
Rajan et al. BMC Biology           (2023) 21:98  
https://doi.org/10.1186/s12915-023-01593-3

RESEARCH ARTICLE Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

BMC Biology

Osteosarcoma tumors maintain 
intra‑tumoral transcriptional heterogeneity 
during bone and lung colonization
Sanjana Rajan1,2†, Emily M. Franz1,2†, Camille A. McAloney2,3, Tatyana A. Vetter4, Maren Cam2, Amy C. Gross2, 
Cenny Taslim2, Meng Wang2, Matthew V. Cannon2, Alexander Oles5 and Ryan D. Roberts2,6,7*    

Abstract 

Background  Tumors are complex tissues containing collections of phenotypically diverse malignant and nonmalig-
nant cells. We know little of the mechanisms that govern heterogeneity of tumor cells nor of the role heterogeneity 
plays in overcoming stresses, such as adaptation to different microenvironments. Osteosarcoma is an ideal model for 
studying these mechanisms—it exhibits widespread inter- and intra-tumoral heterogeneity, predictable patterns of 
metastasis, and a lack of clear targetable driver mutations. Understanding the processes that facilitate adaptation to 
primary and metastatic microenvironments could inform the development of therapeutic targeting strategies.

Results  We investigated single-cell RNA-sequencing profiles of 47,977 cells obtained from cell line and patient-
derived xenograft models as cells adapted to growth within primary bone and metastatic lung environments. Tumor 
cells maintained phenotypic heterogeneity as they responded to the selective pressures imposed during bone and 
lung colonization. Heterogenous subsets of cells defined by distinct transcriptional profiles were maintained within 
bone- and lung-colonizing tumors, despite high-level selection. One prominent heterogenous feature involving glu-
cose metabolism was clearly validated using immunofluorescence staining. Finally, using concurrent lineage tracing 
and single-cell transcriptomics, we found that lung colonization enriches for multiple clones with distinct transcrip-
tional profiles that are preserved across cellular generations.

Conclusions  Response to environmental stressors occurs through complex and dynamic phenotypic adaptations. 
Heterogeneity is maintained, even in conditions that enforce clonal selection. These findings likely reflect the influ-
ences of developmental processes promoting diversification of tumor cell subpopulations, which are retained, even in 
the face of selective pressures.
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Background
Osteosarcoma is the most common malignant tumor 
of bone in pediatric patients [1]. This aggressive dis-
ease occurs in the metaphyseal region of the long bones, 
coinciding in both anatomic location and developmen-
tal timing with periods of rapid linear bone growth [2]. 
Localized disease has a favorable 5-year survival rate of 
over 70% [3], but survival plummets to less than 20% in 
the event of metastasis [4]. Unfortunately, survival rates 
have not changed since the introduction of chemother-
apy in the 1980s [5]. Staging and therapeutic assign-
ment remain solely based on the presence or absence of 
metastasis [6]. One unique feature of osteosarcoma is its 
extreme tropism for the lung, which is the primary site 
of metastasis in nearly 90% of patients [7, 8]. How these 
tumors adapt to survive and grow as they migrate from a 
bone to a lung environment remains poorly understood. 
While others have reported that osteosarcoma metastasis 
is a polyclonal process [9], the molecular pathways that 
mediate these adaptations during tissue colonization—
which may involve a coordination of behaviors between 
cells from distinct clones with distinct phenotypes—
remain to be studied at a single-cell level. Such investiga-
tion may provide novel insights into tumor biology and 
reveal vulnerabilities not evident in studies that utilize 
bulk methods.

Most osteosarcoma patients have disseminated tumor 
cells at the time of diagnosis [6, 10]. Thus, studies focused 
on the latter steps in the metastatic process, especially 
lung colonization, are those most likely to produce tar-
gets that will translate into impactful clinical interven-
tions. A large body of literature suggests that tumor 
cells face enormous stresses upon dissemination to the 
lung—only the fittest cells survive the transition from 
dissemination to lung colonization, while most cells die 
[11]. Thus, the experiments shown here focus deliber-
ately on understanding the contributions of clonal selec-
tion and transcriptional heterogeneity to the adaptive 
processes that allow tumors to traverse the tissue colo-
nization bottleneck [11–15], using reductionist systems 
that are agnostic of early steps in the metastatic cascade. 
For instance, whether the properties that mediate fitness 
within the lung arise from rare, but pre-existing clones 
that carry an intrinsic survival advantage or from some 
active adaptive response to the new environment remains 
poorly understood. Such fundamental questions have 
largely remained unanswered due to technical limita-
tions. In this study, we overcome this gap by combining 
single-cell transcriptomics with lineage tracing to study 
transcriptional heterogeneity dynamics and clonal evolu-
tion using linked single cell datasets.

We analyzed single cell transcriptomic libraries of 
47,977 osteosarcoma cells obtained from cell lines and 

low-passage patient-derived xenograft (PDX) models that 
were grown as both orthotopic primary tumors and lung 
metastases to identify changes in intra-tumoral transcrip-
tional heterogeneity that occur during tibia and lung col-
onization. While we suspected that adaptation to growth 
within the tibia or lung would select for a rather narrowly 
defined subset of cells with transcriptional phenotypes 
that endowed cells with increased fitness in these distinct 
environments, we instead found that tumors maintain a 
high degree of transcriptional heterogeneity while adapt-
ing to growth in both bone and lung environments. How-
ever, while the overall transcriptional heterogeneity was 
maintained, the process of adaptation to these distinct 
environments revealed reproducible patterns of biologic 
sub-specialization within subsets of cells that were char-
acteristic for each tissue niche. In one intriguing example, 
populations of cells expressing genes suggestive of reli-
ance on glycolytic and aerobic metabolism both emerged 
during lung colonization. Using immunofluorescence, we 
validated this metabolic heterogeneity in both primary 
and metastatic mouse tumors. Furthermore, we vali-
dated the heterogeneous activation of multiple pathways 
identified from our preclinical models in single-cell RNA 
sequencing (scRNA-seq) datasets from patient tumors. 
Finally, we combined lineage tracing with single cell tran-
scriptomics to study the contribution of clonal selection 
to the phenotypic shifts that we observed. Surprisingly, 
while several clones exhibited clear expansion during 
lung colonization, these clones emerged within clus-
ters spread across the entire spectrum of transcriptional 
profiles, rather than a particular cluster representing a 
genome-wide transcriptional state that endowed tissue-
specific fitness. However, isolation of cells from these 
expanding clones revealed activation of a more focused 
set of genes that again suggested the importance of meta-
bolic flexibility during lung colonization.

