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Abstract: The paper extends the earlier work entitled “Making the PI and PID Controller Tuning
Inspired by Ziegler and Nichols Precise and Reliable”, to higher-order controllers and a broader
range of experiments. The original series PI and PID controllers, based on automatic reset calculated
by filtered controller outputs, are now augmented by higher-order output derivatives. This increases
the number of degrees of freedom that can be used to modify the resulting dynamics, accelerates
transient responses, and increases robustness to unmodeled dynamics and uncertainties. The fourth
order noise attenuation filter used in the original work allows for the addition of an acceleration
feedback signal, thus resulting in a series PIDA controller or even a jerk feedback that leads to a PIDAJ
series controller. Such a design can further use the original process and filter approximation of the
step responses through the integral-plus-dead-time (IPDT) model, while allowing experimentation
with disturbance and setpoint step responses of the series PI, PID, PIDA and PIDAJ controllers, and
thus, evaluating the role of output derivatives and noise attenuation from a broader perspective. All
controllers considered are tuned using the Multiple Real Dominant Pole (MRDP) method, which is
complemented by a factorization of the controller transfer functions to achieve the smallest possible
time constant for automatic reset. The smallest time constant is chosen to improve the constrained
transient response of the considered controller types. The obtained excellent performance and
robustness allow the proposed controllers to be applied to a wider range of systems with dominant
first-order dynamics. The proposed design is illustrated on a real-time speed control of a stable
direct-current (DC) motor, which is approximated (together with a noise attenuation filter) by an
IPDT model. The transient responses obtained are nearly time-optimal, with control signal limitations
active for most setpoint step responses. Four controllers with different degrees of derivative with
generalized automatic reset were used for comparison. It was found that controllers with higher-
order derivatives may significantly improve the disturbance performance and virtually eliminate
overshoots in the setpoint step responses in constrained velocity control.

Keywords: filtration; automatic reset; hyper reset; stability; robustness; multiple real dominant pole
method; derivative action; constrained control

1. Introduction

The rapid development of the technological base of automatic control in terms of
digital and hybrid programmable devices and embedded systems, actuators, sensors,
digital communications and signal processing also requires a thorough reassessment of
the historical development of the most widely used control structure, the proportional–
integral–derivative (PID) controller. Such a review should include all related steps, starting
with the modeling and identification of the controlled process and relating to all important
aspects of the design, including process uncertainties, measurement noise and system
nonlinearities. At the same time, an important aspect related to the term used should also
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be addressed, namely explaining the differences between controllers that compensate for
disturbances and uncertainties by an explicit integrator or by an automatic reset.

The first known method of controller tuning, by Ziegler and Nichols [1], appeared
shortly after the invention of hyper-reset (pre-act) controllers (controllers with derivative
term) [2]. In the original version, the mentioned tuning was mainly aimed at the fastest
possible elimination of the control error due to the occurrence of disturbances. It was less
suitable for setpoint tracking, since it usually led to overshooting of the process output
(overregulation) [3].

The improvements presented in [4] were achieved by (a) a modified approximation
of the open-loop step responses (using alternatively both the integrating and the stable
first-order process models with delay), (b) designing the controller parameters according to
the multiple real dominant poles method with subsequent factorization of the controller
numerator improving constrained control responses (using the series realization of the
PID controller), (c) an appropriate choice of the time constant for the automatic reset
(the smallest numerator time constant) [5] and (d) replacing the requirements of quarter-
amplitude damping by shape-related performance measures based on monotonicity. This
choice of the time constant of the equivalent “integration” and the series realization of
the PID controller with 2 degrees of freedom, which is unusual in general, proved to
be efficient for constrained processes. It allowed the elimination of overshoots in the
constrained control and the achievement of transient responses close to the ideal ones
(optimal switching control). This means that the responses are fast enough and without
overshoot of the output during the setpoint change. It is worth noting that the more
sophisticated stable first-order time-delayed (FOTD) models did not significantly improve
the control performance in our experiments.

In [4], the focus was on the optimization of the setpoint tracking, while the disturbance
performance is also very important, especially for the closed-loop robustness. In [6], it
was shown that in terms of robust stability, and when using controllers with higher-order
low-pass filters, the best approximation of the IPDT model is the one with the highest
process gain.

Another significant advantage of the series controller realized by the feedback of the
limited controller output is that such feedback can also be interpreted as a disturbance
observer based on the reconstruction of input disturbances in steady states [7,8]. Of course,
the information about the compensated disturbance is also available from the integral term
of the parallel PI (D) controllers. However, its direct use is complicated by limiting the
output of the controller.

Research in the field of PID controllers is strong and expressed through special IFAC
(International Federation of Automatic Control) conferences and events. The review of
papers from the past (2018) Conference on Advances in Proportional–Integral–Derivative
Control in Ghent showed increased interest from the control community in fractional-order
PID controllers (FO). FO PID control provides a higher number of degrees of freedom
in the design phase [9,10]. However, it ultimately leads to the final implementation of
higher-order controllers (HO). It is, therefore, understandable that there is increasing
research interest in PID controllers with HO derivatives, e.g., called proportional–integral–
derivative–accelerative (PIDA) controllers [11–20], or also PIDD2, PIDD2 [20–24], or PIDC
(PIDC1 and PIDC2) [19]. Therefore, this paper will focus on combining the previously men-
tioned aspects of modified controller design inspired by the Ziegler and Nichols method
with higher-order controller derivatives. The first PIDA controllers were designed for
optimal control of systems with three or more elementary energy or mass storage devices,
which is reflected in the third- or higher-order process transfer function [11–14,21,25,26].
Relevant applications include load frequency control of power systems [19,22,25,26], au-
tomatic voltage regulator (AVR) of a synchronous generator [14,20,21], flight control of a
quadcopter [18], a dual rotor aerodynamic system [23], drones [18], DC–DC boost convert-
ers [24], three-tank control [26], etc. With respect to the design of state–space controllers,
the order of the process determines the required number of control vector coefficients,
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which may increase if signals are needed for disturbance reconstruction. Note that for
time-delayed systems, the order of the system under consideration also depends on the
degree of the dead-time approximation used in Taylor series expansion [27–29].

The number of HO PID controller realizations grows with the number of possible
realizations of higher derivative orders and optimization of the number of controller
parameters [28]. By default, separate minimum order filters are used for each derivative
term when designing PID controllers as well as controllers with higher-order derivatives.
With such an approach, as the derivative degree m increases, the number of unknown
parameters increases and the delays of the individual derivative terms change. This
complicates the design of a suitable noise reduction scheme. Therefore, from the point of
view of the analytical design of the optimal controller, it is easier to consider a joint binomial
series filter. The high-frequency controller noise can be attenuated most effectively by strict
proper controller transfer functions. A simple experimental analysis in [30], confirmed
by several subsequent publications on the subject, showed that the filter order n ≥ m + 2
can be recommended as the default option. The filter parameters were considered in the
controller tuning as part of the loop delay using simple delay equivalences inspired by
Skogestad’s half rule [31]. A further simplification, based on the work of Ziegler and
Nichols [1], can be achieved by approximating the (stable, but possibly unstable) process
with time-delay integral models. The comparison in [32] shows that the influence of the
neglected first-order dominant process dynamics decreases as the derivative order of the
controller increases. Another alternative was to include the binomial filter already in the
measurement and in the approximation of the open-loop step response [4]. Due to the
large number of unknown controller parameters, the design using traditional engineering
methods (such as root locus in [11,12]) was imperfect even when the filter parameters
were neglected. As a result, recent research in HO PID control has focused more on
demonstrating various intelligent optimization algorithms. This has certainly given the
impression of modernity, but generalization of the obtained results is negligible. Although
the aforementioned optimization approaches can evolve, it is always useful to reduce the
complexity of the solved problems by searching for more generally applicable analytical
laws and procedures.

