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Aim: Todevelopmodels thatpredict thepresenceofmedicationerrors (MEs) (prescription,
preparation, administration, and monitoring) using machine learning in NICU patients.

Design: Prospective, observational cohort study randomized with machine
learning (ML) algorithms.

Setting: A 22-bed capacity NICU in Ankara, Turkey, between February 2020 and
July 2021.

Results: A total of 11,908medication orders (28.9 orders/patient) for 412NICUpatients
(5.53 drugs/patient/day) who received 2,280 prescriptions over 32,925 patient days
were analyzed. At least one physician-related ME and nurse-related ME were found in
174 (42.2%) and 235 (57.0%) of the patients, respectively. The parameters that had the
highest correlation with ME occurrence and subsequently included in themodel were:
total number of drugs, anti-infective drugs, nervous system drugs, 5-min APGAR score,
postnatal age, alimentary tract and metabolism drugs, and respiratory system drugs as
patient-related parameters, andweekly working hours of nurses, weekly working hours
of physicians, andnumberof nurses’monthly shifts as careprovider-relatedparameters.
The obtained model showed high performance to predict ME (AUC: 0.920; 95% CI:
0.876–0.970) presence and is accessible online (http://softmed.hacettepe.edu.tr/NEO-
DEER_Medication_Error/).

Conclusion: This is the first developed and validatedmodel to predict the presence of
ME usingwork environment and pharmacotherapy parameters with high-performance
ML algorithms inNICU patients. This approach and the currentmodel hold the promise
of implementation of targeted/precision screening to prevent MEs in neonates.

Clinical Trial Registration: ClinicalTrials.gov, identifier NCT04899960.
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Highlights

• Medication errors (MEs) are quite common in newborns
admitted to the neonatal intensive care unit, and risk
factors make it difficult to optimize their pharmacotherapy
and to prevent MEs.

• Themost important variables in predicting the presence ofME
were the total number of drugs and the prescription of anti-
infective drugs.

• The model predicting the presence of physician- or nurse-
related MEs correctly classified 92.0% of the patients.

• Machine learning can be instrumental to implement
precision screening on MEs in the neonatal intensive
care setting.

• This high-performance prediction model can be used to
compensate for this increasing workload and decreasing the
number of qualified healthcare providers.

1 Introduction

At least one medication error (ME) occurs in 74.8% of neonates
admitted to the neonatal intensive care unit (NICU). The most
commonly reported MEs in neonates relate to “wrong dose” (28%)
or “wrong administration” (29%) (Eslami et al., 2019). Since (patho)
physiological changes such as weight or body composition evolve
rapidly in neonates over time (“time-dependent physiology”), the
pharmacokinetics and pharmacodynamics of any drug are also likely
to change. In addition to these changes, kidney and liver
dysfunction, immunodeficiency, and susceptibility to infection are
also commonly observed in the NICU. Due to the subsequent
constantly evolving clinical needs, frequent changes in the type,
dose, and number of drugs are common. Such factors make it
difficult to optimize their pharmacotherapy and to prevent MEs
(Allegaert and Sherwin, 2016).

MEs may occur during prescription (14%–74%), preparation
(11.9%–25%), administration (31%–63%), or monitoring (1.4%)
process in neonates and are more common in neonates than in
children and adolescents (Kaushal et al., 2001; Kunac et al., 2009). It
is assumed that the higher prevalence of these MEs in hospitalized
neonates is related to the diversity of drugs and doses used and
differences in postnatal age, gestational age, birth weight, or
diagnoses.

As the World Health Organization declared MEs as a global
patient safety problem, a goal to reduce the severe avoidable harms
associated with MEs by 50% within the next 5 years has been set.
Related to the NICU, it is claimed that half of the MEs can be
prevented (Sakuma et al., 2014).

To operationalize this, we aimed to develop approaches and
models that predict MEs detected by the clinical pharmacist
throughout the pharmacotherapy process (prescription,
preparation, administration, and monitoring) of the patients
admitted to the NICU with a newborn-centered approach, using
artificial intelligence (machine learning algorithms). In doing so, the

intention is to reduce the workload of physicians and nurses while
preventing MEs as part of pharmacotherapy optimization.