Based on these investigations, we conclude that 
osteosarcoma cells undergo dynamic changes in their 
transcriptional phenotype as they colonize different 
microenvironmental conditions, while simultaneously 
maintaining an overall degree of transcriptional hetero-
geneity in the wake of clonal selection. Overall, these data 
highlight the importance of understanding intra-tumor 
heterogeneity in the context of tumor cell transcriptional 
changes or adaptations during tissue colonization.

Results
Transcriptional heterogeneity in cell line and PDX models 
of osteosarcoma
Recent work has shown that osteosarcoma tumors col-
lected directly from patients exhibit significant tran-
scriptional heterogeneity [16, 17]. However, it is unclear 
if this heterogeneity is maintained within cell line and 
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PDX models of disease [6]. We investigated phenotypic 
heterogeneity within two in  vitro and in  vivo models 
of osteosarcoma by performing scRNA-seq. We gener-
ated transcriptomic libraries from a cell line (OS-17) 
and a PDX (NCH-OS-7; see Table  1, Additional file  1: 
Table  S1, for full characteristics as per PDX Minimal 
Information standards) grown in cell culture or as 
subcutaneous flank tumors (>2500 cells per model). 
To distinguish tumor cells from murine host cells, we 
separated cells with reads that mapped to the human 
genome from those that mapped to mouse. Principal 
component analysis identified that the majority of the 
variation in gene expression of tumor cells was domi-
nated by cell cycle related genes, a common finding 
in proliferative malignant tissues [18] (see Additional 
file  2: Figure S1). Scaling out cell-cycle-related genes 
unmasked underlying heterogeneity that did not cor-
respond to variation arising solely from cells being in 
different states of cell cycle (see Additional file  2: Fig-
ure S1, Additional file 3: S2A, B, and Fig. 1A, B). Using 
genes that were differentially upregulated in each clus-
ter relative to the remaining cells in each sample, we 
identified pathways enriched in these subsets of cells as 
well as those pathways differentially downregulated in 
each cluster (Fig. 1C, see Additional file 4: Figure S3A). 
While subsets within each model shared some enriched 
gene sets—for example, OS-17 cells in cluster 0 and 
cluster 1 showed enrichment for epithelial to mesen-
chymal transition (EMT) genes—none of the subsets 
had completely identical profiles, suggesting that these 
subsets are indeed transcriptionally distinct. Interest-
ingly, while EMT transcription factors play an impor-
tant role in promotion of osteosarcoma cell invasion 
and metastasis [19], expression of EMT-related genes 
was associated with certain, distinct subsets. Further-
more, individual subsets had differentially expressed 
genes that were associated with multiple gene sets. For 
example, OS-17 cells in cluster 2 were enriched for E2F 
targets, G2M checkpoint target genes, and MYC target 
genes, while NCH-OS-7 cells in cluster 0 were enriched 
for genes associated with EMT, glycolysis, hypoxia, 
and MYC target genes. This identification of gene sets 

exclusive to specific clusters of cells validated that these 
cell line and PDX models demonstrate intra-tumor 
phenotypic heterogeneity.

Transcriptional signatures associated with colonization 
of bone and lung microenvironments
Microenvironment cues play a critical role in shaping 
transcriptional plasticity [20]. We hypothesized that tran-
scriptional signatures shared across models upon colo-
nization of tibia or lung microenvironments will inform 
characteristics that are microenvironment-specific rather 
than tumor-specific. Single-cell suspensions of two cell 
lines and two PDXs were injected intra-tibially or intra-
venously to generate orthotopic models of bone-colo-
nizing and lung-colonizing lesions (Fig.  2A schematic). 
Both the PDXs included in this study (NCH-OS-2, NCH-
OS-7) are early passage (passage 3, passage 5) and were 
obtained from patient lung metastases.

To study the transcriptional profiles associated with 
tibia and lung colonization, we performed a differential 
expression analysis of the pseudo-bulked scRNA-seq 
data from bone-colonizing tumors or lung-colonizing 
lesions relative to their corresponding starting popula-
tion (cell culture/flank tumors). Most of the differen-
tially regulated genes were unique to each model, with 
only 0.3–0.8% of genes shared across all four models 
(Fig. 2B). Using genes that were either up- or downreg-
ulated in at least three of the four models (2.7–5.6% of 
genes), we performed pathway enrichment analysis to 
identify pathways associated with colonization of tibia 
or lung tissues (Fig.  2C). We verified the shared path-
ways between these human osteosarcoma samples and 
mouse osteosarcoma models (K7M2, F420) to deter-
mine shared pathways between xenograft and synge-
neic models (see Additional file  5: Figure S4). Genes 
that were significantly upregulated upon tibia coloniza-
tion included those associated with glycolysis, hypoxia, 
MYC targets, fatty acid metabolism, and oxidative 
phosphorylation. None of the identified downregulated 
gene sets were statistically significant. Gene sets that 
were most significantly upregulated with lung coloniza-
tion included those associated with TNFα signaling via 

Table 1  Characteristics of osteosarcoma models used in this study

Model Species Type Host Endpoint Characteristics

OS-17 Human Cell Line Icr-scid 70 days Low passage, very well-characterized, reliable metastases

143B Human Cell Line Icr-scid 65 days Widely utilized, very well-characterized, reliable metastases

NCH-OS-2 Human PDX Icr-scid 200 days Very low-passage, highly penetrant, from an untreated 
synchronous metastasis

NCH-OS-7 Human PDX Icr-scid 184 days Very low-passage, highly penetrant, from a heavily-pre-
treated, multiply-relapsed metastasis
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NFκB and EMT, whereas those significantly downreg-
ulated included MYC targets and MTORC1 signaling. 
Overall, we identified common pathways that were dif-
ferentially regulated across the four models upon tibia 
or lung colonization.

Transcriptional heterogeneity of individual cells 
within a tumor
We analyzed single-cell transcriptional profiles of the 
above datasets using our scRNA-seq bioinformatics 
workflow to study the role of intra-tumor heterogeneity 