In the article [27], it was shown that using the Multiple Real Dominant Pole (MRDP)
method, it is possible to reliably design parallel HO-PID controllers with derivatives up to
order m = 5, taking into account the binomial implementation and noise attenuation filters
of order n ≥ m.

Other problems are related to the limitation of the control signal, which usually cannot
be avoided when accelerating transient responses. To avoid undesirable integration of the
controller output in the presence of limited control signals, parallel HO-PID controllers [27]
could be implemented using the conditional technique [33]. Due to the 2-degree-of-freedom
control, the input and output signals of the process have some overshoots, which are not
allowed in numerous applications. For this reason, ref. [4] has raised the problem of con-
strained series PI and PID controllers following the method of Ziegler and Nichols, and
ref. [28] has extended the problem to the design of series PIDA controllers that eliminate
overshoots at the process input and output, which occur in saturation control, by appropri-
ate controller factorization and by the performance portrait method. This paper focuses on
the further generalization of the controllers with disturbance compensation by automatic
resetting and the output derivatives up to the third order. An experimental comparison
of the setpoint and disturbance behavior of controllers with increasing derivative ratio
is illustrated using an electromechanical system from [4]. It is shown how the idea of
modifying the transfer function of series PID controller by factorization can also be applied
to the design of a constrained HO.

In this context, the rest of the paper is organized as follows. Section 2 summarizes
the main previous results of the experimental design of series PI and PID controllers for
the IPDT model of a speed servo system from [4], and proposes its extension to controllers
with second and third output derivatives. Section 3 summarizes the tuning of the series PI
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and PID controllers by the multiple real dominant pole (MRDP) method and its extension
by a prefilter from [4], and extends the problem to the series PIDA and PIDAJ controllers
with a simple disturbance-observer-based automatic reset for disturbance reconstruction
and a compensation by a positive feedback (automatic reset) from the controller output.
This section also contains a brief analysis of the problems caused by the saturation of the
control signal, which led to the application of the circle criterion of absolute stability. The
main results of the experimental evaluation of series PI and PID controllers based on the
speed servo system from [4], extended to include disturbance responses and the use of the
PIDA and PIDAJ controllers, are presented in Section 4 and discussed in Section 5. The
conclusions include a summary of the work and future developments.

2. Controller Structure and Process Approximation

The main contribution of the original article [4] can be identified as the overall design
of the constrained series PID controller, which included:

1. The justification of the windupless controller structure (denoted originally as hyper-
reset, or pre-act [2]) using a positive feedback from the constrained controller output
for resetting the PD controller output;

2. The approximation of the fastest component of the measured open-loop step response,
dominating its steepest segment by the “ultralocal” IPDT, the more complex “local”
first-order time-delayed (FOTD) models did not bring significant differences in the
final performance achieved;

3. The calculation of the “optimal” controller parameters by the multiple real dominant
pole (MRDP) method based on the IPDT and FOTD models, including the noise
attenuation and implementation filter used;

4. Factorization of the controller transfer function corresponding to the feedback struc-
ture obtained in the zone of proportional control, carried out with the aim of choosing
the smallest possible time constant of the hyper-reset feedback;

5. A demonstration of the properties of the proposed design by control of the electro-
mechanical speed servo system using evaluation by means of appropriately chosen
time and shape-related performance measures.

Remark 1 (Windupless controller). Because controllers with automatic reset and hyper reset do
not contain an explicit integrator, there is no point in talking about anti-windup structures. The
negative consequences of limiting the control signal to the form of transient responses, resulting
into overshooting at the process input and output, can be simply remedied by suitable controller
settings. This will be achieved by choosing the reset time constant as the shortest time constant of
the “optimal” controller numerator calculated by the multiple real dominant pole method.

This contribution aims to show that the procedure applied in [4] can be relatively
easily extended to the design of the entire family of constrained windupless controllers with
higher-order derivatives and automatic reset. All controllers with derivative action offer
excellent properties, which surpass the dynamics achievable by well-known anti-windup
controllers based on the parallel HO PID controllers discussed in [27]. In order to save the
reader as much as possible from the study of new facts, the experiment from [4] will again
be used to demonstrate properties of the presented controller design.

2.1. Available Signals

All the controllers discussed in this paper will be illustrated by control of the speed
servo system created by connecting three DC motors to one shaft with a high moment
of inertia described in [4]. Two DCs in parallel serve as an actuator, the third as a sensor
(tachodynamo) to measure the speed of rotation. For calibration, a simple incremental
sensor has been used (Figure 1).
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Figure 1. The considered electro-mechanical speed system.

Remark 2 (Motivation to choose the electro-mechanical system). Construction of the speed
servo system created by connecting three DC motors to one shaft with a high moment of inertia
was mainly motivated by low price, simple construction, simple connection to HP-85 computer
converters, the dynamics with a dominant time constant close to electric vehicles and the possibility
to create different functional configurations with the motors considered. The most recent addition to
these historical aspects is the possibility to further develop the basic aspects of the design of series PI
and PID controllers implemented by Arduino-Due’s controllers presented in [4]. The use of one of
the motors as a speed sensor was already an obsolete option at the time of the system’s construction,
and therefore, it was supplemented with an incremental sensor enabling at least system calibration.
Of course, the spectrum of better quality sensors is much broader today and they need not be
significantly more expensive (one of the basic historical motives for the birth of mechatronics was the
aim to achieve the required quality of products at the lowest possible costs [34]). However, in the
moment, when wishing to demonstrate the possibility of designing controllers with derivative action
even for systems with a high level of measurement noise, the use of the motor in the tachodynamo
function is even an advantage. The experience gained through experimentation can then be applied
in the control of systems for which there exist no higher-quality sensors for the output measurement,
or they are unavailable for the given solution.

It should also be noted that an application of the HO-PIDs derived for the IPDT model to
control a stable nonlinear system, can also be considered as a robustness test of these controllers.

Although the controller derivation assumes quasi-continuous-time control with pulse-
amplitude modulation, in reality, the motor is controlled discretely using pulse-width-
modulation (PWM) implemented with a sampling period of Ts = 10 ms. The maximal
available control signal corresponds to u = 100, the minimal to u = 0. When quantizing
the pulse width, 256 possible levels are assumed, which are neglected in the design. All
these differences due to the PWM control represent the first source of noise distorting the
control process.

The output speed is measured by 12 bit sensors with the sampling period Tsm = 0.1 ms,
which again contributes to the measured signal as quantization noise. Measurement noise
signals are also not negligible due to the variable resistance of the commutator contacts.
In addition, the mechanical resonance of the shaft also contributes to the generation of
noise and output fluctuations. However, the most important ripple of the measured signal
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(see Figure 2) is caused by the movement of the tachodynamo coils in an inhomogeneous
magnetic field of the permanent magnet. The result is that the measurement noise ampli-
tudes form a large part of the useful signal from the measurement range [0, 1] (see Figure 2
in [4]). Due to this noise, the output signals fluctuate in the range of 0.5V, which represents
roughly 1/3 of the useful signal values.