2 Materials and methods

2.1 Study design and population

This prospective cohort study randomized with 10-fold cross
validation in machine learning was conducted between February
2020 and June 2021 in a NICU with 22-bed capacity. The study
was conducted as a single-center analysis at Hacettepe
University Hospital. Although there is no exact sample size
calculation for machine learning-based prediction models, we
assumed a maximum of 10 independent variables in the final
model and aimed to get at least 20 events per independent
variable. All admitted neonates to whom at least one systemic
drug was prescribed were included during the 17-month data
collection period. A flowchart about the participants is provided
in Figure 1.

2.2 Data acquisition and ME detection

Patients’ follow-up was performed daily to assess the clinical
characteristics and medical conditions by a comprehensive
assessment using Micromedex Neofax and UpToDate as reference
databases of drug information. Demographic, clinical, and MEs in
terms of prescription (wrong drug, unit, dose, dose interval, infusion
rate, and diluent), preparation (wrong drug, occupational safety, and
storage), administration (omission, extra dose, wrong time, infusion,
and technique), and monitoring (physical, vital, laboratory, and
therapeutic drug monitoring) data were obtained from prospectively
routine follow-up. For the quantitative parameters (dose, time,
infusion rate, etc.), those with a margin of errors more than 5%
were accepted as MEs.

2.3 Workload of clinicians and clinical
dependency of each neonate

Subjective (perceived) workload was assessed using the paper
version of the National Aeronautics and Space Administration
task load index (NASA-TLX), a scale developed to measure
domains in high-risk industries (Tubbs-Cooley et al., 2019).
The NASA-TLX is primarily a measure of how clinicians
(physicians and nurses) experience the situational demands of
the healthcare work (the overall workload score from 0 (low) to
100 (high)) (Hart and Staveland, 1988). Covariables included
duration of professional experiences (year), weekly working
hours, and monthly number of shifts for each physician and
nurse in the NICU.

We also collected infant acuity scores that corresponded to each
infant-specific report of missed care. Infant acuity scores were
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determined as each admission in the NICU for determining an
infant’s required nursing care within 24 h of admission. The score
includes clinical indicators of nursing care intensity such as
ventilation mode, feeding frequency and mode, number and type
of infusions, and procedures. The range for each indicator varies
depending on the number and type of items assessed, with higher
scores indicating more intensive nursing care (1–5 levels).

2.4 Development, optimization, and
validation of the machine learning-based
model

In this study, we aimed to develop a machine learning-based
model to predict the presence of medication errors. The outcome
variable was binary, with the drug error either present or absent.
The independent variables mainly include drug-related variables
(total number of drugs, use of anti-infective drugs, systemic
hormonal preparations, nervous system drugs, blood and
blood-forming organ drugs, cardiovascular system drugs,
alimentary tract and metabolism drugs, respiratory system
drugs, and sensory organ drugs). Also, the workload

parameters of the physicians and the nurses (duration of
professional experience, weekly working hours, number of
monthly shifts, and total NASA-TLX score) and demographic
and clinical variables (such as gender, birth weight, gestational
age, postnatal age, and APGAR score) were evaluated as
independent variables. There was no missing value in the data;
therefore, imputation was not performed.

We used a two-stage feature selection method. In the first stage,
we performed univariate analysis to determine the candidate
features that could be included in the final models using IBM
SPSS Statistics version 23. We preferred univariate analysis
because it allows for more conscious feature selection by enabling
researchers to examine variables one by one. This facilitated the
better understanding of the data (Chowdhury and Turin, 2020). The
number of variables in this study was large enough to examine
features one by one. Also, we identified highly correlated variables
and selected those that were more clinically usable. Independent
variables with p < 0.20 were selected after univariate analysis with a
flexible approach.