Fig. 1  Cell line and PDX models of osteosarcoma display transcriptional heterogeneity. A UMAP analysis of OS-17 cells (n = 3327) grown in cell 
culture. Cell cycle distribution of cells (n = 3327) is visualized as pie charts. B UMAP analysis of NCH-OS-7 cells (n = 1998) grown as a subcutaneous 
flank tumor. Cell cycle distribution of cells is visualized as pie charts. C Pathway enrichment analysis for hallmark gene sets associated with genes 
upregulated in distinct clusters identified in the two osteosarcoma models. P values were adjusted for multiple comparisons. Boxes in gray identify 
non-significant enrichments, whereas boxes in red identify statistically significant enrichments. MTORC1, mechanistic target of rapamycin (mTOR) 
complex 1. PI3K, Phosphoinositide 3-kinase. AKT, Protein kinase B. TGF, Transforming growth-factor. TNF, Tumor necrosis factor. NFKB, Nuclear Factor 
kappa-light-chain-enhancer of activated B cells
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in tissue colonization (Fig. 3A). To estimate the degree of 
intra-tumor heterogeneity in our models, we computed 
intra-tumor heterogeneity scores (ITH scores) from the 
average Euclidian distance between each cell and every 
other cell in the same dataset [18]. In essence, this is a 
measure of how similar any particular cell is to the other 
cells within a sample. Since osteosarcoma can arise from 
transformed progenitor cells with osteoblastic differ-
entiation and osteoid production [6], we compared the 
heterogeneity scores in osteosarcoma cells relative to 
human primary osteoblast cells grown in cell culture. We 
found that most osteosarcoma samples exhibit somewhat 
higher ITH scores than do normal osteoblast cultures (p 
<0.001, Fig. 3B), though there remained a high degree of 
overlap in the distributions of phenotypic similarity (ITH 
scores) within the populations of all three cell cultures. 
Indeed, cells from osteoblast cultures exhibit several 
distinct phenotypes that readily cluster away from each 

other, consistent with previous reports [21] (see Addi-
tional file 6: Figure S5) and similar to that observed in the 
osteosarcoma samples. We have included overlap scores 
[22] in the figure, which gives a more appropriate statisti-
cal assessment of the proposed hypothesis than a p value, 
given the type of data [23] (i.e., we are not evaluating 
whether two populations containing thousands of cells 
are identical, rather evaluating the degree of similarity vs 
difference in their ITH Score distribution).

We hypothesized that adaptation to distinct microen-
vironmental conditions would create selective pressures 
that would cause a narrowing of the transcriptional phe-
notypes of the tumor cells as the process would select for 
cells expressing genes that endow them with an environ-
ment-specific fitness phenotype. Surprisingly, we found 
that osteosarcoma cells grown in tibia and lung micro-
environments showed no or little decrease in their ITH 
score distributions relative to those grown in vitro or as 

Fig. 2  Osteosarcoma cells adopt distinct transcriptional profiles as they colonize tibia and lung microenvironments. A Schematic of study design 
depicting generation of orthotopic tibia- and lung-colonizing tumors. Tumors were harvested for scRNA-seq when mice reached endpoint. B Venn 
diagrams showing overlap of differentially expressed genes that are up- or downregulated in tibia or lung lesions relative to corresponding starting 
population of cells (cell culture or PDX flank tumors). Regions outlined in red identify differentially expressed genes shared across at least three 
models. C Pathway enrichment analysis with adjusted p values for hallmark gene sets associated with these shared genes
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flank tumors (Fig. 3B, see Additional file 7: Figure S6A), 
though they do show a broadening of the cell-cell similar-
ity distribution, with small populations of cells emerging 
that have increasingly distinct phenotypes (higher ITH 
scores). These results suggest that osteosarcoma cells are 

at least as transcriptionally heterogeneous as non-malig-
nant osteoblast cells and hint that adaptation to new 
tissues might drive the emergence of minor subpopula-
tions. At a high level, these data support the concept that 
these cells retain the programs of the tissues they derive 

Fig. 3  Osteosarcoma cells retain phenotypic heterogeneity despite adaptive changes in response to changing microenvironments. A Schematic 
outlining scRNA-seq bioinformatics workflow. B Osteosarcoma cells maintained overall heterogeneity with a high degree of overlap between 
conditions. The ridge plot shows ITH scores, which represent the gene expression “distance” between each tumor cell within a sample and all 
of the other tumor cells from that same sample. The overlap statistic describes the total percentage of overlap in the observed distributions 
between two samples. C UMAP analysis for merged tibia- and lung-colonizing tumor samples in each of the four models. Cells in gray represent 
the remaining cells in the merged sample. Cluster enrichment analysis shows the distribution of cells in each cluster in the two microenvironment 
conditions (tibia, lung). While some cells in the tibia and lung lesions adopted shared phenotypes, others adopted distinct phenotypes. D Metabolic 
heterogeneity in glycolysis activation. We used a pathway enrichment analysis for hallmark gene sets using genes differentially upregulated in each 
cluster relative to every other cluster within the same model. P values were adjusted for multiple comparisons. Boxes in gray identify non-significant 
pathway enrichments, whereas boxes in red identify statistically significant enrichments. Bar plot shows the percentage of cells identified per cluster 
in lung lesions. In B–D, samples subset to equal number of cells to allow inter-model comparison (n=1500 per condition)
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from, and that phenotypic diversity (as defined by tran-
scriptional heterogeneity) may be a fundamental prop-
erty that is retained as they colonize the tibia and lung 
microenvironments.

To determine if bone-colonizing tumors and lung-
colonizing lesions display similar phenotypes, we 
attempted to use an integrative approach across mod-
els (see Additional file  8: Figure S7). However, cells 
predominantly clustered by tumor model of origin, a 
phenomenon reported in other cancers including small 
cell lung cancers [18]. This indicates a high degree of 
inter-tumor heterogeneity, a well-known characteristic 
of osteosarcoma tumors [24]. We then compared bone-
colonizing and lung-colonizing lesions within the same 
model (OS-17) and characterized the transcriptional 
profile of each cluster (see Additional file 9: Figure S8, 
Additional file 3: Figure S2C-F). Using a cluster distri-
bution analysis, we calculated the relative percentages 
of cells in each cluster to compare cells that colonized 
the tibia or the lung (see Additional file  1: Table  S2). 
We identified a significant overlap in the transcrip-
tional profiles of cells that colonized the two microen-
vironments, while certain cells demonstrated profiles 
specific to each microenvironment (Fig. 3C, see Addi-
tional file  7: Figure S6B). For instance, both primary 
and metastatic OS-17 lesions had cells that exhib-
ited the phenotype associated with cluster 0 (47% in 
the tibia and 42% in the lung); however, cells with the 
phenotype associated with cluster 2 were significantly 
enriched in metastatic lesions (1% in tibia and 40% in 
lung). Using the pathway enrichment analysis outlined 
in Fig.  1, we investigated the transcriptional profiles 
associated with each cluster (Fig.  3D, see Additional 
file 4: Figure S3B, Additional file 7: S6C). This cluster 
enrichment-based strategy allowed us to overcome 
the challenges presented by inter-tumoral heterogene-
ity and instead focus on the characteristics of subsets 
that show differential fitness within the bone and lung 
microenvironments. Pathways enriched in each cluster 
were unique, with high heterogeneity in the activation 
of individual pathways across clusters within the same 
tumor (see Additional file  10: Figure S9 – S12, Addi-
tional file  11: Figure S13 – S18). For example, while 
OS-17 cells in cluster 0 and cluster 3 were associated 
with MTORC1 signaling, only cells in cluster 3 were 
enriched for glycolysis-related genes. Our results sug-
gested that the maintenance of subpopulations with 
distinct phenotypes is reproducible and likely impor-
tant for the biology of lung colonization. To ensure 
that these results were indicative of generalizable 
properties of osteosarcoma tumors (and not simply an 
artifact of our chosen model system), we validated the 

presence of these intratumoral subsets defined by glyc-
olysis, hypoxia, epithelial-mesenchymal transition, and 
TNFα signaling via NFKB within scRNA-seq datasets 
generated directly from patient tumors (see Additional 
file 12: Figure S19 – S22, Additional file 13: Figure S23 
– S28). Our results suggest that colonization of lung 
tissue requires contributions from tumor cell subsets 
exhibiting distinct metabolic behaviors.