Figure 2. Two incremental sensor pulses (blue) specifying one revolution and the output velocity
from tachodynamo with 12 maxima/minima per revolution (red), measured with Tsm = 0.1 ms.

2.2. The Experimental Setup

Due to the cheap motor used as the tachodynamo, i.e., a velocity sensor and other loop
imperfections resulting in the high level of measurement noise, the measured output signal
ym(t) of the considered velocity system must be filtered before the controller. Therefore,
ref. [4] proposed to use binomial filters described with the transfer function

Qn(s) =
Y(s)

Ym(s)
=

1(
Tf s + 1

)n =
a0

sn + an−1sn−1 + · · ·+ a1s + a0
;

ak =
n!

(n− k)! k! Tn−k
f

; n = 1, 2, . . . ; k = 0, 1, 2, . . . , n;

n! = n(n− 1)(n− 2) . . . 3 ∗ 2 ∗ 1

(1)

and integrated with the process in the step response-based process identification. Besides
of the noise attenuation, it enabled to work in the controller design with ideal (acausal)
controller transfer functions. For the choice n = 4, motivated by the aim to improve
noise attenuation (see, e.g., [30]), inclusion of the Q4(s) filter with Tf = 50 ms into the
process+filter approximation gave the ultra local IPDT model

S(s) =
Y(s)
U(s)

=
Kse−Tds

s
; Ks = 0.15; Td = 0.18 (2)

It should be remembered that this model aims to characterize the fastest component of
transients as accurately as possible. It means that (2) represents an approximation with the
maximum value of Ks achieved from the multitude of different transients corresponding
to numerous measured step responses. Among approximations with the maximum Ks,
priority will be given to the solutions with the maximum value of Td. While in [4], the need
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for an accurate approximation of the fastest component of the step response was more or
less intuitive, the need for such a solution, when working with HO filters, was justified by
the robust stability analysis in [6].

Furthermore, it is of note that the fourth-order filter Q4(s) (see Figure 3) provides, in
addition to the filtered output y(t), signals of its first, second and third derivatives.

Figure 3. Series PIDAJ controller (34) with two degrees of freedom: the fourth-order filter Q4(s) (1)
of the measured output ym(t), the automatic-reset with time constant Ti (blue), with proportional,
derivative, accelerative and jerk controller gains Kp, Kd, Ka and Kj, with the reference setpoint w(t)
and a fourth-order prefilter Fp(s) (40).

Remark 3 (Motivation to use binomial strictly proper filters). By default, in the design of PID
control, as well as controllers with higher-order derivatives, separate filters of individual derivative
components are mostly used. Thereby, they take the minimum order necessary to achieve a proper
controller transfer function. With such an approach, with the growing number of derivatives, the
number of unknown parameters will increase and, at the same time, the delays of the individual
control components will change. Therefore, from the point of view of the analytical design of the
optimal controller, it is simpler to consider a common binomial series filter.

From the point of view of the impact of noise, it is appropriate to work with strictly proper
controller transfer functions. A simple experimental analysis in [30], and in several subsequent
works, on the topic showed that

n ≥ m + 2 (3)

can be recommended, with equality considered as the default option.

Whereas in [4], only y(t) and its first derivative ẏ(t) were used by the series PI and PID
controllers, next the full information provided by the filter, i.e., also the signals of the second
and third derivative ÿ(t) and

...
y (t), will be used. If we were to use the fourth derivative....

y (t), then the measured values of the noise would not be filtered at all and, moreover, they
would be further distorted by the feedback signal of the filter. The amplitudes of the noise
contained in

....
y (t) are gradually reduced by passing through four integrators through the

averaging process.
Intuitively, one could expect that the use of derivatives will lead to a worsening of noise

attenuation and result in an increase of the superimposed noise amplitudes. However,
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on the other side, one could also expect faster responses. Further questions also arise
regarding the resulting robustness of the system. Let us not forget that already the arrival
of hyper-reset (series PID) controllers using ẏ(t) has proven to be a benefit for practice,
even if it is accompanied with the increase in measurement noise. The cost function for
controller optimization must therefore be built in such a way that it takes into account
the compromise between the speed of transients and the excessive controller effort due
to the noise and model imperfections. Therefore, it is interesting to test all these aspects
experimentally and verify changes of the chosen m in individual performance measures.

2.3. Classical Versus State-Space Approach to Processes Approximated by IPDT Models

Within the framework of the state-space approach to the design of automatic con-
trollers, systematic procedures of modern control theory [35,36] have been developed,
when a stabilizing state controller is first considered for the given process. This is supposed
to impose the required dynamics on the circuit.

In the next step, an extended state observer can be proposed, whose task is to directly
reconstruct unmeasurable state variables and external disturbances related to the process
model used in the controller design. The reconstructed disturbances have to be counteracted
by a disturbance feedforward.

Within the framework of the classical approach to the design of controllers, on the other
hand, more work was done with the input–output approximations of controlled processes
using transfer functions, including typically the dead-time elements. Instead of the division
of the overall task of controller design into the stabilization and reconstruction of non-
measurable quantities, treated as disturbances, the design of proportional, integrative and
derivative components of PID controller has been used, which were proclaimed to reflect
the roles of past, present and future deviations of the output from the reference setpoint
signal [37,38].

The unclear relation of the classical and modern approach to control led to the emer-
gence of new postmodern approaches, e.g., internal model control (IMC) [39], active distur-
bance rejection control (ADRC) [40,41], model free control (MFC) [42], fractional-order (FO)
PID control [9], etc. These, although they brought new, interesting moments, only further
clouded the overall situation. At the same time, the constant growth of new control design
methods brings serious problems for the field of education, where the overall space for
teaching automatic control is generally reduced [43], and new serious aspects regarding the
technological basis of control are added (increasingly wider use of various programmable
devices and embedded systems, sensors, actuators, technical communications, etc.). From
the point of view of reducing the ongoing fragmentation of the basics of automatic control,
it is therefore extremely important to note that already the historical pneumatic automatic-
reset and hyper-reset controllers, which can be considered as basic structures of industrial
automation, can be treated as the structures with a stabilizing controller and disturbance
observer (DOB). This DOB is reconstructing equivalent (or total) input disturbances in
relation to integral process models from the evaluation of the controller output in steady
states [7,8].

The first difference of automatic-reset, compared to structures from modern control
theory, lies in the fact that the design of a controller with disturbance compensation changes
the optimal setting of the stabilizing controller. It is a result of the positive feedback
introduced by automatic-reset: the design of stabilization and disturbance compensation
are not separable.

Another important aspect of comparing the classical and modern approaches to the
controller design lies in the fact that the state-space approaches are usually not formulated
for processes with dead-time, which in turn is a part of the most popular PID control
design models as the integrator plus dead time (IPDT) or first-order time-delayed (FOTD)
models [44]. The dead-time compensation has already been used in the proposal of ex-
tended state observer (ESO) in [45], but the work of [46] showed that this approach to its
compensation is not the only possible one and it can be further improved.
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One possibility to show the connections between the modern control theory and the
PID control can be based on replacing the transport delay of the IPDT or FOTD model used
in the PID controller design by expanding exp(−Tds) into a Taylor series [29].

