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Abstract

Motivation: Nucleus detection, segmentation and classification are fundamental to high-resolution mapping of the
tumor microenvironment using whole-slide histopathology images. The growing interest in leveraging the power of
deep learning to achieve state-of-the-art performance often comes at the cost of explainability, yet there is general
consensus that explainability is critical for trustworthiness and widespread clinical adoption. Unfortunately, current
explainability paradigms that rely on pixel saliency heatmaps or superpixel importance scores are not well-suited for
nucleus classification. Techniques like Grad-CAM or LIME provide explanations that are indirect, qualitative and/or
nonintuitive to pathologists.

Results: In this article, we present techniques to enable scalable nuclear detection, segmentation and explainable
classification. First, we show how modifications to the widely used Mask R-CNN architecture, including decoupling
the detection and classification tasks, improves accuracy and enables learning from hybrid annotation datasets like
NuCLS, which contain mixtures of bounding boxes and segmentation boundaries. Second, we introduce an explain-
ability method called Decision Tree Approximation of Learned Embeddings (DTALE), which provides explanations
for classification model behavior globally, as well as for individual nuclear predictions. DTALE explanations are sim-
ple, quantitative, and can flexibly use any measurable morphological features that make sense to practicing patholo-
gists, without sacrificing model accuracy. Together, these techniques present a step toward realizing the promise of
computational pathology in computer-aided diagnosis and discovery of morphologic biomarkers.

Availability and implementation: Relevant code can be found at github.com/CancerDataScience/NuCLS

Contact: lee.cooper@northwestern.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Nucleus classification, localization and segmentation (NuCLS) are
fundamental pattern recognition tasks commonly performed in com-
putational pathology workflows (Xing and Yang, 2016). Nuclear
identification and morphologic assessment are integral to most
histopathology diagnostic and clinical grading schemes, and are used

for determining how aggressive certain malignancies are, and
whether the patient is likely to respond to certain therapeutics. By
extension, computational assessment of nuclei is important for
computer-aided diagnosis and patient prognostication (Abels et al.,
2019). Moreover, nuclear segmentation and/or extraction of nuclear
morphometric and spatial features is the first and most important
step in exploratory research to discover genomic and clinical
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correlates of quantitative morphologic features (Cooper et al., 2012;
Diao et al., 2021; Saltz et al., 2018). Computational pathology most
commonly make use of digitized histopathology slides known as
whole-slide images (WSIs). A number of unique challenges contrib-
ute to the difficulty of translating traditional image processing and
machine learning algorithms to histopathology contexts, including
the extreme sizes of WSIs, typically 80k�80k pixels, and high vari-
ability in image quality and appearance due to differences in tissue
processing, staining and slide scanning equipment and protocols
(Amgad et al., 2020; Pantanowitz et al., 2013). In situations where
the data variability is high, machine learning algorithms typically
need a large number of examples to capture the full spectrum of
cases that would be seen after deployment. This variability stems in
part from preanalytical factors such as specimen preparation and
staining protocols, slide scanner specifications, image formats and
compression, etc. (Masucci et al., 2016; Pantanowitz et al., 2013).
Unfortunately, the lack of publicly available datasets limits the de-
velopment and benchmarking of deep-learning models, due to: (i) lo-
gistical and legal difficulties of health data sharing and (ii) time
constraints of practicing pathologists whose expertise is required to
produce ground truth data (Abels et al., 2019; Amgad et al., 2020;
Hartman et al., 2020).

In previous work, we developed a crowdsourcing approach that
scales the acquisition of nucleus segmentation and classification data
and produces hybrid datasets containing both bounding boxes and
segmentation data (Fig. 1) (Amgad et al., 2021). This assisted label-
ing protocol relied on a decentralized web-based annotation plat-
form, HistomicsUI, and involved asking the users to click on
accurate annotation suggestions generated by weak segmentation
and classification algorithms, and to place bounding boxes around
missing or inaccurately segmented nuclei (Gutman et al., 2017). The
weak algorithm used to produce the annotation suggestions uses
simple image processing operations and therefore has no reliance on
training data. This procedure was used to generate the 220,000
annotations that comprise the NuCLS datasets, and motivates the
development and/or adaptation of deep-learning approaches to han-
dle hybrid ground truth data. More generally, as we discuss later,
strategies are needed for mitigating systematic differences between
typical object detection in natural images and nucleus detection and
classification (Fig. 2). It should be noted that machine learning using
hybrid datasets is a combination of object detection and segmenta-
tion. Hence, for consistency, we use the term ‘detection’ throughout
this article whenever segmentations are not necessarily needed for
the task being discussed.

