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Summary
Background DNA methylation (DNAm) in cord blood has been associated with various prenatal factors and birth
outcomes. This study sought to fill an important knowledge gap: the link of cord DNAm with child postnatal growth
trajectories from birth to age 18 years (y).

Methods Using data from a US predominantly urban, low-income, multi-ethnic birth cohort (N = 831), we first
applied non-parametric methods to identify body-mass-index percentile (BMIPCT) trajectories from birth to age
18 y (the outcome); then, conducted epigenome-wide association study (EWAS) of the outcome, interrogating over
700,000 CpG sites profiled by the Illumina Infinium MethylationEPIC BeadChip. Multivariate linear regression
models and likelihood ratio tests (LRT) were applied to examine the DNAm-outcome association in the overall
sample and sex strata.

FindingsWe identified four distinct patterns of BMIPCT trajectories: normal weight (NW), Early overweight or obesity
(OWO), Late OWO, and normal to very late OWO. DNAm at CpG18582997 annotated to TPGS1, CpG15241084 of
TLR7, and cg24350936 of RAB31 were associated with BMIPCT at birth-to-3 y, 10 y, and 14 y, respectively (LRT FDR <
0.05 for all).

Interpretation In this prospective birth cohort study, we identified 4 distinct and robust patterns of growth trajectories
from birth to 18 y, which were associated with variations in cord blood DNAm at genes implicated in inflammation
induction pathways. These findings, if further replicated, raise the possibility that these DNAm markers along with
early assessment of BMIPCT trajectories may help identify young children at high-risk for obesity later in life.

Funding Detailed in the Acknowledgements section.

Copyright © 2023 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction
Overweight or obesity (OWO) in childhood is classified
by body-mass-index percentiles (BMIPCT) calculated
according to age and sex-specific growth charts. The
Center for Disease Control (CDC) and the World
Health Organization (WHO) growth charts1,2 indicate
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the cut-off for overweight at >85th percentile, with
>95th (CDC) or 97th (WHO) considered obesity.3 Low
birth weight (<2500 g)4 or early development of obesity
as early as the age of 2 years predicted obesity 30 years
later,5 especially in children with severe obesity.6

Within the period from birth to young adulthood
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Research in context

Evidence before this study
Epigenetic signatures such as DNA methylation in cord blood
might mirror prenatal nutritional differences and metabolic
programming that may affect future risk of overweight or
obesity (OWO). However, data are very limited on the link
between cord epigenetic marks and child postnatal body mass
index (BMI) longitudinal trajectories.

Added value of this study
This longitudinal birth cohort study offers an opportunity to
investigate the prospective association between cord DNA
methylation and postnatal BMI trajectory and avoid reverse
causation. Using methods for unsupervised learning clustering
and repeated BMI measurements, we defined four distinct

BMI trajectory groups from birth to age 18 years. We
performed epigenome-wide association study (EWAS) to
uncover differentially methylated CpG sites between the BMI
trajectory groups.

Implications of all the available evidence
This study showed significant link between cord DNA
methylation marks with postnatal BMI trajectories. These
findings warrant additional investigation and raise the
possibility that combining DNA methylation markers with
early assessment of BMI trajectories may help identify young
children at high-risk for obesity later in life, thus offers the
window of opportunity for precision early risk assessment and
targeted prevention.
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(age of 18 years), several obesity-related critical periods
were highlighted7; for example, obesity at 3 years is a
predictor for OWO in adolescence. Of adolescents with
obesity, about half were OWO at the age of 5 years; The
greatest acceleration in body mass index (BMI) occurs
between 2 and 6 years of age. This acceleration is
associated with the risk of OWO in adolescents. In
contrast, most adolescents with normal weight had a
normal weight from birth to 14 years. OWO children
that become OWO adults have an increased risk
of cardiometabolic diseases8 and cardiovascular
mortality.9

Epigenetic modifications include changes to the
genome that can alter gene expression without chang-
ing the DNA sequence,10 with DNA methylation
(DNAm) as one of the mechanisms that underlie
epigenetic regulation.11 Epigenetic alterations can be
induced by several environmental factors, such as
environmental carcinogens, alcohol, tobacco, exercise,
and diet, and can occur during all life periods, from the
embryonic and fetal stages to adulthood.12 Genotype
and lifestyle are known risk factors for obesity, and
increasing evidence indicates that these influences may
start as early as the fetal and post-natal periods, altering
the epigenetic regulation of specific genes central to
this process.13