Without the dead-time term, the integral first-order process model can be stabilized
by considering a proportional (P) controller:

R(s) = Kp (4)

With the simplest replacement exp(−Tds) ≈ 1/(1 + Tds), one gets the overall model
of the process with a second-order transfer function. In the framework of the state-space
controller design, its stabilization would correspond to a control vector with two entries.
The corresponding state vector can also be transformed to a phase vector of the output
formed by the output variable and its derivative, which in the classical design corresponds
to a proportional-derivative (PD) controller with the proportional and derivative gains Kp
and Kd and the derivative time constant TD

R(s) = Kp + Kds = Kp(1 + TDs); Kd = KpTD (5)

Similarly, it is possible to express the dead-time-term of IPDT and FOTD models by
using two terms of its Taylor’s expansion. As, e.g., mentioned by [29], by considering the
second-order Taylor approximation of dead-time, an improved future error estimation
can be obtained and thus help in reducing the time delay by a predictive control signal
calculation. This, in turn, leads to a control vector with three components, or to a classical
controller with proportional, derivative and acceleration components (PDA controller)

R(s) = Kp + Kds + Kas2 = Kp(1 + TDs + T2
As2); Kd = KpTD; Ka = KpT2

A (6)

It has the proportional, derivative and accelerative gains Kp, Kd and Ka, or the deriva-
tive and accelerative time constants TD and T2

A.
Similar conclusions can be expected from the inclusion of the third- and higher-order

derivatives of the delay. As the last option, we now mention just a controller used in motion
control with proportional, derivative, acceleration and jerk feedback (PDAJ controller)

R(s) = Kp + Kds + Kas2 + Kjs3 = Kp(1 + TDs + T2
As2 + T3

J s3);
Kd = KpTD; Ka = KpT2

A; Kj = KpT3
J

(7)

It has the gains of the proportional, derivative, accelerative and jerk actions Kp, Kd, Ka
and Kj. The controller can also be expressed by using time constants TD, T2

A and T3
J of the

derivative, accelerative and jerk actions.
The fact that all these solutions are only approximations should not surprise—also

the IPDT and FOTD models are only approximations, and even far more sophisticated
modeling and control design methods used in the framework of FO PID control [9] are ulti-
mately only applied approximately. Thereby, in the simplest case, all above controllers can
be based on the same process model (2), which ideally also includes the noise attenuation
filter of the measured output. The central question of the experimental evaluation, which
set of controller parameters, {Kp}, {Kp, TD}, {Kp, TD, T2

A} or {Kp, TD, T2
A, T3

J }, ensures the
best dynamics of the circuit, is not at all simple. We have not yet seen any attempts to
deal with it. Each possible answer will certainly depend on the specification of optimal
performance and measures used for the evaluation, but also on possible other aspects of
the circuit, which are not directly included in the model (2). In our case, we simplified the
question formulation by assuming a fixed structure of the filter Q4(s) (the order n = 4, the
time constant Tf = 50 ms, the sampling period for filtration 0.1 ms), the same as in [4].
The basic difference is that in the controller in Figure 3, it is now possible to set up to four
parameters Kp, Kd, Ka and Kj. Depending on the stabilizing controller (4)–(7) used, the
order and setting of the controller prefilter Fp(s) also change.
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2.4. Performance Measures

Development in the field of automatic control design is associated not only with
discovery, but also with forgetting. In the case of PID control, this was manifested not
only in the aforementioned forgetting of the original names automatic reset and hyper
reset, but also in the abandonment of performance measures used in evaluating control
performance. In the second half of the last century, as a result of wartime needs, there was
a rapid development of constrained time-optimal systems. One of his main statements,
labeled Feldbaum’s theorem, says that for optimal constrained control of transients in
the output of N-th order systems, N control intervals with alternately changing limit
values of the control signal are needed at its input [47]. If we limit ourselves to the
transition from one steady state to another, this conclusion does not fundamentally change
either Pontryagin’s principle of maxima (or minima), formulated later [48], nor Bellman’s
principle of optimality [49]. Because the development of automatic control later went
through periods in which issues of robustness dominated, especially in relation to linear
systems, the conclusions of optimal constrained control were mostly forgotten during the
rebirth of interest in PID control [50] (with few exceptions as [51,52]). With the constant
acceleration of the dynamics of transients, the question of the influence of the control signal
limitations on the ideal shape of the individual circuit variables cannot be avoided even
here. However, before the practical application of Feldbaum’s theorem, it should yet be
remembered that it is valid only for systems with a full relative degree R = N. When
controlling systems with a lower relative order R < N, the number of necessary intervals
to achieve the required output is reduced to R. The achieved output value can then be
maintained using the so called “zeroing input” in the case of stable zero dynamics [53]. In
practice, the impact on the control of stable systems is that the number of input intervals
required for ideal output changes can be smaller than the total degree of the system and
can depend on the designer’s choice. The selected dynamic class of control [54,55] then
determines the selection of performance measures used to evaluate deviations from the
input and output waveforms marked as optimal.

To obtain the transients as fast as possible, the absolute integral error

IAE =
∫ ∞

0
|e(t)|dt ; e = w− y (8)

should be as low as possible. In evaluation of the setpoint step responses, the index “s” will
be used. Similarly, for the input disturbance steps, the corresponding performance values
will be denoted by the subscript “d”.

Similar to [4], evaluation of the shapes of the achieved step responses will be based on
the monotonicity concept, with the monotonicity measure TV0 and the one-pulse measure
TV1 defined for the increments of the setpoint and disturbance responses of the output y(t)
as follows

TV0(ys) = ∑∞
i=0|yi+1 − yi| − |y∞ − y0|

TV1(yd) = ∑i|yi+1 − yi| − |2ym − y∞ − y0|; ym /∈ (y0, y∞)
(9)

Thereby, ym in TV1(yd) and similarly also um in TV1(u)

TV1(u) = ∑
i
|ui+1 − ui| − |2um − u∞ − u0|. (10)

represent the extreme points used in enumerating deviations from two monotonic segments
of one-pulse (1P) disturbance step responses at the process output and 1P setpoint and
disturbance step responses at the process input (see, e.g., [4,56]).

Remark 4 (Performance evaluation of the time-delayed speed system). In this work, we will
consider ideal shapes at the system input (controller output) pulses consisting of two monotonic
sections marked as 1P and we will quantify deviations from them using (10). From the point of view
of the control of the selected speed system, this means that with a step increase in the required speed,
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only one pulse of energy supply at the input of the system will be expected, even if, as a result of the
approximation of the delay, we are basically controlling a higher-order system, in which it would be
possible to expect a more complex input course connected with kinetic energy reduction by braking
just before reaching the required speed. Although the given method of control in systems with energy
recuperation could also be implemented in an energy-saving manner, we will not deal with it further
for relatively small delay values.

3. Series PI, PID, PIDA and PIDAJ Controllers for IPDT Models

For the dead-time present in the loop, the design of stabilizing controllers can be
carried out by the multiple real dominant pole (MRDP) method. The history of its use
for the design of dynamic systems is roughly as long as the history of the automatic-reset
controllers—it was already applied in the first textbook on automatic control [57], which
also refers to its older use. MRDP tuning avoids slow and oscillatory components of
the dynamics, which could dominantly limit achievable performance. For the design
of constrained state-space controllers with extended state observers, which in today’s
terminology could be denoted by the abbreviation ADRC, or as disturbance observer-based
control, it was used in [58,59] (see also [46,60]). Vitecek and Viteckova [61,62] used the
given method to design PI and PID controllers. The condition of a double real pole was also
used by [31] in the modification of the SIMC method for design of PI and PID controllers
for integral processes.

