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Abstract: Semitransparent organic solar cells (ST-OSCs) show great promise for building integrated
photovoltaic systems. The balance between power conversion efficiency (PCE) and average visible
transmittance (AVT) is a key point of ST-OSCs. We developed a novel semitransparent organic solar
cell (ST-OSC) with high PCE and AVT for building integrated renewable energy applications. We
used photolithography to fabricate Ag grid bottom electrodes with high figures of merit of 292.46.
We also used an optimized active layer of PM6 and Y6, achieving a PCE of 10.65% and an AVT of
22.78% for our ST-OSCs. By adding optical coupling layers of CBP and LiF alternately, we further
increased the AVT to 27.61% and the PCE to 10.87%. Importantly, the balance of PCE and AVT can
be achieved by the integrated optimization of the active and optical coupling layers, which leads to
a significant increase in light utilization efficiency (LUE). These results are of great importance for
particle applications of ST-OSCs.

Keywords: semitransparent organic solar cells; light utilization efficiency; optical engineering; Ag
grid electrode

1. Introduction

With the development of photovoltaic technology, solar energy is gradually becoming
one of the best clean energy sources. Compared with other photovoltaic technologies,
organic solar cells (OSCs) have become one of the most promising developments in the
photovoltaic industry due to their low cost, light weight, simple fabrication process, and
bendability [1–3]. With the joint development of molecular design, interface engineering,
morphology control, and device structure, the power conversion efficiency (PCE) of OSCs
has exceeded 19% [4–6]. As an important type of OSC with attractive features of trans-
parency and color tunability, semitransparent organic solar cells (ST-OSCs) demonstrate
tremendous potential for building integrated photovoltaics [7–9], wearable devices [10],
photovoltaic greenhouses [11], and automotive glasses [12,13].

Average visible transmittance (AVT) and PCE are crucial factors in assessing the
performance of ST-OSCs. In order to achieve the simultaneous enhancement of AVT and
PCE, a large number of studies have concentrated on optimizing the interfacial layer
and the photoactive layer. In order to optimize the photoactive layer, the reduction in
the donor content can lead to a reduction in the light absorption in the visible region
and an increase in the AVT value of ST-OSCs [14–16]. For example, Hu et al. prepared
ST-OSCs by adjusting the thickness of the active layer, and the PCE and AVT reached
12.37% and 18.6%, respectively [17]. Xue et al. adopted a sequential deposition processing
strategy to efficiently prepare ST-OSCs with a PCE of 11.8% and an AVT of 18.6% [16]. By
adjusting the ratio of donor to acceptor, the optimal ST-OSC prepared by Hu et al. had
a PCE and an AVT of 9.06% and 27.1%, respectively [18]. Furthermore, combining the
required optical coupling layer (OCL) with the upper transparent electrode is considered an
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effective way to improve light absorption while maintaining optical transparency [19–22].
Li et al. fabricated inverted ST-OSCs with a PCE of 7% and an AVT of 12.2% by combining
fine-tuned dielectric mirrors (DMs) [23]. Yu et al. used N pairs of WO3/LiF to form a one-
dimensional photonic crystal. In the case of N = 8, the PCE of the device with P3HT:ICBA
as the active layer reached 4.12%, and the AVT in the 600–800 nm wavelength range was
55.6% [24]. Yeom et al. used the Sb2O3 optical coupling layer to form the Ag/Sb2O3/Ag
composite electrode. The PCE of the device with PTB7-Th:PC71BM as the active layer
was as high as 9.71%, and the maximum transmittance was 35.4% [25]. By combining
the bilayer dielectric LiF/MoO3, Xu et al. increased the PCE and AVT of the ST-OSC to
13.15% and 25.9%, respectively [26]. All of the above are periodic optical coupling layers
that essentially can be categorized as photonic crystals or distributed bragg reflectors. The
central wavelength of the photonic crystal is determined according to the absorption range
of the active layer material. The basic principle of the design is nada = nbdb = λ0/4, where
na and nb represent the refractive index of the optical material, da and db represent the
thickness of the corresponding optical material, and λ0 represents the central wavelength.
However, there is no evidence that periodic optical management works better than non-
periodic optical management. In a recent report, Xia et al. optimized the thickness of each
dielectric layer in the optical coupling layer by an optical simulation model to obtain the
optimal nonperiodic optical coupling layer [9]. Liu et al. used the Essential Macleod optical
coating design procedure to optimize periodic photonic crystals into non-periodic ones and
achieved a higher performance [27]. Therefore, exploring in detail the key balance between
photovoltaic performance and optical properties is particularly important in ST-OSCs.