Metabolic heterogeneity in osteosarcoma tumors
To validate our observations suggesting changes in 
gene expression related to metabolic heterogeneity at 
the protein level, we performed immunofluorescence 
staining for a known activation marker of glycolysis, 
glucose transporter 1 (GLUT1, a primary component 
of the observed gene signature), in lung lesions from 
two models (OS-17 and 143B). Sections were co-
stained for vimentin to distinguish osteosarcoma cells 
from lung parenchyma. We observed variable stain-
ing for GLUT1 protein within individual lung lesions, 
proving that the observed heterogeneity is relevant 
at the protein level and not an artifact resulting from 
collections of homogenous, spatially isolated lesions 
that stained differently from one another (Fig.  4A, 
B). Interestingly, this heterogeneity was evident even 
in the smallest lesions, suggesting that this metabolic 
heterogeneity either represents a fundamental prop-
erty intrinsic to subpopulations when exposed to the 
lung environment or provides some survival and/or 
growth advantage for metastatic lung lesions.

We validated this metabolic heterogeniety at the 
patient level using a gene expression module for glyco-
lysis in patient primary and metastatic datasets (Fig. 4C, 
Additional file 12: Figure S19). To confirm that the het-
erogeneity observed within this representative pathway 
results from the activation of gene expression modules 
within the cells and not simply from stochastic varia-
tions in gene expression, we stained for other members 
of the glycolysis gene set (hexokinase 2–HK2, carbonic 
anhydrase 9–CA9, monocarboxylate transporter 4–
MCT4) [25] and a known upstream regulator of glyco-
lysis, MYC [26] to evaluate the degree of concordance 
within individual cells. We measured the intensity of 
GLUT1 fluorescence of individual pixels, along with 
fluorescence of other markers, within areas positive for 
vimentin. We noted a high correlation in staining for 
GLUT1 and the other markers within 143B and OS-17 
metastatic lesions (see Additional file  14: Figure S29). 
Immunofluorescence staining for markers of glycoly-
sis in bone tumors from these models identified a high 
degree of correlation for high, low, and intermediate 
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staining for all of these targets (see Additional file  14: 
Figure S29A, Additional file  15: Figure S30). The same 
staining of these cells in culture indicated that hetero-
geneous expression is present in the culture (see Addi-
tional file  16: Figure S31). This staining validated our 
sequencing-based finding of heterogeneity in glyco-
lysis activation at the protein level and confirmed that 

this heterogeneity was not the result of stochastic gene 
expression changes.

Tumor cell clones with diverse transcriptional phenotypes 
expand during lung colonization
To evaluate the contributions of clonal selection to phe-
notypic adaptation and heterogeneity as osteosarcoma 

Fig. 4  Heterogeneity in glycolysis activation identified within lung-colonizing osteosarcoma lesions. A, B Immunofluorescence staining of 
mouse lungs bearing OS-17 and 143B lung-colonizing tumors, respectively, for GLUT1 (green; a marker of glycolysis) and vimentin (red; marker to 
identify osteosarcoma cells). Magnified GLUT1 staining is shown for the boxed regions on the whole-section images. Lesion edges are indicated 
by white outlines in the magnified regions. Tumors showed a high degree of intra-tumor variation in GLUT1 staining intensity. C FeaturePlots 
for the glycolysis module score in patient primary and metastatic tumor datasets. The module score for Glycolysis was calculated using the 
“AddModuleScore” function in Seurat with MSigDB HALLMARK_GLYCOLYSIS genes as input features for the expression program
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cells colonize tibia and lung microenvironments, we 
combined expressed-tag lineage tracing with single-cell 
transcriptomics (Fig. 5A). Lentivirus infection introduced 
a very high diversity, heritable, and 3’ capture compatible 
lineage tag library in osteosarcoma cells in culture. After 
reserving a representative sample of the uniquely tagged 
cells, we generated bone and lung lesions. Single-cell 

libraries of tibia tumors, lung tumors, and cells in cul-
ture were processed bioinformatically to overlay pheno-
type and lineage information for each cell, and cluster 
transcriptional profiles were determined (see Additional 
file  3: Figure S2G). At the level of phenotype, we noted 
that cells in the tibia and lung cluster away from cells in 
cell culture, suggesting tumor-level adaptation to tibia or 

Fig. 5  Lung colonization bottleneck enriches for clonal populations with a common transcriptional phenotype. A Schematic of experimental 
set-up. B UMAP analysis of lineage-tagged OS-17 cells in culture, implanted into the tibia, or inoculated to generate lung-colonizing tumors. 
These lineage tags are heritable, allowing us to track the transcriptional profiles of daughter cells originating from the same ancestor. Lung- and 
tibia-colonizing tumor samples share many cells with similar phenotypes, though cultured cells are dramatically different (n = 2800 per condition). 
C Frequency distribution of clones identified in each of the conditions. A high level of clonal diversity is maintained in the tibia-colonizing tumors 
(78% unique clones in tibia-colonizing tumor compared to 86% unique clones in cell culture), while dominant clones emerge in the lung (only 
33% unique clones). D Overlay of cells sharing a common ancestor onto the dimensional reduction plots in the top four enriched clonal families. 
E UMAP visualization of cells belonging to top ten enriched clonal families highlighted in red from the lung-colonizing tumor sample. F Pathway 
enrichment analysis for hallmark gene sets comparing enriched clones relative to the remaining lung-colonizing tumor cells identifies hypoxia, 
glycolysis, and EMT signaling-related genes to be significantly upregulated
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lung microenvironments (Fig. 5B). Since the lineage tags 
are passed from parent to progeny as each cell divides, 
we used a frequency distribution analysis for lineage tags 
in the tibia and lung tumors to determine if tibia or lung 
colonization drove enrichment for specific clonal popu-
lations. Lineage barcode enrichment analysis for cells in 
cell culture identified 85% of cells to have a unique line-
age tag, confirming that our starting population received 
lineage tags at high diversity. Surprisingly, cells from 
orthotopic primary tumors showed very little evidence of 
clonal selection, suggesting that bone represents a rela-
tively permissive colonizing environment (Fig.  5C). In 
contrast, cells from lung lesions demonstrated a higher 
level of enrichment for specific barcode, suggesting either 
an environment selecting for clones with specific prop-
erties or the activation of programs driving proliferation 
within a subset of tumor cells (Fig.  5C). We confirmed 
that this pattern of clonal selection was reproducible in 
two independent replicates (see Additional file 17: Figure 
S32A; Additional file 1: Table S3 and Table S4, for lenti-
virus distribution in cell culture). Importantly, datasets 
from OS-17 cells from distinct biological replicates (dif-
ferent lots of cells, different lot of virus, different litter of 
mice) overlaid completely, even without batch correction, 
suggesting that intra-tumor transcriptional heterogene-
ity of these osteosarcoma cells is not random or stochas-
tic and that our decision to avoid using batch correction 
techniques is biologically appropriate (see Additional 
file 17: Figure S32B).