It should yet be noted that optimal setting of controllers augmented by automatic-reset
differs from circuits containing only a stabilizing controller [7,8].

3.1. Calculation of the Optimal Series PI Parameters

For the P controller (4) augmented by automatic reset, in the loop with the IPDT
model [4,5], it is possible to look for a triple real dominant pole so of the quasi-polynomial
P(s) = (s− so)3P0(s). Its parameters have to satisfy the conditions

P(so) = 0, Ṗ(so) = 0, P̈(so) = 0 (11)

The corresponding closed loop pole so, the time constant To = −1/so and the controller
tuning specified by dimensionless parameters are

so = −(2−
√

2)/Td ≈ −0.586/Td; To = −
1
so

= Td/(2−
√

2) ≈ 1.71Td;

κ = KpKsTd = 2(
√

2− 1)e
√

2−2 ≈ 0.461; τi =
Ti
Td

= (2
√

2 + 3) ≈ 5.828
(12)

To avoid overshooting of setpoint step responses, the controller has to be used with a
first-order prefilter

Fp(s) =
1 + bs
1 + Tis

(13)

introducing the second degree of freedom by canceling the numerator zero of the closed
loop transfer function Fwy(s) = R(s)S(s)/[1 + R(s)S(s)]. The setpoint step responses can
be accelerated [63] by choosing the prefilter parameter b as

b = To (14)

thus also canceling one of the triple real dominant poles so from Fwy(s). However, in a loop
with constrained control signal, the initial peak in the setpoint step of responses with b 6= 0
is usually removed by saturation. Therefore, it seems a more rational and robust option
to use

b = 0; Fp(s) =
A0

s + A0
; A0 = 1/Ti (15)
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3.2. Calculation of the Optimal Series PID Parameters

For the PD controller (5) augmented by automatic-reset [4,5], in the loop with the IPDT
model, it is possible to look for a quadruple real dominant pole so of the quasi-polynomial
P(s) = (s− so)4P0(s), by satisfying the conditions

P(so) = 0, Ṗ(so) = 0, P̈(so) = 0,
...
P(so) = 0 (16)

The corresponding closed loop pole so, the time constant To and the controller tuning
specified by dimensionless parameters are

so = −(3−
√

3)/Td ≈ −1.268/Td; To = −
1
so

=
Td

3−
√

3
≈ 0.789Td;

κ = KpKsTd ≈ 0.0598; τi =
Ti
Td
≈ 0.2846;

τD =
TD
Td
≈ 3.448; δ = KdKs = κτD = 0.2062

(17)

Compared to the PI controller (12), by using the derivative action, the dominant pole
so shifted further to the left in the complex plane and the corresponding closed loop time
constant To decreased significantly. Of the two possible numerator factorizations of the
controller transfer function (see [4]), we chose the dimensionless gain κ and the feedback
constant τi as smaller numbers, with increased τD. This makes it possible to speed up the
dynamics of constrained responses during the transition from a limited control signal to a
steady-state value and prevent the occurrence of overshoots at the input and output of the
process [4,5].

To avoid overshooting of setpoint step responses, the controller has to be used with a
second-order prefilter

Fp(s) =
1 + b1s + b2s2

(1 + Tis)(1 + TDs)
(18)

canceling at least the numerator zero of the closed loop transfer function Fwy(s) = R(s)S(s)/
[1 + R(s)S(s)]. The setpoint step responses can yet be accelerated by choosing the prefilter
numerator Np(s) as

Np(s) = (1 + Tos)p; p ∈ [0, 2] (19)

that is canceling p of the quadruple real dominant poles so. Again, especially in constrained
control, the most robust option can be recommended, which corresponds to the numerator
tuning with p = 0, yielding

b1 = b2 = 0; Fp(s) =
A0

s2 + A1s + A0
; A0 =

1
TiTD

; A1 =
Ti + TD

TiTD
(20)

3.3. MRDP-Based Calculation of the Optimal Series PIDA Parameters

A more complicated situation arises from the factorization of the obtained controller
transfer function point of view in the case of the PIDA controller.

By introducing a disturbance observer in the form of a low-pass filter 1/(1 + Tis)
connected to the (possibly saturated) overall controller output and compensating the
reconstructed disturbance at the output of the stabilizing PDA controller, in the proportional
zone of control, the series PIDA controller transfer function can be expressed as

R(s) =
(Kp + Kds + Kas2)(1 + Tis)

Tis
= Kp

(1 + TDs + T2
As2)(1 + Tis)

Tis
(21)

For a nominal IPDT process (2), it yields the closed-loop transfer function

Fc(s) =
R(s)S(s)

1 + R(s)S(s)
=

(KsKas2 + KsKds + KsKp)(1 + Tis)
s2TieTds + (KsKas2 + KsKds + KsKp)(1 + Tis)

(22)
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with the characteristic quasi-polynomial

A(s) = s2TieTds + (KsKas2 + KsKds + KsKp)(1 + Tis) (23)

Four unknown PIDA controller parameters, together with the position of the unknown
dominant pole so represent five unknown parameters that can be calculated by considering
quintuple dominant pole fulfilling

[di A(s)/dsi]s=so = 0 ; i = 0, 1, 2, 3, 4 (24)

From an equation formulated by using the fourth A(s) derivative as d4 A(s)/ds4 = 0,
it is now possible to calculate the dominant pole/time constant

so = −(4−
√

4)/Td = −2/Td; To = −1/so = Td/2 (25)

The dimensionless controller parameters can be calculated from (24) (e.g., by using a
computer algebra support) as

κ = KpKsTd ≈ 0.9323; τi =
Ti
Td
≈ 2.5832; τD =

TD
Td
≈ 0.4168;

δ = KdKs = κτD ≈ 0.3885; τ2
A =

T2
A

T2
d
≈ 0.0484; α =

KaKs

Td
= κτ2

A ≈ 0.04511
(26)

To avoid overshooting of setpoint step responses, the controller has to be used with a
third-order prefilter

Fp(s) =
1 + b1s + b2s2 + b3s3

(1 + Tis)(1 + TDs + T2
As2)

(27)

canceling the numerator zeros of the closed loop transfer function (22). The setpoint
step responses can yet be accelerated by choosing the prefilter numerator Np(s) (19) with
p ∈ [0, 3] to cancel p of the quintuple real dominant closed-loop poles so. Again, the most
robust option corresponds to the numerator tuning with p = 0, when

b1 = b2 = b3 = 0;

Fp(s) =
A0

s3 + A2s2 + A1s + A0
;

A0 =
1

TiT2
A

; A1 =
Ti + TD

TiT2
A

; A2 =
TiTD + T2

A
TiT2

A

(28)

The PIDA controller parameters κ and τi (27) are now obviously closer to the series
PI controller (12) than to the series PID ones (17). This is due to the fact that the R(s)
numerator

NPIDA = 1 + TDs + T2
As2 = 1 + 0.4168Tds + 0.0484T2

d s2 (29)

does not have real poles that could alternate with the calculated value Ti during R(s)
factorization, but the complex conjugate pole-pair

s1,2 = (−4.305785124± 1.456492874j)/Td, (30)