In this paper, we adopt a hybrid modification strategy of donor and acceptor weight
ratio adjustment and simple optical coupling layer to simultaneously enhance both the PCE
and the AVT. We selected wide bandgap polymer poly[[4,8-bis [5-(2-ethylhexyl)-4-fluoro-2-
thienyl]ben-zo [1,2-b:4,5-b′]dithiophene-2,6-diyl]-2,5-thiophenediyl [5,7-bis(2-ethylhexyl)-
4,8-dioxo-4H,8H-benzo[1,2-c:4,5-c′]dithiophene-1,3-diyl]-2,5-thiophene diyl] (PM6) as the
donor and narrow bandgap small molecule 2,20-((2Z,20Z)-((12,13-bis(2-ethylhexyl)-3,9-
diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno-[2,”30′:4′,50]thieno [20,30:4,5]pyrrolo
thieno [20,30:4,5]thieno [3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-
2,3-dihydro-1H-indene-2,1-diyldene))dimalononitrile (Y6) as the acceptor. First, the PM6:Y6
active layer weight ratio was optimized to reduce the light absorption in the visible region
and increase the device AVT. Then, by combining CBP/LiF/CBP/LiF quadruple OCL,
the ST-OSCs further reduced the non-absorption in the visible region and enhanced the
near-infrared absorption. Meanwhile, the PCE and AVT of ST-OSCs were improved to
10.87% and 27.61%, respectively.

2. Materials and Methods
2.1. Materials

PM6 (99%) and Y6 (99%) were purchased from Solarmer Materials Inc. Co., Ltd.
(Beijing China) PEDOT: PSS aqueous solutions (Clevios PH1000) were purchased from
Xi’an Baolight Co., Ltd. 2-methoxyethanol, 1-chloronaphthalene, zinc acetate dihydrate
and ethanolamine were purchased from Macklin (Shanghai China).

2.2. Fabrication of Ag Grid Electrodes

The fabrication process of Ag grid electrodes is shown in Figure 1a. The glass sub-
strates were cleaned sequentially using deionized water, acetone and isopropanol. Sub-
sequently, a 50 nm ag film was deposited on the glass substrate. The positive photoresist
(AZ GXR-601) was spin-coated onto the ag film at 2000 rpm for 1 min. The photoresist
film was heated at 110 ◦C for 90 s. The photoresist was exposed sequentially using Ul-
traµLine 7000 series at an exposure dose of 250 mJ/cm2 for 3 s. The exposed photoresist
was developed in the developing solution (MF-319) for 30 s. The developed patterned
photoresist was bubbled in deionized water to remove the residual developing solution.
Next, the patterned photoresist film was baked on a heated plate at 110 ◦C for 90 s. The
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patterned ag film was then etched in an ag etching solution (20% wt HNO3) for 30 s to
form the patterned ag film. The remaining photoresist and ag etchant were removed
by sonication in acetone and deionized water for 2 min to obtain the complete Ag grid
electrode.
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Figure 1. (a) Schematic diagram of the manufacturing process of Ag grid electrodes; (b) Schematic
device structure of the Ag grid ST-OSCs and (c) the corresponding energy level diagram.