After determining the candidate features using univariate
analysis and reducing the size of the independent variable set, we
performed feature selection in the second stage using machine
learning methods with R version 3.6.3. At this stage, we used a
multivariate feature selection method that examined all the
independent features together. The data were randomly divided
into train and test sets (70:30). The train set was used for developing
the ML model using a 10-fold cross-validation method with R
software (Kuhn, 2022). The test set was used to evaluate and
validate model performance. Since train and test sets were
randomly selected from the same data set, the characteristics of
patients and the properties of variables were similar.

The accuracy, sensitivity, specificity, positive predictive value
(PPV), negative predictive value (NPV), F1 score, and area under
ROC curve (AUC) were used as performance measures in
classification models to compare the performance of the models.
A high-performance model requires these measurements of at least
0.70. We tried some of the ML methods that are frequently used in
the literature. These methods were random forest (RF), elastic net,
artificial neural network, and support vector machines with three
different kernel functions (linear, radial basis, and polynomial). In
most of the trials, the highest performance was provided by RF in
terms of performance measures. Therefore, we decided to use RF
for further analysis. Model performances were compared after
hyperparameter optimization with tuneLength argument to
avoid overfitting (Kuhn, 2012). Machine learning-based variable
selection was made by selecting the most important variables for
creating a webtool according to the importance plot. The models
were trained after applying the z-transform to the quantitative
features.

3 Results

3.1 Clinical characteristics

A total of 468 newborns were admitted to the 22-bed NICU of a
tertiary referral hospital during the period of 17 months. Due to
non-survival (n = 21%, 121%, and 4.5%) or lack of systemic

FIGURE 1
Flow chart of machine learning procedure.
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medication treatment (n = 35% and 7.4%), 56 neonates were
excluded. This led to the inclusion of 412 neonates in the study,
of which 232 (56.3%) were males, 177 (43%) were born preterm
[extremely preterm (<28 weeks): 7 (1.7%), very preterm
(28–32 weeks): 52 (12.6%), moderate preterm (32–34 weeks): 16
(3.9%), and late preterm (34–37 weeks): 102 (24.8%)], and 172
(41.7%) had low birth weight (<2,500 g). The median (IQR)
length of hospital stay (LOS) was 8 (11) days, and the median
postnatal age (PNA) at admission was 1 (1) day.

During the study period, 11,908 medication orders (28.9 orders/
patient) were generated, using the computerized physician order
entry (CPOE) system for a total of 412 NICU patients (5.53 drugs/
patient/day) who received 2,280 prescriptions over 32,925 patient
days. The median (range) values for the total number of drugs and
anti-infectives used during the hospitalization were 3 (0–29) and 2
(0–9), respectively. The most commonly prescribed medications
were those for the anti-infective (38.82%), alimentary tract and
metabolism (32.89%), and nervous system (8.07%) drugs. In total,
131 different medications were prescribed throughout the study
period. Intravenous fluids (12.06%), gentamicin (8.03%), and
ampicillin (7.81%) were the most commonly prescribed drugs.

3.2 NASA-TLX and infant acuity scores

A total of 18 pediatricians, four of whom were neonatologists,
took part in the diagnosis, treatment, and care processes of the
included neonates. The number of nurses who are constantly in the
NICU was determined as 21. The median duration of professional
experience for physicians was 1.16 years, and their mean NASA-
TLX score was 65.16 points. In nurses, it was 8 years and 81 points,
respectively. Based on the infant acuity score, 8% of the patients were
classified as “unstable neonates, requiring complex critical care” and
21.6% as “requiring multi-system support within 24 h of admission”
(Table 1).

3.3 Characteristics of the medication errors

Depending on the LOS, the number of medication orders
varied between 1 and 131. At least one type of MEs was detected
in 257 (62.4%) of the patients. The median (range) number of ME
types observed in these patients were 2 (1–8), while 93 (22.6%)
patients had one ME, 61 (14.8%) had two ME, 49 (11.9%) had
three ME, and 54 (13.0%) had at least four ME types. When
examining how many determined ME cumulative days for each
patient, it was observed that the median (range) was 6 (0–275)
days. When the number of MEs per day during the
hospitalization of the patients was examined, the median
(range) was 0.50 (0–11.50) MEs/day.

When the types of MEs originating from physicians and
nurses were analyzed separately, at least one type of ME
originating from a physician was found in 174 (42.2%) of the
patients, while at least one type of ME originating from a nurse
was found in 235 (57.0%) of the patients. When the ME types
were examined separately, the most common MEs were
determined as the physician-related wrong infusion rate
(25.24%) and nurse-related wrong administration time
(52.66%) according to the medication orders. When the total
exposure day of the patients to these MEs (how long did detected
ME lasts) was examined, physician-related wrong dose (507 days,
8.52%) and nurse-related wrong administration time (3,212 days,
53.95%) were the most common types of ME (Table 2).

According to the univariate analysis, there was a significant
relationship between drug error and gestational age, birth weight,
use of drugs (anti-infectives for systemic use, systemic hormonal
preparations, nervous system, alimentary tract and metabolism,

TABLE 1 Infant acuity levels of the patients and theworkload parameters of the
clinicians.

Infant acuity level n (%)

Continuing care 8 (1.9)

Requiring intermediate care 144 (35.0)

Requiring intensive care 138 (33.5)

Requiring multi-system support 89 (21.6)

Unstable, requiring complex critical care 33 (8.0)

Physicians

Duration of professional experience (years), median (range) 1.16 (0.83–9)

Weekly working hours, median (range) 80 (60–110)

Number of monthly shifts, median (range) 10 (7–11)

NASA-TLX subscales, median (range)

Mental demand 90 (30–100)

Physical demand 70 (35–100)

Temporal demand 75 (20–100)

Effort 15 (5–80)

Performance 80 (60–100)

Frustration level 70 (5–100)

Total NASA-TLX score, median (range) 65.16
(48.66–90.00)

Nurses

Duration of professional experience (years), median (range) 8 (1–17)

Weekly working hours, median (range) 40 (7–52)

Number of monthly shifts, median (range) 7 (0–10)

NASA-TLX subscales, median (range)

Mental demand 100 (75–100)

Physical demand 95 (55–100)

Temporal demand 95 (5–100)

Effort 15 (5–100)

Performance 95 (10–100)

Frustration level 90 (15–100)

Total NASA-TLX score, median (range) 81 (40–100)

NASA-TLX, National Aeronautics and Space Administration task load index.
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cardiovascular system, respiratory system, and sensory organs),
postnatal age, 5-min APGAR score, the total number of drugs,
and the number of nurse monthly shifts (p < 0.05). The p-values for
the relationships between the drug error with weekly working hours
of physicians and weekly working hours of nurses were both less
than 0.20. These variables were used in the classification model. The
parameters that have the highest correlation with the occurrence of
ME and included in the model were: total number of drugs, anti-
infective drugs, nervous system drugs, 5-min APGAR score,
postnatal age, alimentary tract and metabolism drugs, and
respiratory system drugs as patient-related parameters and
weekly working hours of nurses, weekly working hours of
physicians, and number of nurses’ monthly shifts as care
provider-related parameters. It was observed that the most
important variables in predicting the presence of ME with
machine learning algorithms were the total number of drugs and
the prescription of anti-infective drugs (Figure 2). It was determined
that the obtained model showed a high performance in predicting
the presence of ME. Test set performance measures of the model
were calculated. The prevalence (the ratio of having a drug error)

was close between the train and test set (64% for the train set and
59% for the test set). The performance measures were calculated
as follows: accuracy 0.919 (95% CI 0.858–0.956), sensitivity 0.918
(95% CI 0.844–0.964), specificity 0.922 (95% CI 0.829–0.973), PPV
0.944 (95% CI 0.884–0.974), NPV 0.887 (95% CI) 0.804–0.937),
AUC 0.920 (95% CI 0.876–0.970), and F1 score 0.931. A higher AUC
indicated that the model predicting the presence of physician- or
nurse-related MEs correctly classified 92.0% of the patients. This
predictionmodel is available to clinicians as a free, user-friendly, and
registration-free web-tool (http://softmed.hacettepe.edu.tr/NEO-
DEER_Medication_Error/). Additionally, the codes are available
at https://github.com/mervekasikci/NEO-DEER_Medication_
Error-/tree/main.