The impossibility of choosing a shorter time constant Ti from the controller parameters
complying with (24) will cause the more delayed transition from a control limit to the
steady state. Thus, in the case of transient responses with a constrained control signal,
the transients will be slowed down, with the subsequent occurrence of process input
and output overshoots. Work [28] therefore proposed to replace NPIDA by neglecting the
imaginary parts of its poles, i.e., approximating it with a double real pole/time constant as

NPIDA = T2
As2 + TDs + 1 ≈ 0.0538s2T2

d + 0.4640Tds + 1 = (0.2320Tds + 1)2 (31)
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Subsequently, the controller transfer function (21) with one set of parameters (26) and
NPIDA replaced by NPIDA has to be factorized for the new time constant Ti = 0.2320Td (see
the equivalent conversion for series PID control in [4]) as follows:

Ti = 0.2320Td; Kp = 0.932273
0.232

2.583KsTd
=

0.0837
KsTd

;

TD = 2.583Td + 0.232Td = 2.815Td; Kd = KpTD = 0.2356/Ks;
T2

A = (2.583Td) 0.232Td = 0.599T2
d ; Ka = T2

AKp = 0.0502Td/Ks

(32)

This yields the new set of dimensionless parameters

κ = KpKsTd ≈ 0.0837; τi =
Ti
Td
≈ 0.2320; τD =

TD
Td
≈ 2.815;

δ = KdKs = κτD ≈ 0.2356; τ2
A =

T2
A

T2
d
≈ 0.599; α =

KaKs

Td
= κτ2

A ≈ 0.0502
(33)

In comparable items, these recalculated parameters are already much closer to the
optimal PID (17) than the parameters of the original PIDA controller (26). Thereby, compar-
ing to PID, the recalculated κ value increased slightly, the τi and τD values decreased. This
approximate design with a reduced Ti value shows smoother responses with a minimum
number of monotonic segments at the process output. Similarly as the series PIDA con-
troller (26), also the design based on the parallel PIDA controller tuned with the MRDP
method and modified with anti-windup based on the conditioning technique [27,33] leads
to constrained transients with input and output overshoots, which is not acceptable in
numerous mechatronic applications.

3.4. MRDP-Based Calculation of the Series PIDAJ Parameters

By introducing a disturbance observer in the form of a low-pass filter 1/(1 + Tis)
connected to the (possibly saturated) overall controller output and compensating the
reconstructed disturbance at the output of the stabilizing PDAJ controller (see Figure 3),
in the proportional zone of control, the series PIDAJ controller transfer function can be
expressed as

R(s) =
(Kp + Kds + Kas2 + Kjs3)(1 + Tis)

Tis
= Kp

(1 + TDs + T2
As2 + T3

J s3)(1 + Tis)

Tis
(34)

For a nominal IPDT process (2), it yields the closed loop transfer function

Fc(s) =
R(s)S(s)

1 + R(s)S(s)
=

(KsKjs3 + KsKas2 + KsKds + KsKp)(1 + Tis)
s2TieTds + (KsKjs3 + KsKas2 + KsKds + KsKp)(1 + Tis)

(35)

with the characteristic quasi-polynomial

A(s) = s2TieTds + (KsKjs3 + KsKas2 + KsKds + KsKp)(1 + Tis) (36)

Five unknown PIDAJ controller parameters, together with the position of the unknown
dominant pole so, represents six unknown parameters that can be calculated by considering
the six-fold dominant pole. From an equation formulated by using the fifth A(s) derivative
as d5 A(s)/ds5 = 0 it is now possible to calculate the dominant pole/time constant as

so = −(5−
√

5)/Td ≈ −2.7639/Td; To = −1/so ≈ 0.3618Td (37)
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The dimensionless controller parameter can now be calculated as

κ = KpKsTd ≈ 0.0915; τi =
Ti
Td
≈ 0.1747;

τD =
TD
Td
≈ 2.4434; δ = KdKs = κτD ≈ 0.2236;

τ2
A =

T2
A

T2
d
≈ 0.7166; α = KaKs/Td = κτ2

A ≈ 0.0656

τ3
J =

T3
J

T3
d
≈ 0.0709; γ = KjKs/T2

d = κτ3
J ≈ 0.0065

(38)

To avoid overshooting of setpoint step responses, the controller has to be used with
a prefilter

Fp(s) =
1 + b1s + b2s2 + b3s3 + b4s4

(1 + Tis)(1 + TDs + T2
As2 + T3

J s3)
(39)

canceling the numerator zero of the closed loop transfer function (35). The setpoint step
responses can be accelerated by choosing the prefilter numerator Np(s) (19) with p ∈ [0, 4]
to cancel p of the quintuple real dominant closed-loop poles so. Again, the most robust
option corresponds to the numerator tuning with p = 0, yielding

b1 = b2 = b3 = b4 = 0;

Fp(s) =
A0

s4 + A3s3 + A2s2 + A1s + A0
;

A0 =
1

TiT3
J

; A1 =
Ti + TD

TiT3
J

; A2 =
TiTD + T2

A
TiT3

J
; A3 =

TiT2
A + T3

J

TiT3
J

(40)

4. Experimental Comparison

In the experimental comparison of the series PI, PID, PIDA and PIDAJ controllers that
all can be based on the Q4(s) filter specified in [4], we will start from the IPDT model of
system (2), which was found with the aim of the best possible approximation of the fastest
mode of the measured setpoint step response. Because this model provides the largest
possible value of Ks, according to [28], we expect it to provide the best possible robust
stability areas even when using higher-order filters (in our case, n = 4). This filter provides
all the necessary signals to verify the above-mentioned controllers.

When organizing the experiment, steps of the reference setpoint signal and steps
of the input disturbance (load) have been considered. Because (especially with respect
to the control signal limitations) asymmetries tend to appear in real loops, setpoint and
disturbance steps are realized both upwards and downwards (Figure 4).
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Figure 4. Measured signals from the experiment corresponding to: setpoint step to w = 0.4 at t = 5 s,
load step ∆u = 0.5 at t ∈ [15, 25) s, load step ∆u = 0 at t ∈ [25, 35) s, load step ∆u = −0.25 at
t ∈ [35, 45) s, load step ∆u = 0 at t ∈ [45, 55) s, setpoint step to w = 0.8 at t = 55 s, to w = 0.4 at
t = 65 s and to w = 0 at t = 75 s.

4.1. Setpoint Step Responses

As in the IPDT system control, setpoint step responses corresponding to PI and PIDA1
controller appear with overshoot (see Figures 5 and 6), which is the largest for the PI
controller. The corresponding performance measures computed for steps towards w = 0.4
up and down are in Table 1. The excessive effort of the controller increases with the
derivative degree m.

In view of the fact that we are actually controlling a stable system, the overshoot of PI
and PIDA1 control (signaled mainly by increased PO and TV0(y) values) is smaller than
would correspond to an IPDT system, but still big enough to deal with. The size of the
setpoint steps in Figures 5 and 6 upwards and downwards is the same. However, due to
the different limit values of the control signal and contribution to asymmetry caused by
the internal feedback influencing the equivalent load disturbance, they will not exceed the
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setpoint in the same way: upward step responses are faster (smaller IAEs values), and all
shape deviations are larger.

Figure 5. Details of setpoint step responses from w = 0 to w = 0.4 at t = 5 s.
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Figure 6. Details of setpoint step responses from w = 0.8 to w = 0.4 at t = 65 s.