We then overlaid lineage information on phenotypic 
profiles to identify the transcriptional phenotypes most 
permissive to clonal expansion in the lung. Interestingly, 
while we found that cells within given enriched clonal 
families clustered together, suggesting that overarching 
transcriptional states were passed from parent to progeny, 
we also found that these expanding clones emerged from 
parents exhibiting phenotypes across the transcriptional 
spectrum (Fig. 5D, see Additional file 18: Figure S33). This 
suggested that the process leading to clonal expansion 
might come from the triggering of specific gene programs 
rather than the selection of cells with any particularly fit 
phenotype. To identify gene programs that might be acti-
vated within these expanding clones, we performed path-
way enrichment analysis using the genes differentially 
upregulated in the top 10 expanded clones. This analysis 
showed that genes associated with hypoxia, glycolysis, 
EMT, and MTORC1 signaling were upregulated within the 
expanding clones, suggesting a potential mechanism for 
the metabolic heterogeneity noted earlier, whereas differ-
entially downregulated genes were associated with inter-
feron response pathways (Fig. 5E, F; see Additional file 1: 
Table  S5, for differentially upregulated genes; see Addi-
tional file 4: Figure S3C for downregulated pathways).

Discussion
These studies provide insight into the roles that intra-
tumor heterogeneity and clonal evolution play as 
osteosarcoma tumors adapt to bone and lung microenvi-
ronments. Using an orthotopic cell line and PDX models 
of osteosarcoma, we show that these tumor cells maintain 
transcriptional heterogeneity as they respond to chang-
ing microenvironment conditions while also plastically 
adapting their transcriptional profiles. We identified that 
tibia and lung tumors demonstrate phenotypic heteroge-
neity where subsets of cells upregulate genes associated 
with distinct pathways, including glycolysis, hypoxia, 
EMT, and TNFα signaling via NFκB. We validated this 
functional heterogeneity for the identified pathways in 
publicly available patient primary tumor datasets. Fur-
thermore, we showed that intratumoral heterogeneity 
within at least one metabolically relevant pathway was 
reproducible using immunofluorescent staining for key 
proteins, suggesting heterogeneity in glycolytic metabo-
lism within individual metastatic lesions, irrespective of 
lesion size. Finally, by combining lineage tracing and sin-
gle-cell transcriptomic analysis, we showed that rapidly 
expanding clones emerge from cells across the transcrip-
tional landscape, each of which adopts a growth-associ-
ated sub-phenotype, which is at least associated with the 
activation of pathways also associated with metabolism. 
Together, our studies suggest a tumor-intrinsic mecha-
nism that allows for the maintenance of phenotypic 
diversity, despite clonal selection, while undergoing adap-
tive transcriptional changes during lung colonization 
(Fig.  6). These observations implicate several transcrip-
tional programs in the process of lung metastasis, includ-
ing several pathways linked to energy metabolism. Most 
interestingly, this data suggests potential cooperation 
between distinct tumor subpopulations, which could be 
a driver for the maintenance of heterogeneity and lung 
tropism. Further study will be necessary to determine the 
functional importance of these pathways.

Developmental processes in normal cells have been 
shown to require and maintain a fundamental level of 
phenotypic heterogeneity [27, 28]. Congruently, osteo-
blast cells grown in cell culture demonstrated a baseline 
level of transcriptional heterogeneity. In our studies, 
osteosarcoma cells maintained an even higher degree 
of transcriptional heterogeneity, whether grown in 
mice or cell culture, and maintained that same degree 
of heterogeneity when exposed to selective pressures of 
distinct tissue environments. While more samples are 
needed to capture the true heterogeneity in osteosar-
coma, one might speculate that the normal develop-
mental programs that support normal bone growth are 
maintained (or even amplified) in tumor cells and that 
these cooperative mechanisms could produce a survival 
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advantage in a transformed malignant state. Indeed, 
studies published using patient tumor tissues support 
this hypothesis [16, 17] and analysis of those published 
data sets identifies heterogeneity in the same pathways 
that we identified in our mouse models.

While pseudo-bulk analyses identified shared path-
ways associated with tibia and lung colonization across 
the models, single-cell analysis identified that each tumor 
was composed of phenotypically distinct subsets associ-
ated with unique combinations of activated pathways. In 
this study, we validated findings of heterogeneity in gly-
colytic activation from our sequencing experiments by 
identifying correlated staining patterns for four distinct 
markers of glycolysis activation, namely GLUT1, HK2, 
CA9, MCT4 [25], along with a known upstream regulator 
of GLUT1, MYC [26]. We showed that this heterogeneity 
in glycolysis activation is intrinsic to individual metastatic 
lesions and not an artifact created by spatially isolated, 
metabolically distinct lesions. Strong correlation between 

stains for each of these five markers confirmed that the 
observed heterogeneity did not arise from stochastic 
gene expression changes. These findings also suggest that 
a transition to glycolytic metabolism occurs within sub-
sets within a tumor. Reliance on glycolytic metabolism is 
a deeply studied phenomenon in cancer cells, where rapid 
energy production can support the abnormally high needs 
of malignant transformation [29, 30]. Our findings align 
with those reported in recent single-cell sequencing stud-
ies in other cancers, which also showed heterogeneous 
activation of glycolytic pathways [31]. This may suggest 
that tumor cells with distinct phenotypes leverage some 
type of metabolic cooperation, with each cell specializing 
to perform a specific set of necessary tasks while relying 
on the activity of cells with different phenotypes for needs 
that they cannot meet alone. Indeed, many examples of 
metabolic cooperation between tumor cells and the sur-
rounding stroma have been documented. Evidence within 
the remote literature hints that similar processes may be 

Fig. 6  Schematic of tumor cell adaptation to changing microenvironments. Osteosarcoma cells demonstrate high transcriptional heterogeneity 
(colors) in cell culture, orthotopic tibia, and lung microenvironments. Tumors that grow in the orthotopic tibia lesions follow dynamics of neutral 
evolution where different cancer clones (shapes) co-exist and propagate simultaneously. The selective pressure of lung colonization results in 
enrichment of clonal families with different phenotypes (colors), where cells belonging to the same family (shape) tend to have similar phenotypes 
(color)



Page 12 of 18Rajan et al. BMC Biology           (2023) 21:98 

active within cultures of tumor cells [32, 33]. Whatever the 
biologic advantage provided by this heterogeneity, these 
tumors clearly resemble something more like a develop-
ing tissue than a simple clonal proliferation of malignant 
cells. While tumors have long been described as complex 
organs, based on the myriad essential interactions between 
tumor and host cells within the microenvironment [34], 
studies presented here lend support for the idea that inter-
actions between tumor cells with distinct phenotypes may 
also be critical for tumor development.