Cord DNAm represents the newborn epigenetic state
during pregnancy and is potentially affected by maternal
exposures and maternal and newborn genetics; Cord
DNAm was associated with maternal exposures as
pre-pregnancy weight and weight gain during preg-
nancy,14,15 maternal smoking,16 depression,17 and prena-
tal arsenic exposure.18 On the other hand, previous
studies have linked cord DNAm with a child’s weight in
different life periods,19 body size,20 adiposity,21 and blood
pressure percentiles.15 Yet, data regarding the associa-
tion of cord DNAm with repeated and frequent weight
measurements throughout years from birth to adoles-
cence is limited but critically needed.
For this analysis, we used data from the ongoing,
prospective Boston Birth Cohort (BBC), which has fol-
lowed the study’s children from birth up to age 21 years
with a collection of repeated measurements of height
and weight over time, offering the opportunity to define
BMI longitudinal trajectory. Our study objectives were
to examine the association between cord DNAm and
child BMI trajectory across different stages of child
growth and development, from birth to 1 year, 2 years, 3
years, 6 years, 10 years, and 14 years, and the entire
paediatric age birth to 18 years. We further examined
the association between cord DNAm and BMI trajectory
among boys and girls, respectively, to identify potential
sex differences.
Methods
This study included 831 mother–newborn pairs from
the BBC (registered in ClinicalTrial.Gov NCT03228875),
a US predominantly urban, low-income, multi-ethnic
population. The BBC was initiated in 1998 with rolling
enrollment at the Boston Medical Center in Boston, MA,
as detailed elsewhere.22,23 In brief, mothers who deliv-
ered a singleton live birth at the Boston Medical Center
were invited to participate 24–72 h after delivery. The
BBC is enriched by preterm (<37 weeks of gestation)
and low birthweight (<2500 g) births by design of over-
sampling PTB at enrollment. Pregnancies resulting
from in vitro fertilisation, multiple gestations (e.g.,
twins, triplets), fetal chromosomal abnormalities, major
birth defects, or preterm birth due to maternal trauma
were excluded. After mothers provided written
informed consent, research assistants (RAs) adminis-
tered a standardised questionnaire interview on
maternal socio-demographic characteristics, lifestyle,
including smoking and alcohol consumption, diet, and
reproductive and medical history. Maternal and
newborn clinical information, including birth outcomes,
was abstracted from the medical records.
www.thelancet.com Vol 91 May, 2023
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DNAm profiling in cord blood and quality control
steps
Cord blood was obtained by the trained nursing staff of
the labour and delivery service; the quality of the DNA
samples has been demonstrated in our previous studies
using the Illumina BeadChip.24 963 cord DNA samples
(plus 21 replicates) were sent to the University of Min-
nesota Genomics Center for genome-wide DNAm
profiling using the Illumina Infinium MethylationEPIC
BeadChip (850K). With this platform, DNAm profiles
for a total of 865,859 CpG sites (at locations of cytosines
followed by guanine) were successfully generated, and a
β-value for each CpG site was examined and reported,
ranging from 0 to 1.0, to signify the percentage of
DNAm at each CpG site. Quality control steps were
detailed before.16 Briefly, systematic quality control steps
were performed using existing analytic pipelines with
the R/Bioconductor package ‘minfi’,25 and the distribu-
tion of each cell type (CD4+, CD8+, T cells, B cells,
monocytes, granulocytes, natural killer cells, and
nucleated red blood cells) was estimated.26 We excluded
7 sex mixed-up samples, 2 samples with call rate <98%
methylation sites, 12 samples with mean log2 intensity
<10, and 2 samples with logistic error. At the locus level,
4193 CpG sites with a detection p value >0.01 in more
than 5% of the samples were removed. An additional
140,271 CpG sites were removed for the following rea-
sons: having an annotated SNP at the measured or
extension site or that overlapped with the probe and/or
that potentially cross-hybridised to other genomic loca-
tions. We then performed the single-sample Noob
(ssNoob) methods for background and dye bias correc-
tion27 and quantile normalisation to normalise type I
and type II probes. These steps resulted in quality
DNAm data for 721,395 CpG sites in 940 samples for
subsequent analyses.

Sample selection: obesity groups and obesity-
related critical period calculations
Out of the data available for the BBC, we selected 3029
children with height and weight measured in the follow-
up visits. We calculated BMIPCT using WHO (birth to 2
years old1) and CDC growth charts (age 2 years and up2)
for these children. As the frequencies of a child’s stan-
dard well-care visits decreases by age, we defined the
time windows of the BMIPCT data into 32 time points
(Fig. S1): monthly measurements in the first year,
quarterly measurements in the second, and yearly
measurements from month 36 (3rd year) to the 216th
month. We selected to focus on seven overlapping age
periods representing different developmental phases.
These included the BMIPCT trajectories from visit 1
after birth to the end of each age period: birth to 1 year,
birth to 2, birth to 3, birth to 6, birth to 10, birth to 14,
and birth to 18 years. To complete missing data (for the
primary analysis), we fitted a LOWESS (locally weighted
scatterplot smoothing) curve,28 as we demonstrated.29
www.thelancet.com Vol 91 May, 2023
Briefly, we adopted a locally weighted scatterplot
smoothing curve within a time-limit aware scheme
(LOWESS-TLS). Each missing BMIPCT data was pre-
dicted using a regression curve (LOWESS) of the avail-
able observations within the reasonable time frame
around the missing time point. For the missing
monthly data from birth to 1 year old, observations no
more than 1 year apart were used; for missing quarterly
data between 1 and 2 years old, imputation was allowed
no more than one year away; for subsequent missing
annual data, imputation was allowed from information
no more than two years apart. The range of time limit at
different ages was determined by our paediatrician
epidemiologist based on the density of data availability
and relevance to child growth. Based on the first age
period in this analysis (birth to 1) and availability of
children with DNAm analysis, we selected children that
included at least one BMIPCT measurement at the first
age period and refined the similar sample size at each
period, thus resulting in a sample size of 831 for each
age period allowing us to follow the observed or
discovered trajectory and examine changes between
OWO groups over time (A flow diagram of the sample
selection for the primary analysis is presented in
Fig. S2). The OWO groups, which represent the growth
trajectory for seven age periods using BMIPCT of the
observed and imputed data, were constructed separately
for each period, as follows: first, we applied k-means
clustering with k = 2 for each matrix containing the
BMIPCT measurements (seven matrices, one for each
age period). In each period, applying the k-means clus-
tering identified two major groups. Next, we used
Principal Component Analysis (PCA) to find the 1st and
2nd principal components. When examining the rela-
tionship between k-means clustering and PCA plot, we
observed that PC1 drove the k-means clustering groups.
A larger k corresponded to a more refined grouping
based on the first principal component. To further
obtain informative grouping, we chose to use the second
principal component to further divide the two groups
into 4 groups (Fig. S3), as previously demonstrated.30

