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Abstract: Muscle atrophy is one of the main causes of sarcopenia—the age-related loss of skeletal
muscle. In this study, we investigated the effect of turmeric (Curcuma longa) extract (TE) supplemen-
tation on age-related muscle atrophy in a senescence-accelerated mouse model and explored the
underlying mechanisms. Twenty-six-week-old male, senescence-accelerated mouse resistant (SAMR)
mice received the AIN-93G basal diet, while twenty-six-week-old male, senescence-accelerated mouse
prone 8 (SAMP8) mice received the AIN-93G basal diet or a 2% TE powder-supplemented diet for
ten weeks. Our findings revealed that TE supplementation showed certain effects on ameliorating the
decrease in body weight, tibialis anterior weight, and mesenteric fat tissue weight in SAMP8 mice. TE
improved gene expression in the glucocorticoid receptor-FoxO signaling pathway in skeletal muscle,
including redd1, klf15, foxo1, murf1, and mafbx. Furthermore, TE might have the certain potential on
improving the dynamic balance between anabolic and catabolic processes by inhibiting the binding of
glucocorticoid receptor or FoxO1 to the glucocorticoid response element or FoxO-binding element in
the MuRF1 promoter in skeletal muscle, thereby promoting muscle mass and strength, and preventing
muscle atrophy and sarcopenia prevention. Moreover, TE may have reduced mitochondrial damage
and maintained cell growth and division by downregulating the mRNA expression of the genes
mfn2 and tsc2. Thus, the results indicated TE’s potential for preventing age-related muscle atrophy
and sarcopenia.

Keywords: turmeric extract; age-related skeletal muscle atrophy; sarcopenia; senescence-accelerated
mouse model; GR-FoxO signaling pathway

1. Introduction

Sarcopenia is characterized as an age-related decrease of skeletal muscle mass and
strength with impaired physical functioning and is mostly caused by skeletal muscle
atrophy [1]. Muscle atrophy causes physical dysfunction and makes it challenging for
people to carry out even normal daily activities. The mechanism behind muscle atrophy
involves the degradation of contractile proteins and cellular organelles within the muscle
tissue, resulting in the shrinkage of muscle fibers, thereby causing a decrease in muscle
cross-sectional area; activation of proteolytic systems is believed to be the primary driver
of this process [2,3].

Adverse outcomes associated with sarcopenia include an increased risk of falls, frailty,
and mortality [4,5]. Muscle atrophy and sarcopenia affect not only older adults but also
people with chronic diseases, such as cancer, diabetes, and chronic obstructive pulmonary
disease [6]. Moreover, sarcopenia is a major public health concern as the global population
ages. The World Health Organization estimates that by 2050, the number of people aged
60 years or older will reach 2 billion, and the number of people aged 80 years or older
will reach 426 million. The economic burden of sarcopenia is expected to increase as the
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number of older adults increases [4,5]. This highlights the importance of understanding
the mechanisms behind muscle atrophy and sarcopenia to facilitate the development of
effective interventions to prevent or mitigate these conditions.

Preventing muscle atrophy or sarcopenia can be achieved through a combination of
proper nutrition and physical activity. For example, a diverse diet as well as appropriate
protein intake can help to improve muscle mass and strength [7–9]. In addition, engaging
in healthy exercises such as aerobic and resistance exercise benefits by maintaining physical
functions in older adults [10,11]. Furthermore, it has been suggested that the combination
of a balanced diet, healthy oral functions, adequate physical activity, and robust social en-
gagement may be even more beneficial for preventing sarcopenia [12] as well as frailty [13].
Furthermore, in clinical therapy, non-steroidal anti-inflammatory drugs have been used
to treat muscle atrophy; however, they could be associated with adverse effects and have
harmful drug–drug interactions [14,15].