2.3. Fabrication of OSC Devices

PEDOT:PSS (PH1000) was spin-coated on the prepared Ag grid electrode for 60 s at
1000 rpm. The PH1000 layer was annealed at 130 ◦C for 20 min in air. Deposition at low
rotational speeds can produce thick PH1000 layers to flatten the surface and finally prevent
shorting of ST-OSCs due to grid surface roughness. The ZnO solution was prepared by mix-
ing 100 mg of zinc acetate dihydrate, 1 mL of methoxyethanol and 30 µL of ethanolamine.
This mixture was mechanically stirred at room temperature in a glove box for at least 6 h,
and then spin-coated for 30 s at 5000 rpm. The ZnO Layer was annealed at 150 ◦C for 15 min.
When configuring the PM6:Y6 active layer solution with different weight ratios of PM6 to
Y6, the dual additives of CN were used, and the volume ratio was 0.5%. The PM6:Y6 layer
solution concentration was 15.8 mg mL−1. The active layer was spin-coated on substrates
in a nitrogen-filled glovebox at 2500 rpm for 30 s to give a thickness of 100 nm. The PM6:Y6
layer was annealed at 110 ◦C for 10 min. After the deposition of the active layer, 8 nm-thick
MoO3 and 15-nm thick Ag were deposited by thermal evaporation at 1 × 10−6 mbar. The
MoO3 and ZnO layers were used to increase the exciton dissociation rate. The device
structure is Glass/Ag grid/PH1000/ZnO (40 nm)/PM6:Y6 (100 nm)/MoO3 (8 nm)/Ag
(15 nm), as is shown in Figure 1b. The corresponding energy level diagram is shown in
Figure 1c. The four-layers OCL of CBP (40 nm)/LiF (100 nm)/CBP (70 nm)/LiF (40 nm)
were deposited on the Ag electrode.

2.4. Device Characterization

The Keithley 2400 source meter is adopted to measure the current density versus
voltage (J–V) characteristic curve of ST-OSCs. The standard solar simulator (Sun 3000)
from the ABET Company provides a standard light source with a light intensity of AM
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1.5G (100 mW/cm2). The 7-SCSpec solar cell test system from the 7-STAR Co. was used to
measure the external quantum efficiencies (EQE). An ultraviolet spectrophotometer (UV-Vis
spectrophotometer, U-3900H, Hitachi) was used to characterize the transmittance spectrum,
and an atomic force microscope (AFM, Nano Navi SPA-400SPM, Japan) was used to
characterize the film morphology. The CIE 1931 color coordinates of ST-OSCs were obtained
using a PR-655 spectroradiometer (Photo Research). The film resistance was measured by
a four-probes instrument (Four-probe Tester, ST2263, SuZhou China) measurement. The
transmission of ST-OSCs with OCL was simulated by the finite-difference time-domain
(FDTD) method.

3. Results and Discussion

Figure 2 shows microscopic images for Ag grid electrodes with a 7 µm line width but
different pitches, which are attributed to the mature photolithography process. Different
film resistance and transmittance can be obtained by adjusting the pitch of Ag grid elec-
trodes. Table 1 shows that their sheet resistance increases with line pitches, from 14.3 Ω/sq
at 100 µm to 66.4 Ω/sq at 400 µm. This trend is reasonable considering the low density of
the conducting material at the same deposition thickness and that the line pitches are con-
trolled to 400 µm. The transmittance of Ag grid electrodes also increases with the pitches,
from 91% at 100 µm to 97.6% at 400 µm. Based on these results, the optical transmittance
and electrical conductivity of Ag grid electrodes are two competing parameters, with the
electrical conductivity decreasing when the optical transmittance is increased. For this
reason, we introduced the figures of merit (FOM) for a comprehensive evaluation of the
optoelectronic properties of the transparent electrode and tried to find an Ag grid parameter
with good optical and electrical properties at the same time [28]. The Ag grid electrode
with a line width of 7 µm and a pitch of 200 µm shows the highest FOM, which were
used as the bottom electrode of the ST-OSCs in this study. Compared with other reported
transparent electrodes, the Ag grid electrode exhibits relatively low sheet resistance and
high transmittance [28–32].
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Table 1. Parameters for the photovoltaic properties of the Ag grid electrodes.