The OWO groups resulting from this procedure repre-
sent four distinctive trajectories named retrospectively
after calculating and plotting all BMIPCT trajectories: 1.
Early OWO: children with early onset OWO who
demonstrated a consistently high BMIPCT from birth to
the end of each age period; 2. Late OWO: late onset
OWO children that were NW at birth but experienced a
rapid weight increase in the first months of life to
become OWO by year 1; 3. NW to very late OWO:
children distinguished from the late OWO by main-
taining NW at early ages but becoming OWO by year 6;
4. NW children consistently kept NW from birth to the
end of each age period. Table S1 presents the charac-
teristics of the 831 children with calculated OWO
groups and DNAm data used in this study compared to
2198 without OWO calculation.
3
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Sample selection: time window analysis
For examining the association between cord DNAm and
BMI at different ages (point prevalence), we used the
available BMI data for the following 21 “time windows”:
month 2 ± 1 to month 18 ± 1, month 20–24, month
36–48, month 48–60, month 60–72, month 72–84,
month 84–96, month 96–108, month 108–120, month
120–132, month 132–144, month 144–158, and month
168 to the maximum age with available BMI measure-
ment (if more than one measurement available we
picked the latest one). We further stratified the data
according to the reported sex of the child and repeated
the association analysis of BMI with DNAm for each
time window.

Definition of main covariates
For background characteristics and adjustment of the
statistical models, we used the following data: maternal
age at delivery, parity (Nulliparous or Multiparous),
maternal education (below college or college and higher),
maternal self-reported race (Black/African American,
White, and Hispanic), maternal pre-pregnancy BMI,
maternal diabetes (non, gestational diabetes or pre-
existing DNAm), child’s sex (female vs male; abstracted
from the medical records, and verified during the DNAm
data quality control), maternal smoking, birth weight (as
continuous and binary with below 2500 g defined as the
low birth weight (LBW)4), and gestational age (GEAA) at
birth as continuous and binary with above/below week 37
defined as “preterm”.4 The estimation of GEAA was
detailed before22 and was performed using an established
algorithm based on both the last menstrual period and
the result of early ultrasound (<20 weeks gestation).
Standardised birth weight (SBWT) was defined as birth
weight standardised by the mean and variance in the
stratum of the corresponding ethnic group, sex, and
gestational week in the reference population, as detailed
before.31

Statistical analysis
The primary aim of this report is to examine the associ-
ation between cord DNAm and BMIPCT growth trajec-
tories across several age periods during childhood.
Growth trajectories were classified into OWO groups, as
detailed above. The secondary aims included examining
the association of cord DNAm with birth weight/GEAA
ratio and BMI at multiple selected time windows for the
entire available cohort and stratified by sex. Weight and
BMI data for the secondary analysis were not imputed.
Prenatal and perinatal characteristics across subgroups of
child BMI longitudinal trajectories from birth to 18 years
were examined using the chi-square test for categorical
variables and ANOVA for continuous variables. All sta-
tistical analyses were performed using R (version 4.1; R
Foundation for Statistical Computing). For the regional
plots, we used the coMET package.32 The “CMplot”33 and
“ggplot2”34 were also used to output the main figures.
Identification of significantly associated CpG sites
To minimise the effect of outliers and ensure
normality, we applied an inverse normal trans-
formation to obtain inversely normalised β-values for
each methylation site. We examined differential cord
DNAm between OWO groups using the lmFit func-
tion in the “limma”35 package. The potential batch
effect was estimated and accounted for using the
“SmartSVA” package,36 with models additionally
adjusted with calculated surrogate variables (SVs) for
each of the linear models in this study. The linear
regression models in the primary analysis included
the inversely-normalised β-value at each CpG site as
the outcome and the OWO groups (separately for each
of the seven age periods) as the predictor, adjusting
for potential confounders (“main model”): child’s sex,
maternal education, race, parity, GEAA, maternal
diabetes, low birth weight (as binary outcome due to
co-linearity with GEAA) and SVs. Since using
“SmartSVA,” we did not adjust for cell-type compo-
sition, which was represented by some of the SVs.37

We performed sensitivity analyses for the primary
outcome of the association between cord DNAm and
OWO groups, including adding either folic acid or
estimated cord blood cell composition to the main
model and omitting LBW from the main model. The
false discovery rate (FDR)38 was applied to correct for
multiple testing, with FDR <0.05 as the genome-wide
significance cutoff. A Likelihood Ratio Test (LRT) was
applied to examine the goodness-of-fit between a full
model, including the OWO groups, and a reduced
model without. The LRT included the same covariates
as the “limma” model, detailed above. We extracted
the significant CpG sites resulting from the LRT and
considered them significant associations with the
OWO groups. For the secondary analysis, examining
the associations of cord DNAm with SBWT and BMI
at the range of ages, we used LRTs, with adjustments
for potential confounders similar to the main model
and detailed along with the results. We examined the
BMI*sex interactions using a joint model (joint
testing the BMI main effect and BMI*sex interaction
term). The association between cord DNAm and BMI
was also analysed using the LRT in stratification for
sex.

Ethics
Written informed consent was obtained from all the
study mothers. Institutional Review Boards of the Bos-
ton Medical Center and the Johns Hopkins Bloomberg
School of Public Health approved the study. The study is
also registered on ClinicalTrials.gov (NCT03228875).