Spices and herbs have been found to have numerous health benefits including anti-
inflammatory and anticancer effects and have shown to improve cognition as well [16,17].
In a recent study, laurel was found to have a positive impact on preventing skeletal muscle
atrophy induced by dexamethasone, both in vitro and in a rat model [18]. Moreover,
morroniside, extracted from the medicinal herb Coronus officinalis, has been considered an
efficient and safe treatment for inflammatory muscle atrophy because of its potential to
inhibit both canonical and non-canonical NF-κB signaling pathways, regulate inflammatory
factors, and maintain the balance between anabolic and catabolic protein processes [19].
Mountain Ginseng, a traditional herbal medicine, has the capability to effectively suppress
muscle atrophy by causing a significant improvement in the levels of myosin heavy chain
protein in myoblasts, thereby promoting differentiation and inducing an increase in the
diameter of muscle tubes and formation of muscle fibers [20]. Thus, spices and herbs show
great potential in improving muscle atrophy especially because of the high safety they offer.

Moreover, as for the effects of herbal bioactive compounds on muscle atrophy, cur-
cumin, resveratrol, epigallocatechin gallate, and astragaloside IV have been indicated to be
effective against muscle atrophy. For example, curcumin is a bioactive compound found
in turmeric that possesses anti-inflammatory and antioxidant properties. Several studies
have investigated its effects on muscle atrophy and found that it can help prevent muscle
loss by reducing inflammation and oxidative stress [21]. Another compound, resvera-
trol, is a polyphenol found in grapes, red wine, and other plants that has also exhibited
anti-inflammatory and antioxidant effects as well as muscle loss prevention by reducing
inflammation and oxidative stress [22]. Moreover, epigallocatechin gallate, a catechin
found in green tea, has been found to modulate muscle homeostasis in type 2 diabetes by
improving muscle lipid oxidation and stimulate glucose uptake in insulin-resistant skeletal
muscle [23]. Further, astragaloside IV, a saponin found in Astragalus membranaceus, has
demonstrated anti-inflammatory and antioxidant effects as well as efficient prevention of
muscle loss by regulating mitochondrial quality control in a murine model of hind limb
suspension [24].

In this study, we focused on turmeric, a spice commonly used in cooking and tradi-
tional medicine that has gained considerable attention in recent years owing to its potential
therapeutic benefits, particularly in muscle health. Several studies have explored the ef-
fects of turmeric on muscle tissue, and the results have been promising. For example,
turmeric has been found to be effective in blocking lipopolysaccharide-induced muscle
loss by inhibiting p38-mediated upregulation of atrogin-1/MAFbx [25]. Additionally, a
water extract of Curcuma longa L. has been shown to prevent muscle atrophy by modulating
related genes and increasing antioxidant potential [26]. Furthermore, turmeric has shown
to improve skeletal muscle atrophy in a mouse model of streptozotocin-induced diabetes,
inhibiting protein ubiquitination without affecting protein synthesis [27]. In a recent study,
we found that turmeric extract (TE) improved muscle atrophy by enhancing the expres-
sion of MAFbx (also known as FBXO32/Atrogin-1) and MuRF1 genes and proteins in
dexamethasone-treated mice and myotubes [28].
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Despite these findings, the effects of TE on age-related muscle atrophy and sarcopenia
are not yet fully understood. As the global population continues to age, sarcopenia and
muscle loss become increasingly relevant health concerns. Considering this, the present
study aims to address the gap in knowledge by using a senescence-accelerated mouse
model to investigate the effects of TE on age-related muscle atrophy. Through our results,
we hope to provide valuable insights into the potential role of turmeric in maintaining
muscle health and preventing age-related muscle loss.

2. Materials and Methods
2.1. Animals and Experimental Design

Twenty-six-week-old male, senescence-accelerated mouse resistant (SAMR) mice and
senescence-accelerated mouse prone 8 (SAMP8) mice were housed in an individual animal
facility at a temperature of 22 ± 1 ◦C, humidity of 60 ± 5%, and reversed light/dark
cycle (12:12 h). The mice were provided with ad libitum access to both water and normal
feed composed of powdered AIN-93G diet (American Institute of Nutrition, 1993). The
experimental diet was supplemented with 2% TE powder [19], and corn starch was added
to maintain the caloric balance of the composition of each feed (Table 1). Three groups of
seven mice each were created and named as follows: (1) CON group: SAMR mice + normal
diet; (2) P8 group: SAMP8 + normal diet; and (3) P8 + TE group: SAMP8 mice + 2% TE diet.
All mice were anesthetized using isoflurane in the 10th week. Body weight and food intake
was measured every week. Organs of the lower limb skeletal muscles (gastrocnemius,
soleus, plantaris, tibialis anterior, and extensor digitorum longus), liver, kidney, and fat
tissues (mesenteric fat, retroperitoneal adipose tissue, and epididymal adipose tissue) were
removed, weighed, and flash-frozen for further analysis. The animal approval protocol
number is P20–033. All experimental procedures and animal health care were approved by
the Animal Experiment Committee of the University of Tokyo and conducted according to
the University of Tokyo Experimental Procedures.