Besides achieving high accuracy, deep-learning models for clinic-
al applications are most useful when they are explainable (Fig. 3).
Not only does explainability increase confidence in model decisions
and hence the likelihood of clinical adoption but it also helps guard
against catastrophic failures and spurious correlations (Amgad et al.,
2020; D’Amour et al., 2020). This emphasis on explainability is
being increasingly recognized by the deep-learning community, and

a number of algorithms have been devised to explain model deci-
sions in image classification and natural language processing con-
texts (Samek et al., 2021).

Unfortunately, the literature is sparse on explainability techniques
for object detection and classification, especially in the context of nu-
cleus classification. For consistency, the lexicon we are using here is
derived from Rudin (2018) and Marcinkevi�cs and Vogt (2020). These
authors distinguish between interpretable models and explanation
methods. Interpretable models are transparent—think of the weights
of a linear model or criteria from a decision tree, and are commonly
provided by modeling approaches that are inherently simple. This of
course comes at a price, since model simplicity can result in underfit-
ting and lack of generalizability (Hastie et al., 2017). Transparency is
more difficult for complex models like neural networks, although
some research attempts to tackle this challenge. In contrast, explan-
ation methods are surrogate post-hoc techniques that demystify the
black-box model decisions. Explanations could be global, explaining
the full range of decisions a model can produce, or sample-specific,
explaining the inference performed for a single sample (Marcinkevi�cs
and Vogt, 2020).

A very popular set of explanation techniques, including variants
of Grad-CAM, rely on using gradient backpropagation to estimate
pixel saliency (Selvaraju et al., 2017). These methods produce a
heatmap that, when overlaid over the input image, can give an idea
about where the model is ‘looking’ during inference. This approach,
while an important advance, has two problems. First, the heatmaps
produced tend to be quite blurry and do not follow natural bounda-
ries. In fact, heatmaps only tell us whether certain pixels are import-
ant for classification, not how they are used to distinguish between
alternative classification decisions. Second, there are concerns over
the misuse of this explainability approach, particularly its qualitative
nature and lack of falsifiability (Leavitt and Morcos, 2020; Rudin,
2018). Falsifiability is the ability of a hypothesis to be disproven,
and is a fundamental guardrail against confirmation bias (Popper,
1959). When using saliency heatmaps for, say, a dog versus wolf
classifier what could a wrong answer possibly be? Not clear. More
recently, a technique called Local Interpretable Model-agnostic
Explanations (LIME) has gained popularity for its simplicity and
general-purpose nature (Ribeiro et al., 2016). LIME relies on decom-
position of the input into interpretable components, superpixels in
the imaging context, which are repeatedly perturbed. The predicted
classification probability then is used to identify the most important
superpixel, and hence provides clear boundaries that cannot be
obtained using Grad-CAM. While more quantitative than Grad-
CAM, LIME is not directly applicable in our context because super-
pixels cannot account for discrete object morphometric measure-
ments like size, shape and texture.

In this article, we make two contributions toward nucleus seg-
mentation and explainable classification using hybrid box and seg-
mentation annotation data. First, we systematically examine
modifications to Mask R-CNN, the state-of-the-art object detection
model, to optimize for the specific task of nucleus detection and to
learn how to segment from hybrid annotation datasets (He et al.,
2017). Second, we describe an explainability technique we call
Decision Tree Approximation of Learned Embeddings (DTALE)
that provides falsifiable, quantitative and intuitive explanations of
decisions by nucleus detection and classification models. We believe
these contributions will enable the development of scalable systems
for mapping the tumor microenvironment, with implications in
computer-aided diagnostics and biomarker discovery.