Role of funders
The funder of the study had no role in study design, data
collection, data analysis, data interpretation, the writing
of the report, or the submission for publication.
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Results
Population characteristics
Maternal and child characteristics across birth to 18
OWO groups are presented in Table 1. We further
stratified these characteristics by sex and OWO group
(Table S2). Significant differences between the OWO
groups were observed for mothers with no previous
childbirths (nulliparous) vs multiparous (p = 0.005; chi-
square test), with the highest prevalence of nulliparous
observed in the late OWO group, and the highest
prevalence of multiparous was observed in the early
OWO group. Differences in OWO prevalence in chil-
dren of mothers with diabetes (either gestational or
pregestational diabetes) vs children of a mother without
any type of diabetes were observed (0.011; chi-square
test), with most mothers with gestational diabetes in
the NW group and most mothers with pregestational
diabetes in the NW to very late OWO group. The early
Entire (N = 831) Early OWO

Maternal age at delivery (years)

Mean (SD) 28.4 (6.54) 29.1 (6.46

Maternal pre-pregnancy BMI (kg/m2)

Mean (SD) 26.9 (6.41) 26.8 (6.37)

Gestational age at delivery (weeks)

Mean (SD) 38.6 (2.5) 39.0 (1.87)

Parity (n (%))

Nulliparous 374 (45.0%) 102 (37.2%

Multiparous 457 (55.0%) 172 (62.8

Maternal race (n (%))

Black/African American 602 (72.4%) 188 (68.6

White 44 (5.3%) 17 (6.2%

Hispanic 185 (22.3%) 69 (25.2%

Maternal diabetes (n (%))c

No 763 (92.5%) 255 (93.1%

Gestational diabetes 35 (4.2%) 13 (4.7%

Pregestational diabetes 27 (3.3%) 5 (1.8%

Maternal education (n (%))

Below college 551 (66.3%) 188 (68.6

College and higher 280 (33.7%) 86 (41.4%

Maternal smoking (n (%))

Never smoked 619 (74.5%) 178 (77.7%

Ever smoked 212 (25.5%) 51 (22.3%

Maternal smoking during pregnancy (n (%))

Never smoked 686 (82.6%) 223 (81.4%

Ever smoked 145 (17.4%) 51 (18.6%

Baby’s sex (n (%))

Female 396 (47.7%) 145 (52.9%

Male 435 (52.3%) 129 (47.1%

Child’s birth weight (g)

Mean (SD) 3120 (667) 3350 (572)

Bold values denote statistical significance at the p < 0.05 level. BMI, body mass index; N
data from birth to 18 years of age. Early OWO: children with consistently high BMIPCT; L
NW at early life that was increased to OWO by the 6th year; NW: children with consis

Table 1: Prenatal and perinatal characteristics across subgroups of child BMI

www.thelancet.com Vol 91 May, 2023
OWO group had the highest birth weight (p = 8.5e-06 vs
late OWO; p = 2.5e-10 vs NW to very late OWO; p = 2.0e-
08 vs NW; all ANOVA posthoc test Bonferroni adjusted)
and had a later birth week compared with the late OWO
and the NW to very late OWO (p = 0.011 and p = 0.009,
respectively; ANOVA test). Maternal pre-pregnancy BMI
was lowest in the NW group and significantly differed
from the late OWO group (p = 4.3e-04; ANOVA test).
The mean and median BMIPCT across OWO groups for
the measurements included in the seven age periods
calculation are presented in Table S3. The early OWO
group showed a stable high BMIPCT during the first
year, with a median BMIPCT of 77.6 [inter-quartile-
range (IQR) = 27.6] in the first month and a median
of 76.1 (IQR = 27.4). The late OWO had a median
BMIPCT of 33.2 (IQR = 39.8) in the first month and
gradually increased their BMIPCT to a median of 87.6
(IQR = 21.8) by the end of the first year of life. The other
(N = 274) Late OWO (N = 258) NW to very late OWO (N = 140) NW (N = 159) p-valueb

0.057

) 28.5 (6.42) 27.8 (6.80) 27.4 (6.54)

0.001

28.0 (6.51) 26.6 (5.9) 25.4 (6.45)

<0.001

38.4 (2.76) 38.2 (2.80) 38.5 (2.63)

0.005

) 134 (51.9%) 69 (49.3%) 69 (43.4%)

%) 124 (48.1%) 71 (50.7%) 90 (56.6%)

0.134

%) 193 (74.8%) 112 (80.0%) 109 (68.6%)

) 9 (3.5%) 7 (5.0%) 11 (6.9%)

) 56 (21.7%) 21 (15.0%) 39 (24.5%)

0.011

) 230 (89.1%) 128 (91.4%) 150 (94.3%)

) 10 (3.9%) 3 (2.1%) 9 (5.7%)

) 13 (5.0%) 9 (6.4%) 0 (0%)

0.493

%) 169 (65.5%) 86 (61.4%) 108 (67.9%)

) 89 (34.5%) 54 (38.6%) 51 (32.1%)

0.973

) 155 (71.8%) 124 (66.3%) 162 (81.4%)

) 61 (28.2%) 63 (33.7%) 37 (18.6%)

0.252

) 207 (80.2%) 123 (87.9%) 133 (83.6%)

) 51 (19.8%) 17 (12.1%) 26 (16.4%)

) 120 (46.5%) 67 (47.9%) 64 (40.3%) 0.083

) 138 (53.5%) 83 (52.1%) 95 (59.7%)

3080 (718) 2910 (666) 2970 (615) <0.001

W, normal weight; OWO, overweight or obesity. aBMI trajectories were defined using longitudinal BMI percentile
ate OWO: children with BMIPCT increased to OWO by the end of the first year; NW to very late OWO: children with
tently normal BMIPCT. bTested using ANOVA or chi-square tests. cData available for N = 825.

longitudinal trajectories from birth to 18 years.a
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two groups remain at the lower BMIPCT, with the NW
to very late OWO group having a median BMIPCT of 6.6
(first month; IQR = 16.6) and 37.2 (end of year 1;
IQR = 33.5), and the NW group had a median BMIPCT
of 48.6 (IQR = 38.0), that decreased to 28.2 (IQR = 30.0).