The use of controllers with higher-order derivatives, in general, leads to a reduction
of the initial overshoot PO through the setpoint value and to an acceleration of transient
responses, including disturbance reconstruction. However, it leads simultaneously to
increased oscillation of the output and the input around the steady states (increasing
TV1(u) values). For the PIDAJ controller, the amplitude of permanent oscillations is already
greater than the initial overshoot caused by limiting the control signal during the transient
response. Therefore, when it comes to the smoothest possible alignment of transient
responses and steady states, we obtain a result similar to conclusion [30]—the order of the
used filter should be chosen as n ≥ m + 2.
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Table 1. Performance measures IAE, TV0(y) and TV1(u) corresponding to the setpoint steps from
Figures 5 and 6 calculated for t1 ∈ [5, 15), y(t1) = y1, u(t1) = u1, w(t1) = w1 = 0.4, t2 ∈ [65, 75),
y(t2) = y2, u(t2) = u2, w(t2) = w2 = 0.4 with maximal (red) and minimal values (blue), PO1, PO2—
percentage overshoot

IAE1 TV0(y1) TV1(u1) PO1 IAE2 TV0(y2) TV1(u2) PO2

PI 0.853 0.100 1.208 6.50 0.948 0.074 0.934 5.00

PID 0.852 0.066 3.170 0.75 0.903 0.048 2.774 0.75

PIDA1 0.820 0.122 7.932 4.75 0.915 0.082 6.338 3.25

PIDA2 0.813 0.060 8.244 0.50 0.921 0.046 6.012 0.50

PIDAJ 0.809 0.098 27.198 1.25 0.901 0.060 22.288 1.00

4.2. Disturbance Step Responses

Since the disturbance steps for t ∈ [35, 55) did not bring new information, just the
disturbance steps carried out on the interval t ∈ [15, 35) will be evaluated. Figures 7
and 8 and the data in Table 2 correspond to upwards and downwards steps implemented
by an additional load signal steps superimposed to the controller output. In this case,
the asymmetry of the jumps up and down is not as great as with setpoint steps, because
the corresponding range of output changes is now significantly smaller. However, the
effect of increasing the order of the derivative degree m used in controller on speeding up
transients and reducing the maximum overshoot due to a disturbance step is uniform and
clearly positive.

The signal of the reconstructed disturbance is also established faster. From the distur-
bance reconstruction point of view, however, the performance of controllers with higher-
order derivatives is more debatable, because they lead to more oscillating signals, which
may still require additional filtering to yield some information about the disturbance acting
on the process.

Table 2. Performance measures IAE, TV1(y) and TV1(u) corresponding to the load disturbance
steps from Figures 7 and 8 calculated for t1 ∈ [15, 25), y(t1) = y1, u(t1) = u1, w(t1) = w1 = 0.4,
t2 ∈ [25, 35), y(t2) = y2, u(t2) = u2, w(t2) = w2 = 0.4 with maximal (red) and minimal values (blue),
PO—percentage overshoot.

IAE1 TV1(y1) TV1(u1) PO1 IAE2 TV1(y2) TV1(u2) PO2

PI 0.032 0.082 1.426 5.25 0.034 0.080 1.452 6.00

PID 0.020 0.106 4.962 4.00 0.019 0.104 4.756 4.00

PIDA1 0.015 0.130 11.584 2.50 0.019 0.150 11.630 2.25

PIDA2 0.014 0.104 11.512 2.75 0.015 0.112 11.276 2.75

PIDAJ 0.015 0.112 42.386 2.00 0.014 0.100 43.820 2.50
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Figure 7. Details of load disturbance step responses from ∆u = 0 to ∆u = 0.5 at t = 15 s.
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Figure 8. Details of load disturbance step responses from ∆u = 0.5 to ∆u = 0 at t = 25 s.

5. Discussion

In Section 2, we presented an IPDT model of a DC motor with a fourth-order filter at
the controller input. In it, we addressed the question of what types of controllers can be used
based on the signals provided by the given control structure. In [4], the choice was limited
to the use of PI or PID controllers. After the introduction of PIDA and PIDAJ controllers, the
most optimal (limit) results were obtained with higher-order controllers. The conclusions
from the experimental verification can be interpreted in different ways. For example,
for the required speed of transient responses (IAE) or minimum shape deviations at the
input and output of the process, the specified performance can be achieved by designing
a suitable filter (changing n and Tf). Once the filter with order n is determined, the most
optimal (limit) performance can correspond to a controller structure with derivatives of
even higher-order than the PIDAJ controller. Analogous to FO PID control [9], the use of
controllers with higher-order derivatives leads to the creation of new degrees of freedom in
the design.
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5.1. Filter Design

In [4], the selection of the Q4 filter was motivated by the requirement to have suf-
ficiently filtered controller output signals even for PID controller. This was achieved by
choosing a sufficiently high relative degree of the controller with filter (nr = 3). In this
work, all output derivatives used by the controller were generated with the same Q4 fil-
ter, which subsequently simplified the analytical design of the optimal loop parameters.
This approach is innovative compared to the alternative approaches [11–24,64], where the
output derivatives (or accelerations) are generally computed using separate filters for each
controller derivative term or for the entire controller, but without additional information
about the effect of the filter on the process identification.

The problems associated with the use of strictly proper controllers can be illustrated by
comparing the responses of the individual components of the PIDA and PIDAJ controllers in
Figures 9 and 10. The controllers are strictly proper with relative degrees 2 and 1. However,
the jerk feedback of the PIDAJ controller (which does not meet recommendation (3)) already
acquires significant values that can be called excessive controller effort. Their amplitudes
are significantly higher than the contribution of the proportional component u0(t) =
Kp(w(t)− y(t)).
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Figure 9. Individual control components of the PIDA controller corresponding to different control
error derivatives and the transients according to Figure 4.
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Figure 10. Individual control components of the PIDAJ controller corresponding to different control
error derivatives and the transients according to Figure 4.

Thus, the PIDA and PIDAJ controllers are calculated for the process approximated
by (2) according to (33) and (38):

PIDA: Ti = 0.0418; Kp = 3.1000; Kd = 1.5707; Ka = 0.0602;
PIDAJ: Ti = 0.0314; Kp = 3.3889; Kd = 1.4907; Ka = 0.0787; Kj = 0.0014.

(41)

exhibit relatively low derivatives of the control error. However, as shown in Tables 1
and 2, even coefficients with such small values can lead to significant improvement in
transient response.

Because automatic feedback reduces the control error, the value of the proportional
component u0(t) gradually decreases after abrupt changes in w(t), even as the output value
itself, and hence the value of Kpy(t), increases. At low output values, the contribution of
the system’s internal feedback is negligible. At the upper limit of the control signal, the
output value changes almost linearly, as in the control of an integral system. At higher
output levels, the internal feedback of the system (the actual system is not the integrating,
but a stable process) is already dominant and the output changes gradually slower while
the limit of the control signal is still active.

The derivative component u1(t) = KD(ẇ− ẏ) is also practically constant for small
values of the process output and the limited process input signal. At high output values,
the derivative component decreases exponentially. The internal feedback of the system
slows down the transient response.
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The acceleration component of the control u2(t) = KA(ẅ− ÿ), in the PIDA controller
(satisfies (3)) is relatively small compared to u0 and u1. In the PIDAJ controller, the changes
are relatively small and are around zero. Such an influence may seem insignificant, but
in the control of unstable systems, the acceleration component allows a wider range of
delays [32].