2 Materials and methods

2.1 Training and validation data
The NuCLS datasets were used for training and validating the
NuCLS model, our Mask R-CNN variant (Amgad et al., 2021). The
scans come from hematoxylin and eosin stain, formalin-fixed paraf-
fin embedded slides from 144 breast cancer patients from The
Cancer Genome Atlas. These NuCLS datasets contain 220 000 anno-
tations of nucleus segmentation and classification. For this article,
we use the following dataset subsets: corrected single-rater datasets,

Fig. 1. Example hybrid bounding box and segmentation data. Hybrid annotation

datasets combine bounding boxes generated by humans with segmentations and

classifications generated by a weak algorithm. They can be generated more scalably

and require less effort from annotators, but require new algorithms that can learn

from a mixture of boxes and segmentation boundaries. Segmentations enable the

computation of morphologic features to discover biological associations and can

provide valuable explanations of model inference
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which were annotated by nonpathologists and corrected and
approved by pathologists, and multirater evaluation dataset anno-
tated by multiple pathologists. The NuCLS datasets contain three
nucleus superclasses (tumor, stroma and TILs), each of which is sub-
divided into two granular subclasses. The annotation data were
found to be reliable for superclasses, but less so for the granular
subclasses.

2.2 NuCLS model
Our NuCLS model modifies the Pytorch implementation of the
Mask R-CNN architecture (He et al., 2017), as illustrated in
Figure 4. Further details can be found in the Supplementary
Methods (He et al., 2016, 2017; Kuhn, 1955; Macenko et al., 2009;
Tellez et al., 2018, 2019).

2.3 DTALE
DTALE relies on the fact that Mask R-CNN (and by extension, our
NuCLS model) learns to predict object segmentation boundaries as
well as their classifications (He et al., 2017). The DTALE procedure
involves four steps (Fig. 6): (i) learning embeddings, (ii) generating
interpretable features, (iii) fitting the decision tree and (iv) calculat-
ing node statistics.

2.3.1 Learned embeddings

Starting with a trained NuCLS model, we extracted the terminal,
per-nucleus, 1024-dimensional classification feature vectors (just be-
fore the logits). Hyperbolic UMAP was applied to these features to
generate a two-dimensional (2D) embedding (McInnes et al., 2018).

2.3.2 Interpretable features

The same FOVs that were input into the NuCLS model were proc-
essed to enable extraction of interpretable features. Macenko stain
unmixing was used to separate the hematoxylin channel (Macenko
et al., 2009). Both the hematoxylin intensity channel and the seg-
mentation mask predictions from the NuCLS model were input into
the HistomicsTK function compute_nuclei_features, which uses
image processing operations to extract feature vectors encoding 62
morphologic features describing shape, intensity, edges and texture
(Supplementary Table S5) (Haralick et al., 1973; Kokoska and
Zwillinger, 2000; Zhang et al., 2001).

2.3.3 Regression decision tree

A regression decision tree was fitted to produce predictions in the
embedding space using the interpretable features as inputs (Hastie
et al., 2017). This maps the interpretable features directly into the
2D embedding space to connect morphology with NuCLS model be-
havior. The rationale for using a regression tree, as opposed to a
classification tree, is twofold. First, any accurate classification model
will produce similar classification decisions. In contrast, the 2D
embedding is a compressed version of a 1024-feature space that is
highly specific to our trained NuCLS model. Second, using a regres-
sion tree allows us to produce fine-grained within-class explanations
for individual nuclei (see Fig. 6). This technique is broadly similar to
some existing works that use soft decision trees to approximate
deep-learning model behavior (Dahlin et al., 2020). We constrained
the tree to a maximum depth of 7 and a minimum of 250 nuclei per
leaf.

2.3.4 Node fit statistics

Once the DTALE tree was fitted, we traversed nodes to find paths
that best represented NuCLS class predictions. For each classifica-
tion class Cj, and for each tree node Ni, we calculate precision, recall
and F1 scores for the downstream subtree as if all nuclei were classi-
fied as Cj and using actual NuCLS model classifications as ground
truth. This generates an F1 and precision score for each node/class
pair. For each class, we identify the node with the highest F1 score
as the most representative of NuCLS model predictions for that
class, whereas the highest precision node corresponds to interpret-
able features that are the most discriminative.

