from the analyses.

ADDITIONAL RESOURCES

We present our data via an easy-to-use interactive web interface at http://www.susztaklab.com/ZSF1_sGC_snRNA/.
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