Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 1990 Apr;53(4):306–313. doi: 10.1136/jnnp.53.4.306

Disturbances in human arm movement trajectory due to mild cerebellar dysfunction.

S H Brown 1, H Hefter 1, M Mertens 1, H J Freund 1
PMCID: PMC1014168  PMID: 2341844

Abstract

The temporal structure of arm movements was studied in nine cerebellar patients with mild impairment of the upper limbs and in six age-matched control subjects. The experimental paradigm consisted of visually guided, step tracking movements about the elbow. Movements ranged from 10 degrees to 70 degrees in amplitude and were made under different instructions (fast, fast/accurate, accurate). As in normal subjects, cerebellar patients were able to scale peak velocity with movement amplitude. This relationship was highly linear under all instruction conditions. Similar relationships existed between movement duration and amplitude. In contrast to normal subjects who produced movements with nearly symmetric velocity profiles, movements made by cerebellar patients were characterised by short acceleration and long deceleration durations. The degree of asymmetry was directly related to movement duration but was unaffected by movement peak velocity. Acceleration durations did not increase beyond 300 ms even in movements lasting up to 1s. These findings demonstrate that, despite little or no obvious impairment of the limb during routine examination, the temporal structure of voluntary movements in cerebellar patients is clearly disturbed. This supports the view that the production of an optimal movement trajectory is under cerebellar influence.