3 Results and discussion

3.1 NuCLS: a Mask R-CNN variant using hybrid datasets
Nucleus detection differs from natural object detection tasks in sev-
eral important respects. Nuclei have lower variability in size and
coarse morphology than objects in natural scenes, and different nu-
cleus classes are mostly distinguished by fine detail and spatial con-
text. Models designed for detection in natural images, including
Mask R-CNN, produce inferences that integrate the concepts of

Fig. 2. Comparison of the NuCLS dataset with canonical ‘natural’ object detection datasets. Nucleus detection datasets typically contain objects that are much smaller and

more densely packed than imaging datasets of natural or day-to-day scenery. NuCLS images are �380� 380 pixel patches at 0.2 microns-per-pixel resolution, and contain on

average 34 nuclei, each of which filling only �1% of the image area. These systemic differences motivate the adaptation of existing methods like Mask R-CNN to accommodate

numerous small objects and to revisit some of the assumptions about object morphology that do not apply in the context of nucleus detection. Modified with permission from

Lin et al. (2014)

Fig. 3. DTALE provides falsifiable, meaningful and quantitative explanations of nu-

cleus detection model decisions. Unlike other approaches, DTALE can provide

explanations that reference object-level morphological measurements such as nu-

clear size, shape, staining intensity, chromatin texture, perinuclear cytoplasmic

staining, etc. In fact, DTALE can use any set of measurable features that make sense

to a pathologist to provide quantitative decision tree approximations for black-box

classification model decisions. These explanations include global decision criteria,

e.g. ‘tumor nuclei are large and have irregular shapes’, as well as decision criteria for

individual nuclei of interest
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detection and classification (e.g. person, 82% probability) (He et al.,
2017). In contrast, for the purpose of detection, nuclei belong to a
single metaclass with an ovoid morphology. Treating nuclei as a sin-
gle metaclass allows calculation of a full classification probability
vector for each nucleus, which would be useful where nuclear
morphology is ambiguous, especially in computer-assisted diagnostic
settings. Nuclei are also typically much smaller and more numerous
than natural objects, even at high magnification, which makes accur-
ate detection more challenging (Fig. 2) (Lin et al., 2014). Moreover,
scalable deployment of trained nucleus detection models requires the
flexibility to perform inference for very large images without resizing
and distorting nuclei (Chandradevan et al., 2020; Yousefi and Nie,
2019).

We modified Mask R-CNN for the specific task of nucleus detec-
tion and to handle the hybrid annotations generated by our assisted
annotation method, as well as pure segmentation data (Fig. 4). We
call our architecture the NuCLS model, for consistency with the
NuCLS annotation datasets used for training and validation (Amgad
et al., 2021). The pathologist-corrected single-rater dataset was used
for training and validation. The multi-rater evaluation dataset was
used for additional validation, although it should be noted that the
single-rater dataset contains many more unique fields of view
(FOVs) compared to the multirater dataset (1744 versus 52 FOVs).
Our key modifications included increased independence of the joint-
ly trained detector and classifier, and enabled: (i) training with hy-
brid box/segmentation annotations; (ii) generating class probability
vectors for all detections; (iii) inference with variable input image
sizes without distortion of scale or aspect ratios. To account for the
scale and density of nuclei, we also made the following changes to

improve detection performance: (i) increasing the density of region
proposals relative to natural image datasets and (ii) digitally increas-
ing magnification beyond 40� objective (Supplementary Table S1).
Since detection and classification have disparate clinical utility, we
report their accuracies separately. We also trained a baseline Mask
R-CNN model (with discounting of segmentations from mask loss),
and show that that achieves a lower performance (Supplementary
Table S2).

We used an internal–external cross-validation scheme to assess the
generalization performance of our trained models (Supplementary Fig.
S1). This separates training and testing data by hospital rather than
image to better reflect the challenge of external generalization (Amgad
et al., 2020; Steyerberg and Harrell, 2016). NuCLS models were
trained on the single-rater dataset, and reached convergence within 40
epochs (Supplementary Fig. S2). They converged smoothly despite
being trained using a mixture of box and segmentation annotations.
Trained NuCLS models had high generalization accuracy for detection
(AP¼74.8 6 0.5), segmentation (DICE¼ 88.56 0.8) and superclass
classification (AUROC¼ 93.56 2.7) (Table 1 and Supplementary
Table S3). For classification of sTILs (stromal tumor-infiltrating lym-
phocytes), a clinically salient problem, NuCLS models had a testing
AUROC of 94.7 6 2.1 (Supplementary Table S4) (Amgad et al.,
2020). This was also reflected on qualitative examination of predic-
tions (Fig. 5 and Supplementary Fig. S3).