Growth trajectories according to repeated BMIPCT
measurements
BMIPCT individual trajectories for selected age periods
are presented in Fig. 1. Although the groups included
two NW groups at earlier age periods (Fig. 1a), by the age
of 6 years old (Fig. 1b), one NW group tended to become
OWO (“NW to very late OWO”) and kept the OWO tra-
jectory over the following periods (Fig. 1c and d).

Cord DNAm and BMIPCT-based OWO groups
Overall, we observed 3 significant associations (FDR <
0.05) and five marginal associations (FDR < 0.1) in the
LRT of DNAm and OWO groups across different age
periods (Fig. 2a; Fig. S4; Table S4). We further exam-
ined the functional annotation and pattern of co-
methylation using the coMET plot32 describing the
genomic regions (±50 kb from each side of the leading
CpG) of the leading CpG sites: cg15241084 (birth to 10
years; p = 8.71e-09; FDR = 0.006; Fig. 2b), cg18582997
(birth to 3 years; p = 4.10e-08; FDR = 0.029; Fig. S5a),
and cg24350936 (birth to 14 years; p = 3.31e-08,
FDR = 0.022; Fig. S5b).
Fig. 1: Illustration of children with distinctive patterns of BMIPCT tr
selected four age periods: (a) birth to 3y (36m), (b) 6y (72m), (c) 10y
trajectories and a smoothing curve for each OWO group. Early OWO: child
increased to OWO by the end of the first year; NW to very late OWO: child
NW: children with consistently normal BMIPCT. BMI, body-mass-index
overweight or obesity; y, years.
We also examined the differential DNAm between
the 4 OWO groups (a summary of the linear models for
epigenome-wide DNAm associations is presented in
Table 2) using linear models for microarray data, with
overall 7 significant associations (FDR < 0.05), mainly
between groups 1 and 4, highlighting the significant
CpG sites from the LRT analysis: Toll like receptor 7
(TLR7) cg15241084 (at multiple age periods), Tubulin
Polyglutamylase Complex Subunit 1 (TPGS1)
cg18582997, and RAB31, Member RAS Oncogene
Family (RAB31) cg24350936. Sensitivity analysis
excluding birth weight (included in the main model as a
binary outcome) or adding either folic acid or cell type to
the models resulted in similar results (Tables S5–S7).

We repeated this analysis among the largest race/
ethnic subgroup, non-Hispanic Black (N = 602). The
significant associations observed for the entire cohort
were attenuated [Birth to 1: cg03786842 (p = 6.64e-05,
FDR = 0.871); Birth to 2: cg11451801 (p = 1.78e-06,
FDR = 0.660); Birth to 3: cg18582997 (p = 3.13e-04,
FDR = 0.999); Birth to 6: cg15241084 (p = 1.45e-05,
FDR = 0.554) cg09287864 (p = 4.79e-06, FDR = 0.481);
and Birth to 10: cg15241084 (p = 1.58e-05, FDR = 0.519),
cg16997622 (p = 3.72e-05, FDR = 0.737) A differential
methylation between late OWO and the group defined
as NW to very late OWO in the age period of birth to 10
years was observed for cg04199164 annotated to Ubiq-
uitin Specific Peptidase 40 (USP40; estimate (SE): 0.469
ajectories over selected age periods. BMI percentile trajectories of
(120m), and (d) 18y (216m). Each plot presents individual BMIPCT
ren with consistently high BMIPCT; Late OWO: children with BMIPCT
ren with NW in early life that was increased to OWO by the 6th year;
; BMIPCT, BMI percentiles; m, months; NW, normal weight; OWO,
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Fig. 2: EWAS results for the seven age periods and chromosome visualisation for the leading CpG sites. Likelihood Ratio Test results. (a)
Full model: OWO group, maternal smoke, maternal education, gestational age, maternal diabetes, child’s sex, race, parity, low birth weight, and
batch effect variables. Reduced model: maternal smoke, maternal education, gestational age, maternal diabetes, child’s sex, race, parity, low
birth weight, and batch effect variables. (b) coMET plot describing the genomic region of birth to 10y LRT results for the association between
OWO groups and cord DNA methylation, along with functional annotation of the region and pattern of co-methylation at the ±50 kb CpG sites
of the leading CpG of critical period birth to 10y. CpG, cytosine phosphate guanine; EWAS, epigenome-wide association study; OWO, over-
weight or obesity; y, years.

Articles
(0.083), p = 2.72e-08, FDR = 0.019). In the age period of
birth to 14 years, a differential DNAm of Ras-related
protein Rab-31 (RAB31) cg24350936 was observed (late
OWO vs NW to very late OWO; estimate (SE): −0.463
(0.078), p = 4.83e-09, FDR = 0.003).