Pitch (µm) Sheet Resistance (Ω/sq) Transmittance (@550 nm%) FOM

100 14.3 91 273
200 22.9 94.6 292.46
300 36.6 96.3 270.64
400 66.4 97.6 233.7

The inset of Figure 3a shows the UV-Vis spectra of PM6 and Y6 films. Clearly, the
photon collection of the pure PM6 film is mainly in the range of 450–700 nm, and the
absorption peak is at 620 nm. The pure Y6 films with absorption peaks at 820 nm are mainly
collecting photons in the near-infrared range. PM6 and Y6 films have complementary ab-
sorption, which facilitates light capture. Figure 3a shows the normalized absorption spectra
of different proportions of PM6:Y6 blended films. With the decrease in the PM6 content, the
photon capture ability of the active layer in the visible range decreased significantly, and
the photon replenishment ability in the near-infrared region increased significantly. The
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results show that the absorption of the active layer can be greatly improved by adjusting
the ratio of the donor to the acceptor. The J–V curves for all ST-OSCs are shown in Figure 3b.
Clearly, the value of the short-circuit current density (Jsc) decreases with the decrease in
the PM6 content in the active layer of ST-OSCs, which is mainly determined by the photon
trapping and phase separation of the active layer. Meanwhile, the open circuit voltage
(Voc) value of ST-OSCs decreased slightly with the decrease in the PM6 content. A similar
phenomenon was also reported by Hou et al. in PIDTDTQx:PC70BM-based OSCs, which
may be due to the reduced LUMO-level of acceptors in the active layer [33]. The EQE of
the corresponding ST-OSCs device is shown in Figure 3c. It can be seen that when the PM6
content decreases, the EQE spectrum of the device has a more obvious decrease in the range
of 400–800 nm than that in the near-infrared range, which is caused by the weakening of
the light absorption of the active layer in this wavelength range and is consistent with the
test result of the absorption spectrum of the active layer.
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Among them, when the weight ratio of PM6 to Y6 is 1.0:1.2, the PCE is the highest
at 12.17%, and the AVT is the lowest at 15.78%. The AVT of ST-OSCs can be calculated
according to the following equation [33]:

AVT =

∫
T(λ)V(λ)AM1.5G(λ)d(λ)∫

V(λ)AM1.5G(λ)d(λ)
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where T(λ) is the transmission spectrum, V(λ) is the spectral luminous efficiency function
of the human eye, and AM 1.5 (λ) is the luminous flux irradiated by AM 1.5 G. It is clear
that the two essential parameters of the ST-OSCs, PCE and AVT, need to be compromised.
LUE is an excellent parameter to accurately evaluate the comprehensive performance of
ST-OSCs. The definition of LUE is as follows [34]:

LUE = PCE ∗AVT

The LUE varied with the weight ratio of PM6 to Y6 in the active layer in ST-OSCs,
as shown in Figure 3d. Table 2 presents the measured results of JSC, VOC, the fill factor
(FF) and the PCE of ST-OSCs without OCL prepared at different D: A ratios of active
layers. These data suggested that the highest LUE of 2.43% was obtained for the ST-OSCs
prepared with an active layer with a D: A ratio of 0.4:1.2. The AVT of ST-OSCs prepared
from a PM6:Y6 hybrid film with D: A ratio of 0.2:1.2 was 23.43%, which was closest to the
benchmark value of 25% [35].

Table 2. Summary of photovoltaic parameters measured for the ST-OSCs prepared using BHJ layers
having different weight ratios of PM6 to Y6 with an OCL and without an OCL.

D:A Ratio JSC [mA/cm2] VOC [V] FF [%] PCE [%] AVT [%] LUE [%]

ST-OSCs
without OCL

0.2:1.2 16.46 ± 0.24 0.817 ± 0.02 62.10 ± 0.32 8.36 ± 0.21 23.43 1.95
0.4:1.2 20.65 ± 0.22 0.816 ± 0.03 63.12 ± 0.43 10.65 ± 0.24 22.78 2.43
0.6:1.2 21.64 ± 0.19 0.818 ± 0.02 65.15 ± 0.25 11.52 ± 0.17 20.37 2.34
0.8:1.2 22.09 ± 0.29 0.821 ± 0.02 65.23 ± 0.36 11.83 ± 0.07 17.30 2.04
1.0:1.2 22.65 ± 0.34 0.823 ± 0.01 65.31 ± 0.18 12.17 ± 0.19 15.78 1.91