Combining the power of scRNA-seq with lineage 
tracing allowed us to make inferences about the roles 
of clonal selection and transcriptional plasticity in the 
emergence of traits that facilitate lung colonization. We 
showed that lung colonization enriches for multiple 
clonal families, wherein clonally related cells tend to have 
similar transcriptional profiles. In contrast, tumor cells 
retained clonal diversity on tibia colonization, suggesting 
that this environment is relatively permissive—at least to 
cells previously growing in culture.

It should be noted that PDXs and patient-derived cell 
lines may not fully recapitulate the entire spectrum of 
heterogeneity within a patient tumor. However, studies 
evaluating the rate of evolution within PDX models over 
time suggest that the low passage PDXs utilized in this 
study should retain a high degree of fidelity to the origi-
nal tissue used to generate the models [35, 36].

We acknowledge that the experimental metastasis 
model chosen for these studies produces results that 
are agnostic of the multi-step process required to effect 
metastasis in a patient. This choice was deliberate and 
designed to very simply ask whether the capacity to colo-
nize these different tissues is contained within a few rare 
clones with a pre-existing phenotype or whether diverse 
groups of cells have the capacity to adapt to stresses 
imposed by the tibia or lung environment. Our results 
suggest that both answers have some truth. The drastic 
shift in phenotype from cell culture or flank tumors to 
bone or lung tumors endorses the strong role that micro-
environmental cues play in shaping tumor cell behavior.

However, lung colonization enriched for specific clonal 
populations that all demonstrated a similar growth-
associated phenotype. Genes differentially upregulated 
in the top ten enriched clonal phylogenies overlapped 
mostly with genes related to hypoxia and glycolysis, a 
finding that may inform the interpretation of the stain-
ing patterns seen in our gene signature validation studies. 
Indeed, activation of pathways associated with hypoxia 
and glycolysis is closely linked and may be important in 
generating the energy and building blocks needed to sup-
port the rapid proliferation of these tumor cells. While 
our results cannot definitively show whether the enriched 
clones composed individual lung-colonized lesions, or 

whether the same clones colonized multiple lesions inde-
pendently, the immunofluorescence stains for glycolysis-
related gene performed earlier suggest that this metabolic 
heterogeneity is a phenomenon intrinsic to this process 
that likely occurs diffusely. Whether this transition rep-
resents a developmental step that occurs within every 
lesion as it begins to expand rapidly, what changes (likely 
epigenetic) constitute the trigger that facilitates clonal 
expansion, and whether the conservation of transcrip-
tional profiles in cells that originated from a common 
ancestor has an underlying genetic or epigenetic basis all 
remain points of active study.

While the overall differential expression analysis identi-
fied genes associated with TNFα signaling via NFκB and 
EMT to be most significantly upregulated upon lung coloni-
zation (Fig. 2C), the comparison between the most enriched 
clones and non-expanded clones identified a distinct tran-
scriptional program associated with activation of glycolysis 
and hypoxia-related genes. These data may suggest that lung 
colonization follows a two-step process—the first charac-
terized by survival and niche establishment, with a second 
occurring through rapid expansion of a subset of cells that 
adopt a growth-associated phenotype distinct from the 
remaining bulk of the lung-colonizing tumor cells.

Conclusions
Overall, we show that osteosarcoma tumors maintain a 
high level of intra-tumoral transcriptional heterogeneity, 
even while experiencing broad transcriptional changes 
as tumors adapt to tibia and lung microenvironments. 
Distinct tumors maintain subpopulations of cells char-
acterized by the activation of gene expression pathways 
that demonstrate similarities across models within each 
environment. The process of lung colonization enriches 
for distinct clonal populations. Interestingly, while a 
particular transcriptional signature appears common to 
rapidly expanding clonal phylogenies, these arise from 
groups of cells with diverse genome-wide transcriptional 
profiles that are maintained within each phylogeny. Addi-
tionally, maintenance of the range/degree of intra-tumor 
heterogeneity endorses the role of cell-autonomous 
mechanisms in holding up a basal evolutionary advan-
tage associated with maintaining diverse transcriptional 
states [37]. How this transcriptional heterogeneity is 
regulated in osteosarcoma cells and whether underlying 
genomic heterogeneity engenders transcriptional hetero-
geneity remain unanswered questions.

Methods
Experimental model—PDXs, cell lines, and murine studies
Patient‑derived xenografts (PDXs)
OS-17 PDX tissue was obtained from a primary femur 
biopsy performed at St. Jude’s Children’s Research 
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Hospital in Memphis and was a gift from Peter Houghton 
[38]. Patient-derived samples, NCH-OS-2 and NCH-
OS-7, were obtained from patients who consented under 
an Institutional Review Board (IRB)-approved protocol 
IRB11-00478 at Nationwide Children’s Hospital (Human 
Subject Assurance Number 00002860).

Cell lines
OS-17 cells were derived from an early passage of the 
OS-17 PDX (see above). These cells were grown in 
RPMI (Corning, 10-040-CV) supplemented with 10% 
fetal bovine serum (FBS). 143B cells were obtained from 
the American Type Culture Collection (ATCC, CRL-
8303) and grown in Dulbecco’s modified Eagle medium 
(DMEM) (Corning, 10-013-CV) supplemented with 10% 
FBS. Human osteoblast cells (hFOB 1.19) were obtained 
from the American Type Culture Collection (ATCC, 
CRL-11372) and grown in DMEM/F12 1:1 (Gibco, 
21041-025) supplemented with 0.3 mg/ml G418 and 
10% FBS at 34°C. All cell lines were tested annually for 
both short tandem repeat (STR) genotyping and myco-
plasma contamination using testing services provided by 
Genetica.