Cord DNAm and standardised birth weight
We examined the association between cord DNAm and
SBWT for the entire available cohort (Fig. 3). Using the
LRT test (with the same covariates as the main model,
replacing LBW and GEAA with the independent variable
SBWT), we detected a total of 27 significant associations
www.thelancet.com Vol 91 May, 2023
(multivariate model; FDR < 0.05), with the following top
5 associations: cg04356233 of Major facilitator super-
family domain containing 7 (MFSD7; p = 1.43e-08,
FDR = 0.005), cg04837676of Casein kinase I isoform
delta (CSNK1D; p = 1.36e-08, FDR = 0.005), and
cg27168858 of 24-Dehydrocholesterol Reductase
(DHCR24; p = 3.36e-08, FDR = 0.008), cg23295629 of
Pvt1 oncogene (PVT1; p = 1.09e-07, FDR = 0.015), and
one unannotated site: cg20671781 (p = 7.06e-8,
FDR = 0.012). As a sensitivity analysis, we added cell
type composition to the model (Fig. S6), resulting in 169
significant associations (LRT FDR < 0.05), and found
7
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Age periods Comparison groupsa Gene Chromosome CpG Association with OWO groupsb

logFC SE p q (FDR)

Birth to 1y 1 vs 4 DHX32 10 cg03786842 0.309 0.056 4.95e-08 0.035

Birth to 2y 3 vs 4 PSMB10 16 cg11451801 −0.515 0.09 3.719e-08 0.0268

Birth to 3y 2 vs 3 TPGS1 19 cg18582997 −0.38 0.068 4.08e-08 0.027

Birth to 6y 1 vs 4 TLR7 X cg15241084 −0.321 0.059 6.85e-08 0.048

1 vs 4 - 7 cg09287864 0.252 0.047 1.34e-07 0.048

Birth to 10y 1 vs 4 TLR7 X cg15241084 −0.359 0.06 3.87e-9 0.0027

2 vs 4 KIAA0430 16 cg16997622 −0.378 0.071 7.32e-08 0.052

Birth to 14y 2 vs 3 RAB31 18 cg24350936 −0.386 0.066 7.937e-09 0.0057

NW, normal weight; OWO, overweight or obesity; y, years. a1 = early OWO; 2 = late OWO; 3 = NW to very late OWO; 4 = NW. bModel adjusted for maternal smoking,
maternal education, gestational age, maternal diabetes, child’s sex, race, parity, low birth weight, and batch effect variables. No associations for critical periods birth to 14y
and birth to 18y were observed.

Table 2: A comparison of the methylation difference between subgroups of BMI longitudinal trajectories by age periods.
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cg04837676, cg04356233, cg20671781, cg12723026, and
cg05993265 as the top 5 significant CpG sites
(FDR = 0.0003, FDR = 0.0004, FDR = 0.0006,
FDR = 0.0015, and FDR = 0.003, respectively).

Cord DNAm and repeated BMI measurements
Next, we examined the association between cord DNAm
and BMI at different ages, starting at month 2 (±1
month), up to the maximum measurement available,
with a total of 21 “time windows,” using LRT, in a
multivariate model. For the entire sample available at
each time window, we found significant CpG sites at the
ages 12 months (N = 1), 20–24 months (N = 2), year 3
Fig. 3: The association between cord DNA methylation and standardis
plots. Full model: INT CpGs ∼ SBWT + maternal smoking + Maternal edu
effect variable (50 SVs). For the reduced model, we excluded SBWT. Th
discovery rate; LRT, Likelihood Ratio Test; SBWT, standardised birth weig
(N = 1), year 4 (N = 2), year 9 (N = 2), year 13 (N = 19),
year 14 (N = 8), and at the maximum age available
(N = 15; FDR < 0.05 for all; Fig. 4a) with the sex inter-
action analysis shown a noticeable increase in the
number of significant CpG sites at month 12, month
20–24 to year 10, and from year 12 to maximum age
examined. In girls (Fig. 4b), the increase occurred at the
2nd, 7th, and from the age of 12, with multiple signif-
icant CpG sites at month 4, month 12, month 15, month
18, month 20–24, year 3 to year 10, and year 12 to
maximum. Among boys (Fig. 4b), the increase was
smaller and later, compared with the girls, with fewer
but significant CpG sites detected at year 7, year 8, and
ed birth weight; LRT results. Quantile–quantile (QQ) and Manhattan
cation + maternal diabetes + race + sex of the child + parity + batch
e number of significant associations with FDR <0.05: 27. FDR, false
ht.
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year 12 to maximum age (multivariate models excluding
sex covariate; FDR < 0.05 for all). All FDR <0.05 (for
each time window) associated CpG sites from the LRTs
are available in Table S8 (top 10 CpG sites) and Table S9
(for associations with more than 10 significant hits per
time window). The following top CpG sites overlapped
between the time windows: ADAMTS2 cg17173355 in
girls at year 3 and 4, SFT2D3 cg01900048 in girls at
years 3 and 6, cg05646827 (unannotated) in boys at
12 and 13 years, and DDAH1 cg08654262 at years 13
and maximum age in boys. Fig. S7a and b shows sig-
nificant CpG sites with a more conservative FDR,
demonstrating significant associations’ trajectory trends
at certain ages.