The jerk component of the PIDAJ controller with the filter applied (not satisfying (3))
can be considered a waste of energy, even though this component further extends the
allowable delay values of unstable processes [32]. However, the sharp increase in the
amplitude of this signal suggests that if the derivative component order were further
increased and the relative controller degree is 0, yet higher excessive noise would occur at
the controller output. A similar conclusion regarding the degree of derivatives used and
filter degree applies more generally (see Remark 3).

It should be noted that acting disturbances at stabilizing controller outputs are practi-
cally imperceptible.

5.2. Series Versus Parallel HO-PID Controllers

As an extension of the traditional series PI and PID controllers, the newly introduced
design of PIDA and PIDAJ controllers tuned by the MRDP method expands the range of
available closed-loop dynamics in saturating control. However, similar to the previous
studies [4,5,28], it requires a specific factorization of the controller transfer function with the
selection of Ti as the smallest numerator time constant. If the numerator contains complex
zeros, the factorization can be done by approximately replacing the given pair with a
double real zero. Although the parallel (see [27]) and series structures lead to the same
transient responses in linear control, the responses differ significantly when the control
signal is limited. The parallel PI, PID, PIDA and PIDAJ control with traditional anti-windup
solutions based on the conditioning technique [33] resulted in overshoot of the output for
the given controller structures with reference filters [27], while the newly proposed series
solutions with modified controller transfer functions had no or negligible overshoot. It
should also be noted that a direct implementation of the conditioning technique is not
possible, since it requires strictly proper controllers. Therefore, the order of the filters should
be reduced to obtain a strictly proper controller, and the remaining filter can be placed after
the control limitations. Thus, the proposed controller design using a modification of the
MRDP method enabled a simple realization of controllers that yield near-optimal control
loop dynamics under the given controller structures.

However, since parallel controllers may give better results in some situations, the
design and comparison of series and parallel controllers, or the consideration of different
factorizations of series controllers, must still be treated as an open problem.

5.3. Trade-Off in Automatic-Reset Tuning

The task of calculating the optimal value of Ti is a typical trade-off that occurs in engi-
neering applications. With respect to the reconstruction of disturbances from the steady-state
values of the controller output, Ti must be as long as possible. On the other hand, for a fast
transition from the saturation limit to a steady-state value of the control signal, Ti must be
short. To analyze the effect of Ti in combination with the nonlinear saturation block (which is
a special case of sectoral nonlinearity), the control loop must be transformed into a canonical
equivalent circuit with saturation and a linear part [28,52,65–67]. However, in such a case,
different controller parameterizations correspond to different transfer functions of the linear
part, which could explain the different behavior.

5.4. Robustness Versus Excessive Control Effort

The decrease in IAE values when the derivative degree (m) in the controllers is
increased is associated with an increase in TV1(u) values. However, it should be recalled
that robust controllers are often implemented as sliding mode control (SMC) [68–72], where
the control signal is constantly oscillating, which can lead to a sharp increase in TV1(u).
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It should be noted that even these sliding controllers can provide smooth, well-damped
control signal waveforms in the limit case. From this point of view, the evaluation results are
also not a surprise, but only a revelation of existing trends by showing some relationships
between HO PIDs and SMCs.

6. Conclusions

Combining classical and modern control approaches, the design of control structures
with automatic-reset for reconstruction and compensation of constant input disturbances is
presented. Thereby, the stabilizing controllers are used with higher-order derivatives. It
is shown that by adding to them a positive feedback in the form of a low-pass filter from
the entire controller output, a simple disturbance observer (DOB) is achieved that reliably
reconstructs constant disturbances at the process input by evaluating the steady-state
values of the possibly limited controller output.

The automatic tracking-based DOB and stabilizing controllers with derivatives have
already been derived up to the tenth order. However, in this work, we restrict ourselves
to the third-order derivatives provided by the noise attenuation filter Q4(s) (1), which is
considered as part of the process in [4]. With respect to the robustness of the higher-order
filters, the process identification should aim at obtaining the IPDT model with the largest
possible values of the gain Ks and KsTd (see [6]).

To obtain the optimal estimate of the loop dynamics, which is also suitable for the
constrained control, the time constants of the controller numerator are calculated us-
ing the multiple real dominant method [4,28] and subsequently factorized. The time
constant for automatic reset is then chosen as the shortest possible time constant of the
controller numerator.

It was shown in [4] that although it is possible to approximate a stable speed servo
system more accurately using FOTD models, the use of simpler IPDT models is at least
equivalent in terms of control performance. Since the computational complexity increases
with increasing derivative degree, especially when designing PIDA and PIDAJ controllers,
we restricted ourselves to IPDT models. The results obtained were in line with expectations,
showing that closed-loop velocities increase and overshoot decreases as the derivative
degree of the controller increases.

Although this brand new family of generalized hyper-reset-based controllers is related
to the HO PID controllers proposed in [27], they are equivalent only in the linear domain,
which becomes very narrow, especially when higher-order derivatives are used. The
remaining question is whether it is still appropriate to refer to both families of controllers
by a single name [73].

Future work in this area will focus on the following:

• A more detailed investigation of possible design improvements for even higher deriva-
tive degrees;

• The question of when an increase in derivation order is appropriate in practice;
• Further investigation of the relationship between series and parallel controllers, solu-

tions with different disturbance observers, comparisons with fractional order PIDs;
• HO controllers based on double integrator and dead time models.
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Abbreviations
The following abbreviations are used in this manuscript:

1P One-Pulse, response with 2 monotonic segments (1 extreme point)
AW Anti-Windup
ADRC Active Disturbance Rejection Control
FO Fractional Order
HO Higher Order
IAE Integral of Absolute Error
IFAC Integral Federation of Automatic Control
IMC Internal Model Control
IPDT Integrator Plus Dead-Time
MRDP Multiple Real Dominant Pole
P Proportional
PD Proportional-Derivativee
PDA Proportional-Derivative-Accelerative
PDAJ Proportional-Derivative-Accelerative-Jerk
PI Proportional-Integral
PID Proportional-Integral-Derivative
PIDA Proportional-Integral-Derivative-Accelerative
PIDAJ Proportional-Integral-Derivative-Accelerative-Jerk
PPM Performance Portrait Method
PWM Pulse-Width-Modulated
SMC Sliding Mode Control
TV0 Deviation from Monotonicity
TV1 Deviation from 1P Shape
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27. Huba, M.; Vrančić, D.; Bisták, P. PID Control with Higher Order Derivative Degrees for IPDT Plant Models. IEEE Access 2021,
9, 2478–2495. [CrossRef]

28. Huba, M.; Bistak, P.; Vrancic, D. Series PIDA Controller Design for IPDT Processes. Appl. Sci. 2023, 13, 2040. [CrossRef]
29. Heo, J.P.; Lim, S.; Im, C.G.; Ryu, K.H.; Sung, S.W. New non-interactive form of the proportional-integral-derivative-acceleration

(PIDA) controller and its explicit tuning rule. Korean J. Chem. Eng. 2023. [CrossRef]
30. Huba, M. Filter choice for an effective measurement noise attenuation in PI and PID controllers. In Proceedings of the 2015 IEEE

International Conference on Mechatronics (ICM2015), Nagoya, Japan, 6–8 March 2015.
31. Skogestad, S. Simple analytic rules for model reduction and PID controller tuning. J. Process Control 2003, 13, 291–309. [CrossRef]
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