Table 1. Composition of control diet (AIN93G) and 2% turmeric extract (TE) powder-supplemented diet.

Component Control Diet (%) 2% TE-Supplemented Diet (%)

Casein 20.00 20.00
β-corn starch 39.75 37.75
α-corn starch 13.20 13.20
Soybean oil 7.00 7.00

Sucrose 10.25 10.25
Cellulose 5.00 5.00

Vitamin mixture 1.00 1.00
Mineral mixture 3.50 3.50

L-cystine 0.30 0.30
TE powder 0.00 2.00

2.2. Total RNA Extraction for Real-Time PCR

We extracted the total RNA from the tibialis anterior, gastrocnemius, and soleus mus-
cles using the TRIzol reagent and the RNeasy Fibrous Tissue Mini Kit (Qiagen, Hilden,
Germany), which is a widely used method for isolating high-quality RNA from fibrous
tissue samples. The total RNA sample (500 ng) was then reverse-transcribed into comple-
mentary DNA using a PrimeScript™ RT Master Mix (Perfect Real Time; Takara Bio Inc.,
Shiga, Japan) to perform real-time PCR analysis. The instructions provided by the manu-
facturer were followed during this process, and the PCR analysis was conducted using the
Thermal Cycler Dice Real-Time System TP800 (Takara Bio Inc.) under specific conditions.
The initial step was denaturation at 95 ◦C for 30 s and then 40 cycles of denaturation at
95 ◦C for 5 s, followed by annealing and extension at 60 ◦C for 30 s. This is the standard
protocol for real-time PCR. The samples were matched to a standard curve generated
by a five-fold dilution of a template that was amplified using the same real-time PCR
conditions. This standard curve was used to determine the relative quantity of the target
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gene present in the samples. Real-time PCR data were presented as the fold-change, which
is a measure of how much the target gene is expressed relative to a reference gene. In this
case, the data were normalized to the mRNA expression of glyceraldehyde-3-phosphate
dehydrogenase, which is a commonly used reference gene in real-time PCR experiments.
The primer sequences used in this study have been mentioned in Supplementary Table S1.

2.3. Western Blot Analysis and Substrate-Level Phosphorylation

To assess the protein expression and phosphorylation levels in skeletal muscle tissue,
we performed protein extraction, electrophoresis, and western blotting. Skeletal muscle
tissue lysates were obtained and analyzed to investigate protein expression and phospho-
rylation levels. A total of 15–40 µg of lysates was used for this purpose. The methods for
electrophoresis and blotting followed in this study were the same as those for our previous
study [18]. Protein content of the samples was quantified using the Lowry assay, with
bovine serum albumin (BSA) serving as the standard. Subsequently, equivalent amounts
of protein samples (20 µg) were separated via sodium dodecyl sulfate-polyacrylamide gel
electrophoresis and transferred onto polyvinylidene fluoride membranes. The membranes
were then blocked with 5% BSA in tris-buffered saline with tween-20 (TBST) for 2 h. The
primary antibodies used in this study were directed against atrogin-1/MAFbx (Abcam,
Cambridge, UK; Cat. #ab168372), phospho-Akt (Ser473; Cell Signaling, Danvers, MA, USA;
Cat. #9271), and Akt (Cell Signaling; Cat. #9272). These primary antibodies were incubated
with the membranes overnight at 4 ◦C. Following this, the membranes were washed thrice
with TBST and incubated with the recommended dilution of the conjugated secondary
antibodies in TBST for 2 h at room temperature. The binding of the antibodies to the target
proteins was visualized using an ECL Western Blotting Detection System (GE HealthCare,
Chicago, IL, USA), and ECL signals were quantified using Ez-Capture MG (ATTO, Tokyo,
Japan). The protein expression was quantitatively analyzed using the CS Analyzer software
(version 3.0, ATTO).

The following primary antibodies (all diluted 1:1000) were used: anti-MAFbx (#ab168372;
Abcam), anti-MuRF1 (#sc-398608; Santa Cruz Biotechnology, Dallas, TX, USA), anti-Rheb
(#13879; Cell Signaling Technology), anti-Tubulin (#3873; Cell Signaling Technology), anti-
mTOR (#2983; Cell Signaling Technology), anti-Akt (#9272; Cell Signaling Technology), anti-
Phospho-mTOR (Ser2448) (#5536; Cell Signaling Technology), anti-Phospho-Akt (Ser473)
(#9271; Cell Signaling Technology), anti-Phospho-p70S6 Kinase (Thr389) (#9234; Cell Sig-
naling Technology), anti-Phospho-FoxO1 (Ser256) (#9461; Cell Signaling Technology), anti-
Phospho-IRS-1 (Ser612) (#2386; Cell Signaling Technology), anti-Phospho-IRS-1 (Ser307)
(#07-247; MilliporeSigma, Burlington, MA, USA), anti-IRS-1 (#sc-559; Santa Cruz Biotech-
nology), anti-Phospho-NF-κB p65 antibody (Ser536) (#3033; Cell Signaling Technology),
anti-Phospho-IκBα (Ser32) (#2859; Cell Signaling Technology), and anti-IκBα (#4814; Cell
Signaling Technology). The secondary antibodies anti-rabbit IgG (#NA934) and anti-mouse
IgG (#NA931) were purchased from GE HealthCare.

2.4. Statistical Analysis

The mean and standard error (SE) were calculated for the data. One-way analysis
of variance was used in the statistical analysis, followed by Tukey’s test. The cutoff for
statistical significance was p < 0.05. The statistical difference between three groups was
expressed using the letters ‘a’ and ‘b’. If the same letter was used between two groups, it
meant that there was no statistical difference.

3. Results
3.1. Food Intake and Body Weight

With respect to weekly and total mean food intake from week 26 to 36, no significant
differences were observed between the P8 + TE and P8 groups, but both groups showed
different results compared to the CON group (Figure 1A). No significant difference was
observed in weekly mean body weight between the three groups; however, the final body
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weight (week 36) was different between the P8 + TE and P8 groups, although they showed
no significant differences compared to the CON group (Figure 1B).
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Figure 1. General characteristics of CON, P8, and P8-TE groups from 26th to 36th week. (A) Weekly
mean food intake and total food intake for all groups. (B) Weekly mean body weight and final body
weight for all groups. All values are mean ± standard error (SE) (n = 6–7) via Tukey’s test. (CON,
control: SAMR mice with normal diet; P8, SAMP8 mice with normal diet; P8 + TE, SAMP8 mice with
turmeric extract (TE)-supplemented diet).

3.2. Fat Mass, Organ Weight, and Muscle Mass

After 36 weeks of feed treatment, the tibialis anterior muscle weight was significantly
different between the P8 + TE and P8 groups, as well as between the P8 + TE and CON
groups. However, no significant differences were observed among the other (relative)
muscle weights (Figure 2A). Regarding organ weight, the liver weight in the P8 group was
significantly different from the CON and P8 + TE groups. Moreover, the relative liver weight
in the CON group was significantly different from the P8 and P8 + TE groups. However, no
significant differences were observed in the (relative) kidney/spleen weights (Figure 2B).
Regarding fat tissues, the P8 and P8 + TE groups showed slight differences (p = 0.052) in
(relative) mesenteric fat tissue weight. No difference was found in retroperitoneal adipose
or epididymal adipose tissue (Figure 2C).

3.3. mRNA Expression in Skeletal Muscles

TE extract significantly improved muscle atrophy-related mRNA expression, espe-
cially in the glucocorticoid receptor-FoxO signaling pathway in skeletal muscle, including
muscle protein synthesis-relate gene of DNA-damage-inducible transcript 4 (redd1), mRNA
expression levels of muscle atrophy-related gene Ruppel-like factor 15 (klf15), FoxO3-
induced autophagy-related gene of forkhead box protein O1 (foxo1), myosin ubiquitination
and degradation-related gene of tripartite motif-containing 63 (murf1), and muscle atrophy-
related f-box protein 32 (mafbx), in the gastrocnemius, soleus, and tibialis anterior tissues.
In both the gastrocnemius and soleus tissues, klf15, redd1, foxo1, mafbx, and murf1 were
downregulated in the P8 + TE group compared to the P8 group (Figure 3A,B). In the tibialis
anterior tissue, the gene klf15 showed a downregulation trend, and redd1 was significantly
downregulated in the P8 + TE compared to the P8 group. Furthermore, the cell growth
and proliferation-related gene of tuberous sclerosis complex subunit 2 (tsc2) showed an
upregulation trend, and the muscle mitochondrial damage-related mitofusin 2 (mfn2) was
significantly upregulated in the P8 + TE group compared to the P8 group (Figure 3C).

3.4. Protein Expression and Substrate-Level Phosphorylation in Skeletal Muscles

We measured the expression of skeletal muscle proteins MAFbx, MuRF1, and Rheb
in the tibialis anterior and MAFbx and MuRF1 in the soleus; however, there were no
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significant differences in their expression levels between the P8 and P8 + TE groups
(Figure S1). Moreover, we detected substrate-level phosphorylation in tibialis anterior
proteins, including mammalian target of rapamycin complex 1 (mTORC1), protein kinase
B (Akt), 70 kDa ribosomal protein S6 kinase 1 (p70S6K1), FoxO1, insulin receptor substrate
(IRS) proteins at serine612 and serine307 (IRS-1Ser612 and IRS-1Ser307), nuclear factor-kappa
B (NF-κB), and nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor
alpha (IκBα). However, TE supplementation did not cause significant differences in the
levels of p-Akt, p70S6K1, and 4E-BP1 between the P8 and P8 + TE groups (Figure S2).
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4. Discussion

Muscle atrophy, accompanied with loss of muscle mass and strength, is a widespread
condition that affects individuals as they age. Muscle function decline is not only an aes-
thetic concern but also has serious implications for health and well-being. Muscle atrophy
is associated with a range of age-related illnesses, including but not limited to sarcopenia,
which is the age-related decline in muscle mass, strength, and function, as well as frailty,
which is a state of increased vulnerability to falls and other adverse health outcomes owing
to decreased physical and cognitive reserve [29,30]. However, its mechanism, especially
with respect to age-related aspects, remains unclear. In our previous study, we explored the
impact of TE on muscle atrophy in dexamethasone-treated mice and found that it produced
a significant effect by suppressing the expression of MAFbx and MuRF1 in C2C12 cells and
skeletal muscles of mice [28]. Encouraged by these results, we expanded our investigation
to examine the effect of TE on age-related muscle atrophy.

According to previous research, SAMP8 mice display a faster rate of muscle aging than
SAMR mice, which is reflected through their 40% shorter median lifespan and double the
grading score of senescence at the age of 8 months [31,32]. Furthermore, it has been reported
that age-related muscle mass loss, selective type-II fiber atrophy, and slower contraction
speeds occur at a relatively younger age in the soleus muscle of SAMP8 mice compared
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with other mouse strains; furthermore, the muscle atrophy is also more pronounced in
SAMP8 than in SAMP6 and SAMR1 aged mice [33].

Moreover, previous research has described the molecular biological modifications
that occur with aging in the fast-twitch extensor digitorum longus muscle of the SAMP8
mouse model using capillary electrophoresis-mass spectrometry [34]. Furthermore, the
examination of the gastrocnemius muscle in SAMP8 mice revealed a peak in muscle mass
at 7 months, followed by a decline in both functional and structural aspects at 8 months [35].
Hence, we used the two senescence-accelerated mouse models to investigate the effect of
TE on age-related muscle atrophy in the present study. We found that TE supplementation
significantly improved body weight loss at 36 weeks when comparing the P8 + TE and P8
groups. Notably, there was no statistical difference in the total food intake between P8 + TE
and P8 groups, which suggested that the observed effect of TE on body weight loss was not
because of differences in food intake, a finding that further validates our results (Figure 1).
Moreover, tibialis anterior weight, mesenteric fat tissue weight, and relative mesenteric
fat tissue also significantly or marginally improved in the P8 + TE group compared to the
P8 group.

In terms of transcriptomics, TE supplementation improved muscle atrophy in fast-
twitch muscle fibers (gastrocnemius and tibialis anterior), which contract powerfully over
short durations and fatigue quickly, as well as in slow-twitch muscle fibers (soleus), which
are fatigue-resistant and produce sustained, small movements and postural control [36].
The mRNA expression of klf15 in the gastrocnemius and redd1 in the soleus were sig-
nificantly upregulated in P8 compared to the CON group; moreover, both genes were
significantly downregulated in the muscle tissue of the P8 + TE group compared to the P8
group, while only redd1 was significantly downregulated in the tibialis anterior. The mRNA
expression of foxo1 in the soleus was also significantly downregulated in the P8 + TE group
compared to the P8 group. These data corroborate our previous study that investigated
the effects of TE supplementation on improving muscle atrophy in dexamethasone-treated
mice [28]. Further, klf15 is a member of the zinc finger transcription factor family that
can induce the transcription of muscle atrophy-related genes, such as marfbx1 and murf1
through foxo3a [37]. In this study, only the marfbx1 mRNA expression was significantly
downregulated in the soleus of the P8 + TE group compared to the P8 group. According
to a previous study, the ubiquitin ligase MuRF1 is associated with the ubiquitination and
degradation of myosin, which occurs by binding with the glucocorticoid receptor (GR)
and transcription factors FoxO and Klf15 [20]. FoxO3 is associated with the expression
of atrophy and autophagy-related genes as well as autophagic-lysosomal and ubiquitin-
proteasomal pathways that control protein degradation [38]. Moreover, a related study has
reported that FoxO deletion improves muscular strength and preserves muscular strength
in part by mildly suppressing atrophic pathways, including the regulation of Gadd45a
and Ube4a expression, without causing autophagosome accumulation in muscles in old
age [39]. In this study, although foxo3a expression showed no significant change among
the three groups, foxo1, which promotes FoxO3-induced autophagy [40], was marginally
or significantly downregulated in the P8 + TE group compared to the P8 group in the
gastrocnemius (p = 0.056) and soleus (p < 0.05), respectively (Figure 3). TE supplementation
also increased the soleus expression of redd1, which is a repressor of mTORC expression
and related to the nutrient-induced response of muscle protein synthesis. Its expression is
upregulated under pathological conditions related to muscle atrophy and downregulated
under hypertrophic conditions [41,42]. Furthermore, the redd1 gene is now known to be
a negative regulator of muscle mass through inhibition of the Akt/mTORC1 signaling
pathway, which controls both skeletal muscle mass and metabolism by stimulating various
ATP-demanding activities, such as protein synthesis, glycogen storage, and mitochondrial
biogenesis [43]. This can somewhat explain how TE supplementation improved muscle
mass and muscle strength in the present study. These datasets may reveal the main mech-
anism of TE supplementation in age-related muscle atrophy. TE supplementation was
previously shown to protect against age-related skeletal muscle atrophy by improving
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the mRNA expression of redd1, klf15, foxo1, murf1, and mafbx in SAMP8 mice in the GR-
FoxO signaling pathway [44,45], which is involved in a variety of downstream molecular
cascades toward muscle atrophy and is related to mTOR activity [37,46]. Moreover, TE sup-
plementation inhibited the binding of two transcription factors, GR and FoxO1, to specific
regulatory elements in the MuRF1 promoter in skeletal muscle, thereby maintaining the
dynamic balance between anabolic and catabolic processes in fast/slow-twitch muscles
(Figure 4).
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Figure 4. Schematic representation of the mechanism underlying muscle atrophy attenuation in
the Senescence-Accelerated Mouse Prone 8 (SAMP8) model mice via TE. TE has been shown to
protect against SAMP-induced skeletal muscle atrophy by inhibiting the upregulation of MuRF1
mRNA and regulating the mRNA expression of redd1, klf15, foxo1, murf1, and mafbx in the muscles of
mice. Additionally, it is believed that the inhibition of the binding of glucocorticoid receptor (GR) or
FoxO1 to the glucocorticoid response element (GRE) or FOXO-binding element (FBE) in the MuRF1
promoter in the skeletal muscle might contribute to the beneficial effects of TE.

In the tibialis anterior tissue, mfn2 mRNA expression was significantly upregulated in
the P8 + TE group compared to the P8 group. The gene mfn2 controls muscle mitochondrial
damage, and its age-related decrease in muscles is a determinant of the inhibition of
mitophagy and accumulation of damaged mitochondria, triggering the induction of muscle
atrophy and even sarcopenia [47]. In the present study, the significant upregulation of mfn2
meant that TE supplementation may have improved age-related mitochondrial damage
or fusion in muscle tissues and improved muscle atrophy. Another gene, tsc2, which
produces tuberin protein to help control cell growth, division (proliferation), and size in
muscle cells, was also slightly upregulated (p = 0.09) in the tibialis anterior because of
TE supplementation [48]. According to a previous study, decreased tsc2 expression in
mouse skeletal muscle caused reduced muscle mass, possibly because tsc2 is associated
with hTSC1 proteins, which maintain a relatively normal response to insulin signaling in
muscle tissues [48].

Proteomics provide valuable insights into the molecular mechanisms underlying age-
related muscle atrophy. One such area of interest is the degradation of muscle tissue, in
which two E3 ubiquitin ligase proteins, MAFbx and MuRF1, have been identified as key
players [49]. The protein MAFbx, also known as Atrogin-1, is involved in the degradation
of major muscle proteins and has been shown to target the transcription factor MyoD
and protein synthesis activator eIF3f, both of which play critical roles in muscle synthesis.
Thus, the degradation of these proteins by MAFbx contributes to the overall loss of muscle
mass [50]. In contrast, the protein MuRF1 was originally identified as a muscle-specific
RING finger protein that binds to the kinase domain of titin, a giant sarcomeric protein
related to the regulation of muscle mass. Further studies have revealed that MuRF1 is
involved in the degradation of several key muscle proteins, and its activity has been linked
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to various muscle wasting diseases, such as muscular dystrophy [51]. Additionally, the
protein Rheb was found to be related to the activation of the mTOR signaling pathway,
which is a key regulator of muscle mass [52]. Our proteomic analysis showed that there
was no significant difference in the protein expression of MAFbx, MuRF1, and Rheb in the
tibialis anterior muscle and no significant difference in the protein expression of MAFbx
and MuRF1 in the soleus muscle (Figure S1). These results were unexpected and diverged
from our previous findings based on gene expression analysis. This may be because there
is a time lag for mRNA expression to affect proteins such that mRNA levels may not fully
(40–70%) reflect the abundance of the corresponding proteins. This time lag (delay) between
the synthesis of mRNA from DNA and the translation of mRNA into a protein is caused by
several factors, including the time required for mRNA to be transcribed and processed in
the nucleus, exported from the nucleus to the cytoplasm, and translated into protein [53].

Furthermore, regarding mTORC1-mediated protein synthesis, the phosphorylation
levels of the key substrates of the kinase p70S6K1 (S6K1) and eIF4E-binding protein 1
(4EBP1) are associated with the activation status of mTORC1 [54,55]. Therefore, to test
mTORC1 activity and metabolic reaction in skeletal muscle proteins leading to the pro-
duction of adenosine triphosphate or guanosine triphosphate [56], we further detected
the substrate-level phosphorylation in tibialis anterior proteins, such as the regulation of
protein synthesis and degradation-related protein Akt [52] and mTORC1 [57], a kinase
enzyme protein regulating muscle mass, p70S6K1 [58], and regulator protein related to
skeletal muscle atrophy of Foxo1 [59] and the suppression of Akt activity-related protein
IRS-1Ser612 [60], c-Jun NH2-terminal kinase activity in atrophic skeletal muscle-related
protein IRS-1Ser307 [61], an important molecular target protein for the prevention of skeletal
muscle, NF-κB [62], and the protein related to NF-κB activity and fiber atrophy in muscle,
IκBα [63]. However, TE supplementation did not cause significant effects among the three
groups (Figure S2).

According to previous research, there are three major ingredients in turmeric, which
are curcuminoids: curcumin (a primary constituent responsible for yellow color of turmeric),
desmethoxycurcumin, and bisdemethoxycurcumin [40]. Among these, curcumin was in-
dicated to be obviously effective in ameliorating muscle atrophy. For example, curcumin
alleviates lipopolysaccharide-induced muscle loss by inhibiting the p38-mediated upregu-
lation of atrogin-1/MAFbx [16]. Moreover, recent studies have revealed that curcumin, a
polyphenol found in the spice turmeric, holds potential as an effective therapy for attenuat-
ing skeletal muscle atrophy in diabetic mice owing to its ability to relieve inflammation,
protein ubiquitination, and oxidative stress [18]. Curcumin improved sepsis-induced mus-
cle atrophy by blocking the increase in muscle protein breakdown; furthermore, it reduced
the nuclear translocation and DNA-binding activity of the NF-kB subunit p65 [41]. There-
fore, in this study, we speculated that curcumin played a major role as the active ingredient
in turmeric by preventing muscle atrophy in senescence-accelerated mice. However, this
study had certain limitations. First, we did not investigate the effects of precise and pow-
erful constituent of TE on aging-related muscular atrophy. Second, although significant
differences were observed on transcriptomic data, the analysis from other viewpoints of
analysis such as metabolomics and metagenomics are indeed necessary to further investi-
gate the impact of TE on the age-related muscle atrophy. Third, the clinical study is quite
necessary to further investigate the effects of TE on muscle atrophy in older adults.

5. Conclusions

The present study aimed to examine the effect of TE supplementation on age-related
muscle atrophy in a senescence-accelerated mouse model. TE supplementation had certain
effects on ameliorating the decrease in body weight, tibialis anterior weight, and (relative)
mesenteric fat tissue weight in SAMP8 mice. Additionally, TE supplementation might
suppress the binding of GR or FoxO1 to the glucocorticoid response element or FoxO-
binding element in the promoter region of the muscle-specific ubiquitin ligase gene, MuRF1,
in skeletal muscle. This inhibition might lead to a favorable shift in the balance between
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anabolic and catabolic processes, thereby promoting muscle mass and strength. This may
also offer the insights into TE’s potential as a therapeutic intervention for sarcopenia and
muscle atrophy. Especially in the super-aging society of Japan, sarcopenia is a significant
health concern related to various outcomes. The present study indicated the potential of
TE on preventing age-related muscle atrophy and sarcopenia. However, further research is
needed to confirm these findings in humans and determine the optimal dose and duration
of TE supplementation. In addition to its potential application in preventing age-related
muscle atrophy, TE has also been studied for its potential benefits in other medical uses.
For example, TE has been shown to have anti-inflammatory and anti-cancer properties as
well as potential benefits for cardiovascular health and male reproductive function. Overall,
the findings of this study suggest that TE might be able to contribute to the prevention for
age-related muscle atrophy and sarcopenia.

Supplementary Materials: The following supporting information can be downloaded from https://
www.mdpi.com/article/10.3390/life13040941/s1, Table S1: Oligonucleotide sequences used in the
real-time PCR analysis; Figure S1: (A) Tibialis anterior protein expression of MAFbx, MuRF1, and
Rheb, analyzed using western blotting; (B) Soleus protein expression of MAFbx and MuRF1 analyzed
via western blotting. All values are mean ± SE (n = 6–7) via Tukey’s test; Figure S2: Substrate-level
phosphorylation of the tibialis anterior proteins. All values are mean ± SE (n = 6–7) via Tukey’s test.
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