Discussion
In this multi-ethnic cohort with repeated BMIPCT
measurements across the paediatric age periods from
birth to 18 years, we identified 4 distinct and robust
patterns of BMIPCT trajectories: early OWO, Late
Fig. 4: Time window analysis: The association between cord DNA met
stratified by sex. Models adjusted for maternal smoking, education, gestat
and batch effect (model a; stratification by sex using model a without sex c
interaction test (excluding BMI and BMI*sex). (b) LRT results were strat
likelihood ratio test.

www.thelancet.com Vol 91 May, 2023
OWO, NW to very late OWO, and those who were
consistently NW through the years from birth to
adolescence. We found specific cord DNAm CpG sites
associated with these patterns, some overlapping, in
different age periods. A secondary analysis showed sex-
specific DNAm patterns associated with BMI at
different ages, from birth to adolescence, with DNAm
mirroring sex differences in early development.

Our primary analysis used four OWO groups as the
main outcome to associate with cord DNAm. Although
previous studies have shown the association of cord
DNAm with birth weight or BMI in different ages from
early to late childhood,19,39 they mainly described point-
prevalence BMI measurements up to 10 years old. We
found three significant CpG sites annotated to TPGS1,
also known as Chromosome 19 Open Reading Frame 20
(C19orf20), RAB31, and TLR7. Data on the methylation
of these CpG sites is limited. In mice, C19orf20 was
associated with obesity.40,41 In humans, methylation of
cg18582997 annotated to C19orf20 was examined in an
hylation and BMI (LRT results). Presented for the entire cohort and
ional age, maternal diabetes, child’s sex, race, parity, low birth weight,
ovariate). (a) LRT results for reduced model excluding BMI and a joint
ified by sex. BMI, body mass index; FDR, false discovery rate; LRT,

9
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EWAS of repeated whole blood DNAm measurements
from birth to late adolescence and found a decrease in
cg18582997 methylation by −8.9e-4 per year.42 While
there are no previous EWAS on cg24350936, methyl-
ation on other sites annotated to RAB31 gene were
mostly associated with age42 and gestational age.43 TLR
proteins are families of DNA sensors regulating the
innate immune response by interacting with unmethy-
lated CpG-DNA to activate a proinflammatory response
to microbial DNA.44 In obesity and metabolic syndrome,
TLRs may have a central role in inflammation induc-
tion, with an increase in TLRs expression in different
tissues among obese individuals.45 We observed a sig-
nificant association with OWO groups in several age
periods for TLR7 cg15241084.46 Whole blood methyl-
ation of this CpG site was also associated with weekly
alcohol intake.46 There is a need for further studies to
explore the long-term obesity/BMI - methylation asso-
ciations in these genes to map specific cord-blood CpGs
to feature or distinguish OWO groups.

Excess calories and the reduction in energy expen-
diture leads to obesity and a loss of homeostasis in the
adipose tissue that might promote chronic low-grade
inflammation.47 Our results highlighted the methyl-
ation on the TLR7 gene, first-line essential immune
receptors inducing inflammation,48 found to be associ-
ated with the OWO groups in two obesity-related critical
periods age 6, and 10 years– and specifically between the
extreme OWO groups – the NW and the early OWO.
This may be explained by the adipose tissue volume and
content differences reflected by excess weight. In the
first year of life, the dominant adipose tissue is subcu-
taneous, which later decreases during the second year of
life; The next increase in subcutaneous adipose tissue
and the total body fat content occurs between the 8th
and the 10th years of life, just before puberty.49 In obese
children, there are early signs of adipose tissue
dysfunction, reflected by the secretion of adipokines and
adipocyte hypertrophy.50 A recent publication found
differential gene expression between lean and obese
children (ages 10 and 13 years, respectively) in genes
involved in inflammation in subcutaneous adipose tis-
sue.51 These adiposity-related time windows and obesity-
related adipose tissue dysfunction can explain our
observation of the differential methylation between the
NW and early OWO groups. Our observations from this
analysis may promote an understanding of the epige-
netic role in adipose tissue distribution in childhood.

DNAm is an essential mechanism for regulating
gene expression.52 Hypo-methylated CpG regions are
commonly associated with gene activation, while hyper-
methylation in a CpG region is usually associated with
lower expressed or silenced genes53; however, the effect
of lower and higher methylation depends on the location
of the CpGs. High-density DNAm, especially in the
promoter region of a gene, can repress long-term
mRNA expression, as methylation near gene
promoters is correlated with low or no transcription.54

Transcriptional activation of some genes is associated
with hypomethylation of enhancer DNA, allowing tran-
scription factor binding.55 In our study, cg15241084,
located in the promotor, according to the functional
annotation track, showed a strong correlation with the
surrounding CpG sites. A previous study reported that
in 9 years old children, the umbilical cord tissue
methylation of specific CpG sites located in the pro-
motor of chromosomes 7 and 9 of endothelial nitric
oxide synthase (eNOS) and retinoid X receptor-α (RXRA)
genes, respectively, were associated with body fat.56

Another study examining DNAm in the blood of 355
young individuals (N = 130 ages 14–16 years; N = 225
ages 18–34 years) for known obesity-related single
nucleotide polymorphisms, found that out of 107 CpG
sites, about a third were located in genes promotors.57

We also observed differential methylation of
cg18582997 and cg24350936 (both late OWO vs NW to
very late OWO), located in the enhancer and promoter
with weak and moderate correlation between the sur-
rounding CpG sites. Although DNAm cannot solely
explain gene expression, exploring the region of the
DNAm promotes the understanding of this mechanism,
functionality, and, in this study context, the effect on
long-term children’s obesity trajectories.