Full text

PDF
306

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkeson C. G., Hollerbach J. M. Kinematic features of unrestrained vertical arm movements. J Neurosci. 1985 Sep;5(9):2318–2330. doi: 10.1523/JNEUROSCI.05-09-02318.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beppu H., Suda M., Tanaka R. Analysis of cerebellar motor disorders by visually guided elbow tracking movement. Brain. 1984 Sep;107(Pt 3):787–809. doi: 10.1093/brain/107.3.787. [DOI] [PubMed] [Google Scholar]
  3. Berardelli A., Rothwell J. C., Day B. L., Kachi T., Marsden C. D. Duration of the first agonist EMG burst in ballistic arm movements. Brain Res. 1984 Jun 18;304(1):183–187. doi: 10.1016/0006-8993(84)90879-5. [DOI] [PubMed] [Google Scholar]
  4. Bizzi E., Polit A., Morasso P. Mechanisms underlying achievement of final head position. J Neurophysiol. 1976 Mar;39(2):435–444. doi: 10.1152/jn.1976.39.2.435. [DOI] [PubMed] [Google Scholar]
  5. Bouisset S., Lestienne F. The organisation of a simple voluntary movement as analysed from its kinematic properties. Brain Res. 1974 May 17;71(2-3):451–457. doi: 10.1016/0006-8993(74)90988-3. [DOI] [PubMed] [Google Scholar]
  6. Braitenberg V. Is the cerebellar cortex a biological clock in the millisecond range? Prog Brain Res. 1967;25:334–346. doi: 10.1016/S0079-6123(08)60971-1. [DOI] [PubMed] [Google Scholar]
  7. Brooks V. B., Kozlovskaya I. B., Atkin A., Horvath F. E., Uno M. Effects of cooling dentate nucleus on tracking-task performance in monkeys. J Neurophysiol. 1973 Nov;36(6):974–995. doi: 10.1152/jn.1973.36.6.974. [DOI] [PubMed] [Google Scholar]
  8. Brown S. H., Cooke J. D. Amplitude- and instruction-dependent modulation of movement-related electromyogram activity in humans. J Physiol. 1981 Jul;316:97–107. doi: 10.1113/jphysiol.1981.sp013775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cooke J. D., Brown S. H., Cunningham D. A. Kinematics of arm movements in elderly humans. Neurobiol Aging. 1989 Mar-Apr;10(2):159–165. doi: 10.1016/0197-4580(89)90025-0. [DOI] [PubMed] [Google Scholar]
  10. Flament D., Hore J. Movement and electromyographic disorders associated with cerebellar dysmetria. J Neurophysiol. 1986 Jun;55(6):1221–1233. doi: 10.1152/jn.1986.55.6.1221. [DOI] [PubMed] [Google Scholar]
  11. Freund H. J. Time control of hand movements. Prog Brain Res. 1986;64:287–294. doi: 10.1016/S0079-6123(08)63423-8. [DOI] [PubMed] [Google Scholar]
  12. Hallett M., Marsden C. D. Ballistic flexion movements of the human thumb. J Physiol. 1979 Sep;294:33–50. doi: 10.1113/jphysiol.1979.sp012913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hallett M., Shahani B. T., Young R. R. EMG analysis of patients with cerebellar deficits. J Neurol Neurosurg Psychiatry. 1975 Dec;38(12):1163–1169. doi: 10.1136/jnnp.38.12.1163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hogan N. An organizing principle for a class of voluntary movements. J Neurosci. 1984 Nov;4(11):2745–2754. doi: 10.1523/JNEUROSCI.04-11-02745.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hollerbach M. J., Flash T. Dynamic interactions between limb segments during planar arm movement. Biol Cybern. 1982;44(1):67–77. doi: 10.1007/BF00353957. [DOI] [PubMed] [Google Scholar]
  16. Hulliger M., Nordh E., Vallbo A. B. Discharge in muscle spindle afferents related to direction of slow precision movements in man. J Physiol. 1985 May;362:437–453. doi: 10.1113/jphysiol.1985.sp015687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ivry R. B., Keele S. W., Diener H. C. Dissociation of the lateral and medial cerebellum in movement timing and movement execution. Exp Brain Res. 1988;73(1):167–180. doi: 10.1007/BF00279670. [DOI] [PubMed] [Google Scholar]
  18. Kornhuber H. H. Motor functions of cerebellum and basal ganglia: the cerebellocortical saccadic (ballistic) clock, the cerebellonuclear hold regulator, and the basal ganglia ramp (voluntary speed smooth movement) generator. Kybernetik. 1971 Apr;8(4):157–162. doi: 10.1007/BF00290561. [DOI] [PubMed] [Google Scholar]
  19. Lamarre Y., Jacks B. Involvement of the cerebellum in the initiation of fast ballistic movement in the monkey. Electroencephalogr Clin Neurophysiol Suppl. 1978;(34):441–447. [PubMed] [Google Scholar]
  20. Mai N., Bolsinger P., Avarello M., Diener H. C., Dichgans J. Control of isometric finger force in patients with cerebellar disease. Brain. 1988 Oct;111(Pt 5):973–998. doi: 10.1093/brain/111.5.973. [DOI] [PubMed] [Google Scholar]
  21. Meyer-Lohmann J., Hore J., Brooks V. B. Cerebellar participation in generation of prompt arm movements. J Neurophysiol. 1977 Sep;40(5):1038–1050. doi: 10.1152/jn.1977.40.5.1038. [DOI] [PubMed] [Google Scholar]
  22. Miall R. C., Weir D. J., Stein J. F. Visuo-motor tracking during reversible inactivation of the cerebellum. Exp Brain Res. 1987;65(2):455–464. doi: 10.1007/BF00236319. [DOI] [PubMed] [Google Scholar]
  23. Miller R. G., Freund H. J. Cerebellar dyssynergia in humans--a quantitative analysis. Ann Neurol. 1980 Dec;8(6):574–579. doi: 10.1002/ana.410080605. [DOI] [PubMed] [Google Scholar]
  24. Munhall K. G., Ostry D. J., Parush A. Characteristics of velocity profiles of speech movements. J Exp Psychol Hum Percept Perform. 1985 Aug;11(4):457–474. doi: 10.1037//0096-1523.11.4.457. [DOI] [PubMed] [Google Scholar]
  25. Mustard B. E., Lee R. G. Relationship between EMG patterns and kinematic properties for flexion movements at the human wrist. Exp Brain Res. 1987;66(2):247–256. doi: 10.1007/BF00243302. [DOI] [PubMed] [Google Scholar]
  26. Nelson W. L. Physical principles for economies of skilled movements. Biol Cybern. 1983;46(2):135–147. doi: 10.1007/BF00339982. [DOI] [PubMed] [Google Scholar]
  27. Ostry D. J., Cooke J. D., Munhall K. G. Velocity curves of human arm and speech movements. Exp Brain Res. 1987;68(1):37–46. doi: 10.1007/BF00255232. [DOI] [PubMed] [Google Scholar]
  28. Rothwell J. C., Traub M. M., Day B. L., Obeso J. A., Thomas P. K., Marsden C. D. Manual motor performance in a deafferented man. Brain. 1982 Sep;105(Pt 3):515–542. doi: 10.1093/brain/105.3.515. [DOI] [PubMed] [Google Scholar]
  29. Ruitenbeek J. C. Invariants in loaded goal directed movements. Biol Cybern. 1984;51(1):11–20. doi: 10.1007/BF00336183. [DOI] [PubMed] [Google Scholar]
  30. Sanes J. N., Evarts E. V. Effects of perturbations on accuracy of arm movements. J Neurosci. 1983 May;3(5):977–986. doi: 10.1523/JNEUROSCI.03-05-00977.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Schieber M. H., Thach W. T., Jr Trained slow tracking. II. Bidirectional discharge patterns of cerebellar nuclear, motor cortex, and spindle afferent neurons. J Neurophysiol. 1985 Nov;54(5):1228–1270. doi: 10.1152/jn.1985.54.5.1228. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES