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Abstract: Objective: To evaluate the potential factors for predicting seroconversion due to the coron-
avirus disease 2019 (COVID-19) vaccine in people living with HIV (PLWH). Method: We searched
the PubMed, Embase and Cochrane databases for eligible studies published from inception to
13th September 2022 on the predictors of serologic response to the COVID-19 vaccine among PLWH.
This meta-analysis was registered with PROSPERO (CRD42022359603). Results: A total of 23 studies
comprising 4428 PLWH were included in the meta-analysis. Pooled data demonstrated that sero-
conversion was about 4.6 times in patients with high CD4 T-cell counts (odds ratio (OR) = 4.64, 95%
CI 2.63 to 8.19) compared with those with low CD4 T-cell counts. Seroconversion was about 17.5 times
in patients receiving mRNA COVID-19 vaccines (OR = 17.48, 95% CI 6.16 to 49.55) compared with
those receiving other types of COVID-19 vaccines. There were no differences in seroconversion among
patients with different ages, gender, HIV viral load, comorbidities, days after complete vaccination,
and mRNA type. Subgroup analyses further validated our findings about the predictive value of
CD4 T-cell counts for seroconversion due to COVID-19 vaccines in PLWH (OR range, 2.30 to 9.59).
Conclusions: The CD4 T-cell counts were associated with seroconversion in COVID-19 vaccinated
PLWH. Precautions should be emphasized in these patients with low CD4 T-cell counts, even after a
complete course of vaccination.
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1. Introduction

The coronavirus disease 2019 (COVID-19) pandemic ravaged the globe. Vaccination
has become the paramount method for the prevention of worse outcomes, including
severe COVID-19 and death during or in SARS-CoV-2 infection [1]. People living with
HIV(PLWH) are at higher risk of these worse outcomes due to immunosuppression and
its comorbidities [2–5]. Therefore, PLWH are given priority for COVID-19 vaccination.
Accumulating studies demonstrated that PLWH had a lower efficacy of COVID-19 vaccines
than the general population [6–8]. With the implementation of supplemental vaccination
among PLWH [9], it is important to identify the potential predictors for seroconversion
due to the COVID-19 vaccine in PLWH. However, the potential factors for predicting
seroconversion after the COVID-19 vaccine in PLWH were not completely understood.

Increasing individual studies have attempted to identify the factors associated with
the effectiveness of vaccination against COVID-19 [10–12]. For example, Anais et al. [13]
found that the seroconversion rate was slightly lower among PLWH with CD4 T-cell
counts of <350 cell/mm3 and dramatically reduced among those with CD4 T-cell counts of
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<200 cell/mm3. Moreover, the type of vaccine, the presence of comorbidities, and HIV status
might preclude the development of a protective immunological response. However, the lack
of studies with large sample sizes highlights the importance of a comprehensive analysis of
the potential predictors for seroconversion due to the COVID-19 vaccine in PLWH.

Thus, this systematic review and meta-analysis was to provide a review of the potential
factors associated with seroconversion to COVID-19 vaccines among PLWH. We extracted
data from observational studies, and the factors included age, gender, CD4 T-cell count,
HIV viral load, comorbidities, days after complete vaccination, and vaccine type and were
evaluated with respect to the seroconversion rate in PLWH after COVID-19 vaccination.
Our findings will help to plan better prevention strategies for this frail population.

2. Methods

We conducted a systematic review and meta-analysis following the Preferred Report-
ing Items for Systematic Reviews and Meta-analyses (PRIMSA) guidelines [14]. The proto-
col of our meta-analysis has been submitted to the International Prospective Register of Sys-
tematic Reviews (PROSPERO). The registration number of PROSPERO is CRD42022359603.

2.1. Search Strategy

The PubMed, Embase and Cochrane Library databases were searched for relevant
studies from the databases’ inception to 13th September 2022 using the following search
terms: (corona[ti] OR covid*[ti] OR sars[ti] OR severe acute respiratory syndrome[ti] OR
ncov*[ti] OR “severe acute respiratory syndrome coronavirus 2” [Supplementary Concept]
OR “COVID-19” [Supplementary Concept] OR (wuhan[tiab] AND coronavirus[tiab]) OR
(wuhan[tiab] AND pneumonia virus[tiab]) OR COVID19[tiab] OR COVID-19[tiab] OR
coronavirus 2019[tiab] OR SARS-CoV-2[tiab] OR SARS2[tiab] OR SARS-2[tiab] OR “severe
acute respiratory syndrome 2”[tiab] OR 2019-nCoV[tiab] OR (novel coronavirus[tiab] AND
2019[tiab]) NOT (animals[mesh] NOT humans[mesh])) AND (“Vaccines”[MeSH] OR “vac-
cination”[MeSH] OR vaccine[All Fields] OR vaccination[All Fields] OR vaccin*[All Fields])
AND (“HIV Infections” [MeSH] OR “HIV”[MeSH] OR “hiv”[tw] OR hiv infect*[tw] OR “hu-
man immunodeficiency virus”[tw] OR “human immunedeficiency virus”[tw] OR “human
immuno-deficiency virus”[tw] OR “human immune-deficiency virus”[tw] OR ((human
immun*) AND (“deficiency virus”[tw])) OR “acquired immunodeficiency syndrome”[tw]
OR “acquired immunedeficiency syndrome”[tw] OR “acquired immuno-deficiency syn-
drome”[tw] OR “acquired immune-deficiency syndrome”[tw] OR ((acquired immun*)
AND (“deficiency syndrome”[tw]))). No language restrictions were imposed. The full
details of the search strategies can be found in Table S1.

2.2. Inclusion and Exclusion Criteria

The study selection was conducted in three steps: removing the initial deduplication,
screening titles and abstracts, and reviewing the full text of the potentially eligible articles.
Two reviewers (Q.Z. and Y.L.) independently evaluated eligibility, and the discrepancies
were solved by a third investigator (G.D.). Articles were included for analysis if they met
the following criteria: (1) cohort studies or randomized controlled trials; (2) patients living
with HIV; (3) the odds ratio (OR) of potential predictors of seroconversion due to COVID-
19 vaccine was reported, or the OR could be calculated according to the data from the
studies. There were no restrictions regarding age, sex or duration of the study. The cohort
studies were defined as those that sampled participants based on exposure, followed-up
participants over time, and ascertained the outcomes [15]. Case reports, case series, and
studies with data inaccessible from the corresponding authors were excluded.

2.3. Data Extraction and Quality Assessment

Two investigators (Q.Z. and Y.L.) independently extracted data based on a prede-
termined proforma in Microsoft Excel. The following information was recorded for the
studies: the first author, publication year, country, study type, data source, patient number,
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vaccine type, vaccine dose, potential predictors for seroconversion due to the COVID-19
vaccine, multivariable analysis, COVID-19 history, and adjustment parameters. We used
the Cochrane Risk of Bias 2 tool to assess the risk of bias for the randomized controlled
studies [16], while the Risk of Bias in Nonrandomized Studies of Interventions (ROBINS-I)
tool was used for the comparative cohort studies [17]. For the Cochrane Risk of Bias 2 tool,
the risk of bias judgment per study is noted as low risk when all the domains are judged as
being a low risk of bias, noted with some concerns when one or more domains are judged
as some concerns, or high risk when at least one domain is judged as being at a high risk of
bias, or when multiple domains are judged as some concerns. During our search, 17 eligible
comparative cohort studies were included. For the ROBINS-I tool, the risk of bias judgment
per study is noted as low risk when all domains are judged as being at low risk of bias,
moderate risk when one domain is judged as a moderate risk of bias, serious risk when
one domain is judged as serious risk of bias, or critical risk of bias when one domain is
judged as being at critical risk of bias. Only one randomized study was founded in our
study. The risk of bias for non-comparative cohort studies was regarded as a high risk
of bias. We rated the quality of evidence according to the grading of recommendations,
assessment, development and evaluation (GRADE) approach to assess the certainty of the
evidence obtained from the present meta-analysis of potential risk factors of seroconversion
among COVID-19 vaccinated PLWH.

2.4. Definitions of Vaccines

The inactivated vaccines included BBIBP-CorV, Corona Vac or Sinopharm; the mRNA
vaccines comprised the BNT162b2 or mRNA-1273; the adenovirus vaccines comprised
the ChA-dOx1 nCoV-19 or Ad.26.COV2.S; and mixed vaccines mean more than one type
of vaccine.

2.5. Statistical Analysis

The primary outcome was the odds ratio and its corresponding 95% CI of poten-
tial predictors for seroconversion to the COVID-19 vaccine in PLWH. If the outcomes
were presented as RRs, data were converted to the ORs for analysis by using the formula
OR = RR(1-pRef)/(1-RR×pRef), where pRef is the prevalence of the outcome in the con-
trol [18]. The p-value by χ2 test < 0.1 or the I2 statistic was ≥ 50% and was considered to
indicate significant heterogeneity among the included studies. In this case, the pooled odds
ratios were estimated by the fixed-effects model; otherwise, the random-effects model was
preferentially performed. Subgroup analyses were conducted to evaluate the predictive
value of the CD4 T-cell counts for seroconversion due to the COVID-19 vaccine accord-
ing to the study location (Europe vs. America vs. Asia), study design (retrospective vs.
prospective), source of data (multi-center vs. single-center), sample size (< 100 vs. ≥ 100),
cut off of CD4 T-cell counts (200 cell/mm3 vs. 500 cell/mm3 vs. others), vaccine type
(inactivated vaccine vs. mRNA vaccine vs. mix), and multivariable analysis (YES vs. NO).
Meta-regression analyses were further performed to explore the potential effect of these
parameters on the outcomes. The regression coefficient was calculated to describe the
change in outcomes with explanatory variables (potential effect modifiers). The poten-
tial publication bias was evaluated by Egger’s test, and funnel plots were drawn if the
studies were above 10. Trim-and-fill analyses were performed to adjust for publication
bias (Egger’s test p < 0.05). Sensitivity analyses were conducted where the outcomes were
recalculated by omitting one study at a time. All calculations and graphs were performed
and visualized with R statistic software (3.6.3).

3. Results
3.1. Study Selection, Characteristics and Quality Assessment

The study selection is shown in Figure 1. A total of 1592 potentially relevant studies
were identified through the literature search. After screening the initial titles and abstracts,
the full text of 63 studies was further considered for eligibility. After the removal of another
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40 studies, including 33 studies that failed to report the odds ratios, 5 cross-sectional studies,
and 2 reviews (File S1), 23 studies [13,19–40] that included 4428 patients living with HIV
were finally included in the meta-analysis (Figure 1).
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Figure 1. Flowcharts illustrating the article selection process.

The main characteristics and clinical outcomes of the studies for quantitative analysis
are summarized in Table 1. Of these studies, 11 were from Europe, 5 were from Asia,
5 were from North America, 1 was from South Africa, and 1 was from South America. The
studies comprised 14 prospective studies and 9 retrospective studies. A total of 7 studies
were multi-center, and 16 were single-center. The number of PLWH in 14 studies was
above 100; 6 studies had adjusted for potential confounders; 7 studies were analyzed using
multivariable analysis; all PLWH in the 19 studies were not infected with COVID-19 prior
to vaccination. In terms of vaccination type, the mRNA vaccines were used in 11 studies;
adenovirus vaccines were used in 1 study; inactivated vaccines were used in 6 studies;
and another 5 studies involved two or more vaccines or other types of vaccines. PLWH,
in 2 studies, received an incomplete dose of vaccines; 20 studies received a complete dose
of vaccines; only 1 study received the booster dose of vaccines. Supplementary Table S2
shows the detailed risk of bias for each study, and most of the studies were regarded as
critical or at a high risk of bias.
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Table 1. Characteristics of included studies.

Source Country Design Data Source Cases Vaccine Type Vaccine Dose COVID-19 History Outcomes Multivariable Analysis Impact Factors Adjust

Anais
2022 [13] Spain Pro Three university hospitals

in Southern Spain 420
BNT162b2, mRNA-1273,

ChAdOx1 nCoV-19,
or Ad26.COV2.S

Complete NO anti-S IgG YES

Age, gender, HIV infection way,
CDC clinical category

nadir CD4 T-cell counts,
Charlson index, cirrhosis, chronic

kidney disease, immunosuppressive
therapy, CD4 T-cell counts

(cutoff = 200 cell/mm3), HIV viral
load, vaccine

-

Antinori
2022 [19] Italy Pro

National Institute for
Infectious Diseases

Lazzaro Spallanzani
153 BNT162b2 or mRNA-1273 Complete NO nAbs NO CD4 T-cell counts

(cutoff = 200 cell/mm3) -

Ao
2022 [20] China Pro People’s Hospital of

Tongliang District 139 BBIBP-CorV or Corona Vac Complete NO anti-RBD IgG YES

Age, gender, days after
2nd vaccination, CD4 T-cell counts
(cutoff = 500 cell/mm3), HIV viral

load, white blood cell count,
lymphocyte count, platelet count,

alanine aminotransferase, aspartate
aminotransferase, B cells, RBD-specific

B cells, RBD-specific MBCs, RBD+

rMBCs, RBD+ actMBCs, RBD+

atyMBCs, RBD+ intMBCs

-

Bergman
2021 [21] Sweden Pro Karolinska University Hospital 79 BNT162b2 Complete NO anti-RBD IgG NO CD4 T-cell counts

(cutoff = 300 cell/mm3) Age (partially)

Brumme
2022 [22] Canada Retro Three HIV care clinics in 100 BNT162b2, mRNA-1273

or ChAdOx1 Complete YES anti-RBD IgG NO Days after 2nd vaccination
Age,

chronic health
conditions

Gianserra
2022 [23] Italy Pro

HIV/AIDS Unit of
the San Gallicano

Dermatological Institute
42 BNT162b2 Complete NO SARS-CoV-2

S1/S2 IgG NO Days after second vaccination -

Haidar
2022 [24] USA Pro

Unive University of
Pittsburgh Medical Center

Health System
94 BNT162b2, mRNA-1273

or Adenovirus Complete NO anti-RBD IgG NO, except for days
after 2nd dose

Age, gender, race, vaccine, days after
second dose -

Han
2022 [25] China Retro Beijing Ditan Hospital 47 CoronaVac or Sinopharm Complete NO nAbs NO CD4 T-cell counts

(cutoff = 350 cell/mm3)
Age, sex,

and interval length

Hassold
2022 [26] France Retro

Department of
Infectious Diseases of

Hospital Avicenne
105 BNT162b2, mRNA-1273

or ChAdOx1-nCoV-19 Complete NO Anti-spike IgG NO CD4 T-cell counts
(cutoff = 200 cell/mm3) -

Hensley
2022 [27] Netherlands Pro 22 HIV treatment centers 1154 BNT162b2, mRNA-1273,

ChAdOx1-S or Ad26.COV2.S Complete NO Anti-spike IgG YES, except for
vaccine type

Vaccine type, age, gender,
HIV viral load, CD4 T-cell counts

(cutoff = 250 cell/mm3), CD4
nadir cell counts

-

Khan
2022 [28]

South
African Pro

Biomedical Research of the
University of

KwaZulu–Natal
26 Ad26.CoV2.S Complete YES Neutralization capacity NO HIV viral load -

Milano
2022 [29] Italy Pro University of Bari 578 BNT162b2 Complete NO Anti-RBD IgG NO Days after complete vaccination -

Nault
2022 [30] Canada Retro HIV clinics in Montreal 106 mRNA-1273 Uncomplete YES Anti-RBD IgG NO CD4 T-cell counts

(cutoff = 250 cell/mm3) -

Netto
2022 [31] Brazil Pro University of Sao Paulo

HIV/AIDS outpatient clinic 215 CoronaVac Complete NO nAbs NO CD4 T-cell counts
(cutoff = 500 cell/mm3) -
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Table 1. Cont.

Source Country Design Data Source Cases Vaccine Type Vaccine Dose COVID-19 History Outcomes Multivariable Analysis Impact Factors Adjust

Polvere
2022 [32] Italy Retro Azienda Ospedaliera

Universitaria Senese 84 BNT162b2 or mRNA-1273 Complete NO nAbs NO

Age, gender, vaccine type, BMI, IDU,
years from HIV infection, CDC stage,

HBV or HCV coinfection,
zenith HIV-RNA,

CD4 T-cell counts at nadir, years from
first ART, type of ART, HIV viral load,

time from last HIV-RNA
>50 copies/mL, CD4 T-cell counts at

baseline (cutoff = 350 cell/mm3),
CD4%, CD4/CD8 ratio

-

Speich
2022 [33] Switzerland RCT

University Hospital Basel,
University Hospital Bern

and University Hospital Zurich
341 BNT162b2 or mRNA-1273 Complete YES nAbs NO Vaccine type RCT

Spinelli
2022 [34] USA Retro A large outpatient HIV clinic 100 BNT162b2 or mRNA-1273 Complete NO nAbs YES CD4 T-cell counts (cutoff = NA), HIV

viral load, vaccine type

Care for chronic
medical conditions

on days since
completion of

second vaccination
(minimum 10), sex,

age and mRNA
vaccine type

Tuan
2022 [35] USA Retro Two HIV clinics of the Yale

New Haven Health System 78 BNT162b2 Uncomplete NO IgG NO, except for CD4
T-cell counts

Age, gender, days after second
vaccination, BMI, self-reported

substance use, time
since HIV diagnosis,
HIV ART regimen,
CD4 T-cell counts

(cutoff = 500 cell/mm3), HIV viral
load, comorbidities

-

Vergori
2022 [36] Italy Retro Infectious Diseases Lazzaro

Spallanzani in Rome 106 BNT162b2 or Mrna-1273 Booster NO nAbs NO
CD4 T-cell counts

(cutoff = 200 cell/mm3),
CD4 T-cell counts at nadir

-

Wong
2022 [37] China Pro

The Integrated Treatment
Centre or Princess Margaret

Hospital HIV Service
213 CoronaVac or Comirnaty Complete NO nAbs NO Vaccine type

age, sex, CD4 T-cell
counts, and

suppressed viral
load (SVL) at the

time point nearest
to vaccination.

Xu
2022 [38] Sweden Pro Karolinska University Hospital 79 BNT162b2 Complete NO anti-spike-IgG NO CD4 T-cell counts

(cutoff = 200 cell/mm3) -

Zeng
2022 [39] China Retro The Third People’s Hospital of

Shenzhen 126 BBIBP-CorV or CoronaVac Complete NO anti-RBD IgG NO CD4 T-cell counts
(cutoff = 350 cell/mm3), days after
complete vaccination, vaccine type

-

Zou
2022 [40] China Pro Wuchang district of

Wuhan city 46 Sinopharm WIBP-CorV Complete NO nAbs
and IgG

YES, except for days
after 2nd dose

Age, gender, CD4 T-cell counts
(cutoff = NA), days after second dose -

Abbreviations: COVID-19, coronavirus disease 2019; Pro, prospective study; Retro, retrospective study; RCT, randomized controlled trial; RBD, receptor binding domain; Ig,
immunoglobulin; S, spike; nAbs, neutralizing antibodies; BMI, body mass index; MBC, memory B cell; BV, hepatitis B virus; HCV, hepatitis C virus; IDU, injecting drug users; NA,
not available.
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3.2. Risk Factors for Seroconversion Rate in PLWH

A summary of the findings from the included studies is shown in Figure 2. A total
of 7, 7, 16, 7, 3, and 7 studies provided data for the age, gender, CD4 T-cell counts,
HIV viral load, comorbidities and days after complete vaccination, respectively
(Figures S1A, S2A, S3A, S4A, S5A and S6A). The pooled data showed that there were no
statistical differences in seroconversion among patients with different ages, gender, HIV
viral load, comorbidities and days after their complete vaccination. Notably, serocon-
version was about 4.6 times in patients with higher CD4 T-cell counts (OR = 4.64, 95%
CI 2.63 to 8.19) compared with those with lower CD4 T-cell counts. Quantitative synthesis
was also accessible for different vaccine types, including mRNA vaccines vs. other vaccines
and mRNA-1273 vs. BNT126b2 vaccines (another mRNA vaccine) (Figures S7A and S8A).
The pooled data demonstrated that there was no difference in seroconversion between
patients receiving the mRNA-1273 vaccines and those receiving the BNT126b2 vaccines.
It is worth noting that seroconversion was about 17.5 times in patients receiving mRNA
COVID-19 vaccines (OR = 17.48, 95% CI 6.16 to 49.55), compared with those receiving other
types of COVID-19 vaccines.
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living with HIV(PLWH). Comorbidities mean PLWH with cirrhosis, HBV or HCV coinfections.

3.3. Publication Bias

Egger’s test detected the existence of publication bias in potential predictors for
seroconversion due to COVID-19 vaccines, including the CD4 T-cell counts (p < 0.01) and
HIV viral load (p = 0.02). The funnel plot also showed the relative asymmetry in CD4
T-cell counts (Figure S3B). After eight studies were filled, the funnel plot showed relative
symmetry (Figure S3C), and Egger’s test showed no evidence of significant publication
bias (p = 0.60). Patients with high CD4 T-cell counts still had higher seroconversions than
those with low CD4 T-cell counts (OR = 1.85, 95% CI 1.05 to 3.28). As for the HIV viral load,
after three studies were filled, Egger’s test showed no evidence of significant publication
bias (p = 0.78) (Figure S4C) with still no statistical difference in the seroconversions among
patients with different HIV viral loads (OR = 1.30, 95% CI 0.40 to 4.21).

3.4. Meta-Regression and Subgroup Analysis

Considering the potential predictive value of the CD4 T-cell counts in seroconversion due
to the COVID-19 vaccines in PLWH, univariate meta-regression and subgroup analyses were
further carried out to explore the source of heterogeneity. The univariate meta-regression found
no significant moderators of heterogeneity (Table S3). All the subgroup analyses arrived at a
consistent conclusion (OR range, 2.30 to 9.59) (Figures 3 and S9–S15). Interestingly, a subgroup
analysis, conducted according to the cutoff of CD4 T-cell counts, demonstrated that the odds
ratio was highest in the cutoff for 200 cell/mm3 (OR = 6.18, 95% CI 2.98 to 12.84), followed by
the cutoff for others (OR = 5.80, 95% CI 2.04 to 16.48), and a cutoff for 500 cell/mm3 (OR = 2.30,
95% CI 1.45 to 3.64) (p = 0.04) (Figures 3 and S13). Subgroup analysis, stratified by vaccine
type, showed that the odds ratio was lowest when patients received the inactivated vaccine
(OR = 2.90, 95% CI 1.64 to 5.11), followed by the mRNA vaccine (OR = 5.38, 95% CI 1.77 to 16.32),
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and mixed vaccines-type (OR = 8.76, 95% CI 4.81 to 15.95) (p = 0.03) (Figures 3 and S14). No
significant heterogeneity was observed in the other subgroup comparisons (all p > 0.05).
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3.5. Sensitivity Analysis

The sensitivity analysis, performed by using the “leave-one-out”, did not markedly
change our results in these comparisons (Figures S1–S8).

3.6. Grading the Quality of Evidence

According to the GRADE approach, the quality of evidence was very low for age,
gender, CD4 T-cell counts, HIV viral load, comorbidities, days after complete vaccination,
and vaccine-type impact factors (Table S4).

4. Discussion

In this meta-analysis, 23 studies with a total of 4428 patients living with HIV were
included. We evaluated the potential factors for predicting seroconversion due to the
COVID-19 vaccine in PLWH. We demonstrated that the CD4 T-cell counts and mRNA
vaccines are associated with seroconversion due to COVID-19 vaccination. Compared with
the PLWH with lower CD4 T-cell counts, the seroconversion rate was about 4.6 times in
patients with higher CD4 T-cell counts. The mRNA COVID-19-vaccinated PLWH showed
about 17.5 times the seroconversion compared with those receiving other types of COVID-
19 vaccines, such as the inactivated vaccines. Advanced age, gender, HIV viral load,
comorbidities, days after complete vaccination, and different mRNA vaccine types showed
no association with seroconversion. The subgroup analysis further validated our finding
about the predictive value of CD4 T-cell counts for seroconversion in PLWH.

An effective COVID-19 vaccination strategy becomes the main measure of reducing
the risk and mortality of COVID-19 [1]. Immunocompromised patients are of particular
interest because of their attenuated responses to various vaccines [41–43]. There are several
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meta-analyses reporting seroconversion due to the COVID-19 vaccine in immunocom-
promised patients, including PLWH. For example, Mehrabi Nejad et al., demonstrated
that immunocompromised patients had a lower overall crude prevalence of seroconver-
sion. Notably, transplant patients were less likely to develop seroconversion after both
the first and second dose compared with patients with malignancy or autoimmune dis-
ease [44]. However, this study did not include PLWH and also failed to evaluate the risk
factors for seroconversion. Yin et al., mainly focused on the PLWH and reported that a
second dose could consistently improve the seroconversion, although the seroconversion
is still lower in PLWH than in healthy individuals [45]. Conversely, Kang et al., considered
the immunogenicity and safety of the COVID-19 vaccine in PLWH to be acceptable because
there were no significant differences in the seroconversion rates and incidence rates of
adverse events of COVID-19 vaccines between PLWH and healthy controls [46]. However,
these two studies still failed to evaluate the risk factors for seroconversion in PLWH. In
our study, we comprehensively evaluated the potential risk factors for seroconversion due
to the COVID-19 vaccine in PLWH, including age, gender, CD4 T-cell counts, HIV viral
load, comorbidities, days after complete days, and vaccine type. We finally found that the
CD4 T-cell counts and vaccine type are associated with seroconversion due to COVID-19
vaccination. Our findings were completely different from previous meta-analyses and
filled a gap in the risk factors for seroconversion due to the COVID-19 vaccine. PLWH are
characterized by impaired immunity with reduced CD4 T-cell counts. For the generation of
antibody response to vaccination, an essential step is the interaction of antigen-primed B
cells and CD4 T-cells in the germinal center reaction, where CD4 T-cells provide critical
helper function for the B cells to undergo proliferation, isotype switching and somatic
hypermutation [47,48]. Despite antiretroviral therapy, the immune dysfunction may not be
completely reversed [13]. Therefore, PLWH could have decreased response to vaccination
due to defects of CD4 T-cells’ help [49,50]. Previous studies showed considerably weaker
responses among PLWH with CD4 T-cell counts of < 300 cells/mm3 compared with HIV-
negative individuals [19,26,30,51]. Some studies found similar humoral immune responses
in PLWH with CD4 T-cell counts of > 500 cells/mm3 compared to the health controls [19,31].
Here, we found that the CD4 T-cell counts are associated with seroconversion in COVID-
19-vaccinated PLWH. More importantly, we found that the odds ratio was higher in the
cutoff for 200 cell/mm3 than in the cutoff for 500 cell/mm3. These results suggested that
lower CD4 T-cell counts predict lower seroconversion in COVID-19-vaccinated PLWH.

It is also worth noting that the mRNA vaccine developed the highest serologic response
in PLWH than the inactivated and adenovirus vaccines, which suggested PLWH are
given priority for the mRNA vaccine. This finding was consistent with the results from
general patients [52,53]. For example, previous studies demonstrated that compared
with the mRNA vaccine, the antibody level of inactivated CoronaVac-vaccinees wanes
quickly, and patients after the vaccine face a higher risk of breakthrough infection [54,55].
Further, the geometric NAbTs of inactivated vaccinees were 19-fold lower than that of the
BNT162b2-vaccines [56,57]. The mRNA vaccines also showed superior cellular immune
responses when compared to other vaccines against SARS-CoV-2 [58]. The median levels
of CD4 responses following the mRNA vaccine were higher than the adenoviral vaccine,
followed by the inactivated vaccine [58]. In a recent UK population-based study, the mRNA
BNT162b2 vaccine showed to be more efficacious than the adenovirus ChA-dOx1 nCoV-19
vaccine against SARS-CoV-2 infection and hospital admissions for COVID-19 [59]. Our
findings suggest that, just like the general population, PLWH respond better to the mRNA
vaccines than other vaccines.

This systematic review and meta-analysis had some limitations. First, some of the
studies included were observational studies, which might cause a risk of unbalanced groups
for comparison with a high risk of bias. Second, significant heterogeneity and publication
bias were found in some analyses, while the outcomes of trim-and-fill analyses, sensitivity
analyses, and subgroup analyses were consistent. Third, ART is fundamental to the clinical
care of PLWH, while the association between ART and seroconversion in PLWH was not
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evaluated due to a lack of data. Fourth, we did not evaluate the predictive value of the
nadir CD4 counts for the seroconversion in PLWH due to data unavailability. Finally, the
subgroup analysis was only performed for the CD4 T-cell counts but not other potential
predictors due to fewer than 10 studies. Numerous studies are needed to pool the potential
predictors for seroconversion due to the COVID-19 vaccine in PLWH.

5. Conclusions

CD4 T-cell counts are associated with seroconversion in COVID-19-vaccinated PLWH.
Precautions should be emphasized in these patients with low CD4 T-cell counts, even
after a complete vaccination course. Moreover, the mRNA vaccines might be a priority for
PLWH with COVID-19.

Supplementary Materials: The following supporting information can be downloaded at: https:
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associated with serologic response in PLWH after COVID-19 vaccination respectively; Figures S9–S15.
Subgroup analysis according to study location, study design, source of data, sample size, CD4 T-cell
counts strata, vaccine type, and logistic regression analysis type respectively for the pooled odds
ratio of CD4 T-cell counts associated with serologic response in PLWH after COVID-19 vaccination;
Table S1. Search strategy; Table S2. Risk of bias of all included studies; Table S3. Meta-regression for
odds ratio for the seroconversion in COVID-19 vaccinated PLWH with high and low CD4 T cells;
Table S4. Certainty of evidence and summary effect estimates assessed by GRADE; File S1. List of
excluded studies.
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