Murine studies
All animal studies were approved by Nationwide Chil-
dren’s Hospital Institutional Animal Care and Use 
Committee (IACUC) (protocols AR15-00022 and AR14-
00045). Flank tumors: Cryopreserved viable tissue pieces 
from OS-17, 143B, NCH-OS-2, and NCH-OS-7 PDX 
tumors were placed in the right flank of recipient C.B-
17/IcrHsd-Prkdcscid mice (Envigo, Frederick, MD). These 
subcutaneous tumors were allowed to grow to 300 mm3 
before excision. These were then prepped for scRNA-
seq. Orthotopic primary tumors: Single-cell suspensions 
of 5×105 cells of OS-17, 143B, NCH-OS-2, and NCH-
OS-7 were injected intra-tibially in C.B-17/IcrHsd-Prk-
dcscid mice as per IACUC guidelines. Primary tumors 
were excised once they grew to 800 mm3 and prepped 
for scRNA-seq. Experimental metastasis: Single-cell 
suspensions of 1×106 cells of OS-17, 143B, NCH-OS-2, 
and NCH-OS-7 were injected intravenously in C.B-17/
IcrHsd-Prkdcscid mice. Lungs were harvested once these 
mice reached endpoint. Endpoint criteria for euthanasia 
were defined as weight loss of >10% or a body condition 
score (BCS) of <10. For fluorescence immunohistochem-
istry studies, tumors were placed in 10% formalin for 24 
h at 4°C, then moved to phosphate-buffered saline (PBS) 
for at least 1 h at 4°C. Tissues were then placed in tissue 
cassettes and placed in fresh PBS. Tissues were embed-
ded in paraffin.

Fluorescent immunohistochemistry
Primary antibodies against glucose transporter 1 
(Abcam, ab15309, 1:200), hexokinase 2 (Abcam, [3D3] 
ab104836, 1:10), carbonic anhydrase 9 (Abcam, [2D3] 
ab107257, 1:100), c-myc (Invitrogen, [9E10] MA1-980, 
1:100), monocarboxylate transporter 4 (Santa Cruz Bio-
technology, [D-1] sc-376140, 1:50), and vimentin (Cell 
Signaling Technology, [D21H3] 5741, 1:100 and Abnova, 
[SRL33] MAB9596, 1:200) were used. Secondary anti-
bodies and counterstain used were donkey anti-rabbit 
Alexa Fluor 488 (Invitrogen, A21206, 1:500), donkey 
anti-mouse Alexa Fluor 488 (Invitrogen, A21202, 1:500), 
donkey anti-rabbit Alexa Fluor 568 (Invitrogen, A10042, 
1:500), donkey anti-mouse Alexa Fluor 568 (Invitrogen, 
A10037, 1:500), and 4, 6-diamidino-2-phenylindole dihy-
drochloride (DAPI) (Invitrogen, D1306, 1:500).

Paraffin-embedded tissues were cut into 4 µm sections 
and placed on glass slides. The sections were deparaffi-
nized with xylene and rehydrated. Sections were sub-
merged into a Tris-Ethylenediaminetetraacetic acid 
(EDTA) solution (pH 9.0) or a citrate solution (pH 6.0) 
and heated for antigen retrieval. Sections were blocked 
and permeabilized with a solution of PBS + 0.2% triton 
+ 2% bovine serum albumin for 1 h at room temperature. 
Primary antibodies were diluted in PBS + 0.2% triton 
+ 2% bovine serum albumin. The blocking solution was 
removed from slides and primary antibodies were applied 
to the sections overnight at 4°C. Sections were washed 
three times with PBS + 0.2% triton. All secondary anti-
bodies and DAPI were diluted in PBS + 0.2% triton + 
2% bovine serum albumin and added to the samples for 
one hour at room temperature. Sections were washed 
three times with PBS + 0.2% triton, and once a final time 
with reverse osmosis water. Samples were mounted in an 
aqueous mountant (Invitrogen, 00-4958-02). Each tissue 
section was co-stained for vimentin and one of the other 
markers of interest.

Whole-section multichannel images were captured 
using a Nikon Ti2-E motorized microscope with a 
Lumencor SOLA LED light engine (at 50% power), a 
Hamamatsu ORCA Fusion camera, and Nikon Plan 
Apochromat Lambda objectives using Nikon NIS-Ele-
ments AR version 5.30 software. Each sample was imaged 
at 10× magnification with a final 16-bit image resolution 
of 0.64 μm/pixel. Identical imaging settings were used for 
all samples within the same staining and imaging set.

Images were analyzed using NikoNIS-Elements 
AR software version 5.30 with the General Analysis 3 
module. Semi-automated tumor segmentation was 
performed based on vimentin staining, and the seg-
mented regions were manually modified by an unbiased 
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operator as needed to ensure specific and complete 
tumor selection. Images were then rescaled to 1.28 μm/
pixel and the intensities of all pixels representing tumor 
tissue were recorded in a frequency table for each sam-
ple. For assessing the correlation between non-vimen-
tin markers, image channels representing each marker 
of interest from different tissue sections were aligned 
using the multimodal image registration tool. Fol-
lowing alignment, an intensity profile line of 2–3 mm 
in length was plotted through tumor regions showing 
diverse signal landscapes, and the intensities of pixels 
along the profile line were recorded for each marker. 
All marker intensities were plotted by distance along 
the profile line in GraphPad Prism software version 
9.0.0, and the curves were smoothed using a 2nd order 
polynomial based on 50 neighboring points (25 on each 
side) to account for minor mismatches in image chan-
nels from different tissue sections. The Pearson correla-
tion of each pair of markers was then calculated from 
the smoothed XY curves.

Single‑cell RNA‑Seq
Tumors and lungs harvested from mice were processed 
using the human tumor dissociation kit (Miltenyi Bio-
tec, 130-095-929) with a GentleMacs Octo Dissociator 
with Heaters (Miltenyi Biotec, 130-096-427). Single-cell 
suspensions in 0.04% BSA-PBS of cell lines, dissociated 
tumor and lung tissues were generated and run on the 
Chromium Single Cell 3′RNA-sequencing system (10x 
Genomics) with the Reagent Kit v3.1 (10XGenom-
ics, PN-1000121) according to the manufacturer’s 
instructions. Briefly, cells were loaded into Chromium 
Next GEM Chip G Single Cell Kit (10x Genomics, 
PN-1000120) with a targeted cell recovery of 5000 
cells per sample. After performing cDNA purification, 
amplification, and library construction as instructed, 
we sequenced sample libraries on a half lane of HS4000 
(Illumina) to yield (after quality control) about 65,000 
paired-end reads per cell. For samples that contained lin-
eage tracing barcodes 0.9 uL (100  µM) of Cellecta FSe-
qRNA-BC14 primer was added into the sample index pcr 
reaction.