ST-OSCs
with OCL

0.2:1.2 17.45 ± 0.42 0.817 ± 0.02 62.23 ± 0.37 8.7 ± 0.12 28.94 2.54
0.4:1.2 21.23 ± 0.43 0.816 ± 0.03 63.59 ± 0.34 10.87 ± 0.18 27.61 3.01
0.6:1.2 21.67 ± 0.32 0.818 ± 0.01 65.17 ± 0.25 11.55 ± 0.22 23.72 2.74
0.8:1.2 22.01 ± 0.26 0.821 ± 0.02 65.22 ± 0.34 11.76 ± 0.21 21.29 2.54
1.0:1.2 22.36 ± 0.31 0.823 ± 0.02 65.24 ± 0.36 12.00 ± 0.26 19.43 2.33

One of the necessary conditions for the preparation of highly efficient OSCs is the
formation of a favorable surface morphology. We used an AFM to study the surface
morphology of active layers with different D: A ratios. It is well known that the degree
of phase separation of the active layer plays a crucial role in determining the exciton
dissociation, charge transport, and collection [36–38]. As is shown in Figure 4, fibrous
characteristic structures can be observed in the active layers with different D: A ratios,
which is the phenomenon of developing phase separation. When the D: A ratio was varied
from 1.0:1.2 to 0.2:1.2, the corresponding root-mean-square (RMS) roughness increased
from 1.17 nm to 5.82 nm. These results indicate that with the continuous decrease in PM6 in
the active layer, the surface morphology of the PM6:Y6 blended film is negatively affected.
This revealed that stronger aggregation of the Y6 acceptor appeared in the active layer as
the PM6 content decreased, leading to reduced binding at the donor–acceptor interface [39].
It can be seen that, as the PM6 content decreases, the absorption of the PM6:Y6 hybrid film
appears to decrease from 400 nm to 620 nm as well as the higher roughness, which together
lead to a reduction in device efficiency.
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In terms of optimizing the two competitive indicators of the PCE and AVT, this study
employed a high/low dielectric constant structure consisting of CBP and LiF to further
optimize the optoelectronic properties of ST-OSCs. The refractive index of the LiF material
is 1.39 and the refractive index of the CBP material is 1.697. Thickness combinations
of high/low dielectric CBP (40 nm)/LiF (100 nm)/CBP (70 nm)/LiF (40 nm) OCL were
optimized for ST-OSCs based on the PM6:Y6 active layer. Figure 5a,b shows the effect of the
CBP layer thickness and the LiF layer thickness on the simulated transmittance of ST-OSCs
in the wavelength range of 370 to 740 nm and 740 to 900 nm in the CBP/LiF double-layers
OCL. Figure 5c,d shows the effect of the CBP layer thickness and LiF layer thickness on
the simulated transmittance of ST-OSCs in the wavelength range of 370 to 740 nm and 740
to 900 nm in the latter two layers of the CBP (40 nm)/LiF (100 nm)/CBP/LiF four-layers
OCL. Simulations clearly show that the CBP (40 nm)/LiF (100 nm) double-layers OCL has
less effect on visible light transmittance and reflects longer wavelength light, while the
CBP (40 nm)/LiF (100 nm)/CBP (70 nm)/LiF (40 nm) four-layers OCL can induce distinct
optical phenomena, allowing for enhanced visible light transmittance and reflection of
long-wavelength light (such as near-infrared light) into the interior of the device. It can be
seen that the utilization of a four-layers dielectric helps to improve the visible transmittance
and the collection of photons in the near-infrared region.