Obesity in adulthood and childhood obesity have
some similar complications, such as elevated blood
pressure, type 2 diabetes, cardiovascular diseases, and
asthma58; However, obesity among children may also
lead to alterations in development, and with early pu-
berty in girls, but delayed in boys.59 In our two EWAS
models exploring the association of DNAm with SBWT,
we observed many significant associations, with 3 CpG
sites repeating in the top 5 of both analyses:
cg04837676, cg20671781, and cg04356233. Previous
studies found no association between cg04837676 and
cg04356233 with any phenotypes or exposures. How-
ever, the methylation of cg20671781 was associated with
birth weight60 and prenatal maternal smoking.61

Furthermore, in the EWAS of repeated whole blood
DNAm measurements from birth to late adolescence
mentioned above,42 cg20671781 was associated with
weight at the age of 6 years. The inflations for both
EWASs of SBWT were ∼1.2, suggesting some system-
atic bias to be considered while interpreting these re-
sults. Our “time window” analysis allowed us to
examine methylation patterns across the entire cohort
and stratified by sex. We observed a higher number of
significant findings in girls, with the number of signif-
icant sex interactions decreasing at the age of six, with
the boys having less significant associations, compared
with the girls, who demonstrated an increase in the
number of significant associations during the following
years. This pattern smilingly mirrors the biological
catch-up of boys, legging the girls’ pre-puberty period.
According to the GWAS catalogue,62 there are currently
www.thelancet.com Vol 91 May, 2023
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49 known genes associated with childhood obesity.
Concordantly, our time window analysis showed sig-
nificant methylation in previously recognised childhood
obesity-related genes, such as and Brain-Derived Neu-
rotrophic Factor (BDNF) (Table S9). The period-
overlapping cg01900048 measured in cord blood was
associated with prenatal phthalate exposure63 in a cohort
examining altered patterns of cord blood DNAm in 336
Mexican-American newborns. The other identified
CpGs were not previously associated with any traits
when measured in cord blood. Our analysis resulted in
many significant associations in some of the time win-
dows and the birthweight/GEAA EWAS; thus, it should
be interpreted with caution and considered exploratory.

This work has some limitations. Our sample size is
not adequately powered to in more refined subgroup
analyses in the future. Nevertheless, to our knowledge,
the present study is by far the largest with well-
characterised longitudinal BMI trajectories from birth to
18 years. The unique strength of the BBC, namely, dense
repeated measurements of BMIPCT in a traditionally
understudied US minority birth cohort, also limited our
ability to find appropriate existing sample to replicate our
study results. However, we anticipate that a US national
birth cohort, such as ECHO, will offer many opportu-
nities to replicate our study findings and to have a greater
sample size and power to conduct more refined subgroup
analyses in the future. Nevertheless, to the best of our
knowledge, this is the first and largest prospective study to
demonstrate distinct long-term OWO trajectory groups
associations with cord blood DNAm. BMIPCT was
calculated using two different growth charts: WHO and
CDC; however, this allowed us to explore the trajectory
from birth to 1 and 2 years old. This study is based on a
US, mostly urban, low-income, African American/Black
population; thus, the generalizability of the results should
be carefully examined. Yet, this might also be an advan-
tage as previously published studies were mostly Euro-
pean ancestry samples. We did not adjust the linear
models to cell type composition; However, a previous
publication has shown that adjusting for batch effect,
including cell mixture by SmartSVA, is sufficient.37

Nevertheless, we added sensitivity analyses showing that
adjusting for cell type did not affect the main findings. In
our primary analysis, we could not find any previously
reported CpG site associated with BMIPCT in children;
This might be because we examined the association of
cord DNAmwith obesity groups and not with BMIPCT as
a continuous variable or due to our more frequent visits
available for this cohort that resulted in a higher density of
BMI measurements. Our secondary findings support this
assumption The DNAm in cord blood could reflect pre-
natal influences on epigenetic programming during its
most sensitive period that may have a long-lasting impact
on child postnatal growth. The longitudinal nature of our
study offers an opportunity to investigate the prospective
association between cord DNAm and postnatal BMI
www.thelancet.com Vol 91 May, 2023
trajectory and avoid reverse causation. We acknowledge
that our findings are preliminary, and the biological
mechanism underlying the link between cord DNAm and
BMI trajectory remains to be explored. In this context, we
hope this present study will stimulate and inform future
studies along the same line. Our findings, if further
confirmed by future studies, will provide new insight into
the developmental origins of childhood obesity and will
also improve our ability in early risk assessment and early
prevention of childhood obesity. The strengths of this
study include the use of EPIC array, allowing us to detect
a high number of CpG sites with more CpGs at methyl-
ation dynamic sites according to the design of the chip,
and a high density of measurements from birth to
adolescence used to create obesity/growth patterns and
associate them with cord DNAm. Multiple visits also
reduce measurement errors, as a non-differential
misclassification can occur when dealing with real-life
data, even when following the same protocol. Finally,
we examined the longitudinal BMI data in two ways: by
using age periods, we highlighted the weight/weight gain
trajectory and the association with birth methylation and
by using point-prevalence BMI measurements and later
stratifying by sex, to explore further which ages during the
follow-up time were more associated with DNAm. This
allowed us to uncover novel CpGs associated with obesity
and replicate previous methylation findings in CpGs an-
notated to BMI-related genes.

In conclusion, we found that cord blood CpG sites
DNAm were associated with child BMI longitudinal
trajectories and revealed potential sex differences in the
associations. These findings lent further support for the
developmental origins of OWO and epigenetic alter-
ations as a potential underlying mechanism. These
findings, if further replicated, raise the possibility that
these DNAm markers, along with an early assessment
of BMIPCT trajectories, may help identify young chil-
dren at high risk for obesity later in life, thus offering
the window of opportunity for precision early risk
assessment and targeted prevention.
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