4 Discussion

The incidence of MEs in hospitalized neonates is higher than
that in other populations (Kaushal et al., 2001; Alghamdi et al., 2019;
Alghamdi et al., 2021). This situation relates to factors specific to the

TABLE 2 Distribution of the number of patients, duration of exposure, and total patient days for each medication error.

Type of ME Number of patients, n (%) Total exposure day (range) Total exposure day/total patient day (%)

Physicians Prescription

Wrong drug 46 (11.16) 154 (0–23) 2.59

Wrong unit 11 (2.67) 53 (0–26) 0.89

Wrong dose 78 (18.93) 507 (0–33) 8.52

Wrong dose interval 17 (4.12) 136 (0–21) 2.29

Wrong infusion rate 104 (25.24) 145 (0–10) 2.44

Wrong diluent 17 (4.12) 82 (0–8) 1.37

Monitoring

Physical 3 (0.72) 14 (0–8) 0.23

Vital 1 (0.24) 7 (0–6) 0.11

Laboratory 10 (2.40) 56 (0–15) 0.94

TDM 8 (1.94) 28 (0–12) 0.47

Nurses Preparation

Wrong drug 14 (3.39) 149 (0–60) 2.50

Wrong occupational safety 8 (1.94) 54 (0–15) 0.90

Wrong storage 23 (5.58) 65 (0–8) 1.09

Administration

Dose omission 1 (0.24) 1 (0–1) 0.01

Extra dose 0 (0) 0 0

Wrong time 217 (52.66) 3,212 (0–140) 53.95

Wrong infusion 33 (8.00) 157 (0–18) 2.64

Wrong technique 33 (8.00) 296 (0–48) 4.98

Total 257 (62.40) 5,116 85.92

ME, medication error; TDM, therapeutic drug monitoring.
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neonatal intensive care environment such as differences in
clinician’s workload and the diversity in pharmacotherapy, as
well as patient-related factors such as rapidly physiological
changes (body weight, volume of distribution, renal function,
etc.) and subsequent variability in dosing.

In our study, at least one ME was found in 62.4% of the
patients by evaluating 14.45 medication orders/patient.
Leopoldino et al. (2019a) reported a similar rate (59.8%) in a
single NICU in a teaching hospital in Brazil. Failure to administer
drugs at the right time (52.6%) resulted in a higher-than-expected
rate of nurse-related MEs. In other words, during the study
period, there was variability between the time of the drugs
prescribed by the physicians and the time of administration by
the nurses. The primary motivation for documenting these errors
was not to recognize them as potentially high-risk MEs for the
patient. The main aims were to examine the inconsistency in
prescribing and practice habits between physicians and nurses
and to provide information about the procedure of the CPOE
system in the NICU. Although the CPOE system is integrated
into the hospital, it is reported in the literature that not
administering drugs by the nurses at the time prescribed
increases the risk of wrong dose, omission, or duplication
(FitzHenry et al., 2007).

Artificial intelligence and machine learning tools are
increasingly used in healthcare for screening, diagnosis,
pharmacovigilance, outcome prediction, and reducing medical
errors as a precision concept. There are many novel studies in
the literature showing that using these tools for the integration of
clinical data will pave the way for precision medicine in neonatology
(Bate and Luo, 2022; Cherkas et al., 2022; Zhao et al., 2022).