We further experimentally validate the simulated results for the ST-OSCs with an OCL.
As shown in Figure 6a, when the thickness of the LiF film is kept constant, an increase in
the thickness of the CBP layer leads to a red shift in the transmittance spectrum. The AVT
reaches a maximum when the CBP thickness is 40 nm and the LIF thickness is 100 nm. As
is shown in Figure 6b, the AVT remains essentially constant as the thickness of the LiF film
increases. As is shown in Figure 6c,d, in the four-layers OCL, the same red shift is induced
with the increase in the CBP layer thickness, while the thickness of the LiF layer has less
effect on the AVT. Compared with the samples using double-layers OCL, the samples using
four-layers OCL add a new wave peak at around 550 nm, which further improves the
AVT. By calculating its AVT, this red-shift phenomenon can effectively increase the optical
performance of ST-OSCs. This is consistent with the simulation results above. The structure
of glass/ag (15 nm)/CBP (40 nm)/(100 nm)/CBP (70/80 nm)/LiF (40 nm) reached the
highest AVT of 39.62%. The transmission spectra of the glass/ag (15 nm)/CBP (40 nm)/LiF
(100 nm)/CBP (70 nm)/LiF (40 nm) structure overlap less with the absorption spectrum of
the active layer. Therefore, we choose CBP (40 nm)/LiF (100 nm)/CBP (70 nm)/LiF (40 nm)
four-layers dielectric as the OCL of ST-OSCs.
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Figure 7a–c shows the J–V curves, EQE spectra and transmission spectra of ST-OSCs
with different D: A ratios. The results show that, as the PM6 content decreases, the
photocurrent and EQE subsequently decrease and the AVT is significantly improved. This
improvement is mainly due to the weakened absorption of visible light by the ST-OSCs
with an OCL, resulting in a lower PCE of the device. It is clear that the performance of
the ST-OSCs with an OCL is significantly higher than that of the ST-OSCs without an
OCL when the D: A ratio is the same. This improvement is mainly due to the weakened
absorption of visible light by the ST-OSCs with an OCL, resulting in a lower PCE of the
device. It is additionally clear that the performance of ST-OSCs with an OCL is significantly
higher than that of ST-OSCs without an OCL when the D: A ratio is the same. As shown
in Figure 3d, when the D: A ratio is 0.4:1.2, the ST-OSCs with an OCL have the highest
LUE of 3.01, which is 23.86% higher than that of the ST-OSCs without an OCL. The color
perception of ST-OSCs is also a key factor in practical applications besides PCE and AVT,
which can be expressed using (x, y) coordinates on the International Committee Éclairage
(CIE) chromaticity diagram [33]. As is shown in Figure 7d, the D: A ratio in the active layer
increased from 0.2:1.2 to 1.0:1.2, the CIE coordinates of the prepared ST-OSCs changed
from (0.2962, 0.3189) to (0.2674, 0.2816) and the corresponding associated color temperature
increased from 7628 K to 11912 K. The results show that the lower the PM6 content is in the
active layer, the higher the AVT of ST-OSCs is and the closer the CIE (x, y) coordinates are
to white light (0.33, 0.34).
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The EQE spectra and transmission spectra of ST-OSCs based on a two-layer OCL and
a four-layer OCL are shown in Figure 8a,b. The ST-OSCs with CBP/LiF/CBP/LiF showed
a decrease in the range of 450–600 nm and an increase in the near-infrared region in EQE.
The ST-OSCs with CBP/LiF showed an increase in EQE in the 450–1000 nm range. The
transmission spectra are in agreement with the simulated results. Figure 8c shows the CIE
coordinates of ST-OSCs with and without CBP/LiF/CBP/LiF. The results show that the
CIE coordinates of the ST-OSCs with the OCL are closer to the white light region, showing
good neutral colors. As can be seen in Figure 8d, the picture of ST-OSCs with an OCL is
significantly brighter and more natural. It can be clearly seen that the PCE of ST-OSCs can
be slightly improved from 10.65 to 10.87% using an optimized OCL compared to ST-OSCs
without an OCL. What is impressive is the significant increase in AVT from 22.78 to 27.61%
for ST-OSCs with an OCL.
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4. Conclusions

In summary, we successfully fabricated high-performance ST-OSCs that achieved
10.87% PCE and 27.61% AVT. An Ag grid with a high FOM of 292.46 was made for the
bottom electrodes of the ST-OSCs. By reducing the D: A ratio of PM6:Y6 films, the photon
collection ability of the active layer is weakened. Optical coupling layers consisting of
alternating CBP and LiF were used to further enhance the PCE and AVT of the ST-OSCs.
This work shows a useful method for manufacturing high-performance ST-OSCs.
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