Cellular barcoding
Barcoded lentivirus libraries were synthesized using 
CloneTracker XP™ 10M Barcode-3’ Library with Venus-
Puro (plasmid) (Cellecta, BCXP10M3VP-P) as described 
in Wang and McManus 2009 [39] with polyethylen-
imine (PEI) (Alfa Aesar, 43896) as the transfection rea-
gent. OS-17 cells were infected with in-house prepared 
virus library in the presence of Polybrene (8 μg/ml) 

(MilliporeSigma, TR1003G). The barcoded plasmids con-
tain ~10M 38-bp semi-random oligonucleotide sequence 
that is captured on the Chromium Single Cell 3′RNA-
sequencing system. Forty-eight hours post-infection, 
OS-17 cells were used to generate orthotopic primary 
and metastatic tumor models as described above.

Cellular barcoding computational analysis
Raw sequencing data was pre-processed to extract the 
lineage tag (LT) using known flanking sequences, and the 
matching cell ID (CID). Lines without high-confidence 
CID assignment were removed and redundant reads were 
removed. The extracted LT barcode reads were matched 
against the known Cellecta barcode library. Reads with 
barcodes that did not match the Cellecta library were 
eliminated. The LT barcode for each matching CID was 
integrated into the Seurat object metadata to allow for 
further analysis (see below).

Single‑cell RNA‑Seq analysis
Cell Ranger version 3.0.2 (10x Genomics) was used to 
convert Illumina BCL files to FASTQ files. These FASTQ 
files were then de-multiplexed and aligned to the hg19 
human reference genome, provided by 10X Genomics, to 
generate gene-cell matrices. We used the Seurat R pack-
age [40–42] for quality control, filtering, and analysis of 
the data. Cells were filtered to remove doublets (outliers 
with high count and high genes per cell), low-quality cells 
(outliers with low count and low genes per cell), and cells 
with high mitochondrial genes (indicative of cells with 
broken membrane). Cells with fewer than 800 expressed 
genes and genes expressed in fewer than 5 cells were fil-
tered out. The total numbers of cells in each model after 
filtering were as follows: Osteoblasts (cell culture): 5735; 
OS-17 (cell culture): 3327; OS-17 (tibia): 4574; OS-17 
(lung): 2849; 143B (cell culture): 3354; 143B (tibia): 6187; 
143B (lung): 5134; NCH-OS-2 (flank): 6749; NCH-OS-2 
(tibia): 4285; NCH-OS-2 (lung): 1645; NCH-OS-7 (flank): 
1998; NCH-OS-7 (tibia): 2891; NCH-OS-7 (lung): 5133. 
In analyses that required comparison across conditions 
or models, samples were subset to contain equal num-
bers of cells and this number is specified in the figure 
legends. We transformed and normalized unique molec-
ular identifier (UMI) counts using the “NormalizeData” 
function in Seurat package version 4.0.2 [43] with default 
parameters. We mitigated the effects of cell cycle hetero-
geneity by regressing out canonical G2/M- and S-Phase 
genes using the “ScaleData” function in Seurat. Principle 
component analysis (PCA) was performed using the top 
2000 highly variable genes identified by the Seurat func-
tion “FindVariableFeatures” with default parameters. For 
each dataset, the first twenty principal components were 
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selected based on the elbow plot for percentage explained 
variances, representing ~55.5–60.3% of total variances. 
The Uniform Manifold Approximation and Projection 
(UMAP) transformation [44] was performed on selected 
principal components using the “RunUMAP” function. 
We applied shared nearest neighbor (SNN) modularity 
optimization [45] for clustering. We calculated silhou-
ette scores for different numbers of clusters (from two 
clusters to ten clusters) to measure how similar one cell 
was to other cells in its own cluster compared with other 
clusters using the silhouette function in the R package 
cluster. We determined the optimum number of clus-
ters for each sample by maximizing the silhouette score. 
Datasets were integrated using four different approaches 
(FastMNN [46], SCTransform [47], Harmony [48], merge 
Seurat objects [49]) to determine the optimal method. 
PCA using the expression of cell cycle genes identified 
that integrating datasets with “merge” function in Seu-
rat or application of Harmony gave consistent results 
where cells did not cluster by cell cycle. Marker genes 
were identified for each cluster relative to other clusters 
using the “FindMarkers” function, returning only positive 
markers, with “test.use” set to DESeq2 [50] which uses 
a negative binomial distribution. Pathway enrichment 
analysis was performed on these marker genes using the 
enricher function in the R package clusterProfiler [51] 
with default parameters with Molecular Signatures Data-
base (MSigDB) Hallmark gene sets [52]. Pseudo-bulk 
analysis was performed by setting identities of each cell 
to the sample. We identified gene differentially regulated 
using the “FindMarkers” function for both positive and 
negative markers upon tibia or lung colonization. Path-
way enrichment analysis was performed on these mark-
ers as described above. The ITH score was calculated as 
described in Stewart et al. [18]. Briefly, it was defined as 
the average Euclidean distance between each cell to every 
other cell in each sample, in terms of the selected princi-
pal components.

We downloaded validation datasets from Gene Expres-
sion Omnibus (GEO) for seven patient primary tumor 
tissues published in a recent study (GEO accession num-
ber-GSE152048) [16]. We used the Seurat R package 
[40–42] for quality control, filtering, and analysis of these 
gene expression matrices. Cells were filtered to remove 
doublets, low-quality cells, and cells with high mitochon-
drial genes as described above. Cells with fewer than 800 
expressed genes and genes expressed in fewer than 5 
cells were filtered out. We transformed and normalized 
UMI counts using the “NormalizeData” function in Seu-
rat package version 4.0.2 [43] with default parameters. 
PCA was performed using the top 2000 highly variable 
genes identified by the Seurat function “FindVariableFea-
tures” with default parameters. Using the marker gene 

sets used in the paper [16], we separated tumor cells from 
patient host cells. For each sample, the first twenty prin-
cipal components were selected based on the elbow plot 
for percentage explained variances, representing ~51.8–
61.5% of total variances. The UMAP transformation [44] 
was performed on selected principal components using 
the “RunUMAP” function. Module scores for glycolysis, 
hypoxia, EMT, and TNFα signaling via NFκB were cal-
culated using the “AddModuleScore” function in Seurat 
with corresponding Hallmark MSigDB gene sets as input 
features for the expression program.

Statistical analysis
Statistical analyses were performed using R software 
environment for statistical computing [53] and Prism 9 
(GraphPad Software, Inc.). The packages used in R soft-
ware are mentioned in the text in the “Methods” section. 
For differential gene expression analysis, a negative bino-
mial model (DESeq2) [50] was used. For multiple test-
ing, p values were adjusted using Benjamini Hochberg 
(BH) correction. For ITH score comparisons, data were 
subjected to one-way analysis of variance (ANOVA) fol-
lowed by Šidák multiple comparisons test.
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