In the current literature, reported risk factors for MEs are
gestational age (<3 weeks), total number of drugs (>3),
prescription of anti-infective and intravenous drugs, APGAR
score (<7), length of hospital stay (>7 days), neurological, renal,
and cardiovascular diseases, workload of clinicians, and lack of
pharmacotherapy education (Rashed et al., 2014; Zhang et al.,
2017; Leopoldino et al., 2019b; Palmero et al., 2019; Bharathi
et al., 2020). In our study, almost all these variables were taken
into consideration, and an ME prediction model was designed. In
addition, it has been confirmed that the required nursing time per
patient per day, which is an independent indicator of workload, was
a risk factor in the occurrence of MEs (Figure 2) (Morriss et al.,
2009). According to another study, the risk factors for MEs were
workload, inadequate guidelines, and the lack of design in the
systems and protocols (Alghamdi et al., 2021). According to a
model developed by Leviatan et al. (2021), physicians working

FIGURE 2
Variable importance plot (%) used to predict the presence of medication errors.
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two or three consecutive shifts and physicians with less prescribing
experience had a higher rate of MEs (p < 0.01). In our study, in the
high-performance model that predicts the presence of MEs, the
weekly working hours of physicians were only found to be the sixth
most important variable (AUC: 0.920). Similar studies have also
been carried out for nurses.

Tubbs-Cooley et al. (2019) showed that as the infant acuity level,
which is an indicator of the complexity of treatment and care,
increases in NICU patients, the risk of not being able to control all of
the six “rights” (right patient, medication, dose, time, route, and
documentation) that nurses should pay attention to increased by
1.05 (95% CI 1.02–1.07) times (p < 0.004). In our study, the infant
acuity level and NASA-TLX score were not found to be a significant
parameter in predicting the presence of MEs. However, weekly
working hours and monthly shifts, which indicated that nurses
worked more, were found to be important parameters in predicting
the presence of MEs.

In a study in which each ME in NICU patients (n = 410) was
classified and predicted as appropriate–inappropriate, the F1 score
indicating model performance was found to be 0.13 (Hogue et al.,
2021). In our study, in which a total of 5,954 medication orders
specifically for the NICU were examined, the prediction
performance of the model obtained with patients categorized as
ME detected or not detected was found to be much higher (F1 score:
0.931). In ensuring the accuracy of this model, it is estimated that the
prospective real-life study design, the study in a specific unit, and the
selection of the correct clinical and demographic parameters
throughout the study were effective.

As is known, automatic warning systems integrated into CPOE
systems provide only theoretical information and warnings about
the prescribed drug, without showing a patient-centered approach
(Schiff et al., 2017). It is known that the warnings that occur in this
situation cause alert fatigue in clinicians and 90%–96% of them are
ignored by them. A study predicting physician response to more
than 6,000 prescription alerts also demonstrated that theoretical
warnings were ignored with the high-performance model (accuracy:
0.850, AUC: 0.940) (Poly et al., 2020). With our machine learning-
based clinical decision support tool, it is expected to predict whether
MEs will occur with a newborn-centered approach without causing
alert fatigue. Such approaches can support precision
pharmacovigilance and facilitate implementation in clinical care.

Although the targeted sample size was reached and this is a
prospective study to obtain real-life data in the study population, this
study has still some limitations. The data obtained from a single
center limit the heterogeneity of the data pool. A lack of
generalizability to other populations and the need for further
validation are other limitations acknowledged by the authors. In
addition, since it reduced the performance of the model, the type of
ME was not included as an output variable.

There were no confounding variables such as clinical pharmacist
interventions that could affect outcomes. It is considered to include
independent variables (output) in future studies instead of
additional clinical parameters to be included in the study as
dependent variables (input). It is suggested to focus on how long
the MEs persist, the root cause of the MEs (medication
discrepancies, near-miss errors, potential harms, etc.), alert
fatigue in clinicians, and the integration of the system into
clinical pharmacy interventions.

This is the first developed and validated model to predict the
presence of MEs using work environment and pharmacotherapy
parameters with high-performance ML algorithms in NICU
patients. Taking these limitations into account, this approach and
the current model hold the promise of implementation of precision
screening to prevent MEs in neonates. ME prevention can be
optimized by identifying patients who require targeted clinical
pharmacy services. As clinical pharmacy practices are not
available in every NICU and capacity is limited, a prediction
model can be used to compensate for this increasing workload
and decreasing the number of qualified healthcare providers.
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