The performance of NuCLS models was consistent with limita-
tions of the training data. Accuracy was lower for classes with higher
interrater variability (e.g. plasma cells) or for classes where nonpa-
thologists were not reliable annotators (mitotic figures and macro-
phages) (Supplementary Fig. S4 and Fig. 6b and g). Interestingly, we

Fig. 4. NuCLS model architecture. (a) The Mask R-CNN architecture was adapted for nucleus detection and classification, allowing some independence of the classification

and detection tasks, which improves performance. (b) Other adaptations we made include: (i) supporting variable-size images at inference while preserving scale and aspect

ratio; (ii) supporting hybrid training data that mixes bounding boxes and segmentations; (iii) simplifying object detection and (iv) generating full class probability vectors for

each nucleus at inference

Fig. 5. Qualitative performance of NuCLS model on testing sets. The displayed ground truth comes from the pathologist-corrected single-rater dataset. The images are represen-

tative of a number of different hospitals in each of the testing sets. Detection and classification performance closely matches the ground truth, and discrepancies are marked by

arrows. Not all discrepancies are algorithmic errors, including: (i) adjacent nuclei that could conceivably be viewed as a single nucleus; (ii) missing annotations and (iii) morpho-

logically ambiguous nuclei
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found that superclass accuracy was higher when trained on granular
classes than on superclasses (config 2 versus 6 in Supplementary
Table S2). This indicates that uncommon classes, while noisy, pro-
vide signal to improve the function approximation by placing nuclei
that look morphologically different (e.g. inactive lymphocytes versus
plasma cells) into different ‘buckets’. We also found that NuCLS
models outperform approaches that decouple detection and classifi-
cation into independent, sequential stages (config 2 versus 4 in
Supplementary Table S2) (Chandradevan et al., 2020).

3.2 DTALE
From a clinical perspective, nucleus detection and classification are
arguably more relevant than precise segmentation of nuclei.
Segmentation, however, enables the extraction of quantitative and
interpretable morphologic nuclear features, which may contain la-
tent prognostic information and help to discover novel biological
associations (Beck et al., 2011; Cooper et al., 2012, 2010; Lazar
et al., 2017). Here, we show how segmentation can also be used to
enhance the explainability of nucleus classification models, thereby
improving confidence in model decisions, a key requirement for clin-
ical adoption (Amgad et al., 2020).

We developed DTALE, an intuitive quantitative method to ex-
plain models like NuCLS. DTALE uses segmentation boundaries
predicted by NuCLS to extract interpretable features of nuclear
morphometry (shape, staining, edges, etc.), that are used to create a
decision tree approximation of our black-box model (Fig. 6). The
outputs of the DTALE tree and the black-box model can be quanti-
tatively compared to evaluate the fidelity of the approximation. We
made a distinction between representative explanations of model
decisions (e.g. what features describe most nuclei predicted as
tumor?) and discriminative explanations (e.g. what features are
most specific to tumor predictions?). The former optimizes for the
F1 score, while the latter optimizes for precision (Supplementary
Fig. S5).

DTALE has an important advantage over existing methods like
Grad-CAM or LIME in that it provides both an overall explanation
of the model decision-making process, as well as explanations for in-
dividual nuclei (Fig. 7) (Ribeiro et al., 2016; Selvaraju et al., 2017).
DTALE fitting accurately explained NuCLS decisions for the most
common classes [precision¼0.99 (tumor), 0.89 (stroma), 0.98
(sTILs)]. The DTALE tree suggests that tumor nuclei are identified
by their large size, globular shape and sharp chromatin edges (i.e.
nucleoli or chromatin clumping), that stromal nuclei are identified
by their slender shape and rough texture, and that lymphocytes are
identified by their small size, circular shape and hyperchromatic
staining. Approximations for uncommon classes were not reliable,
likely due to: (i) the noisy nature of the ground truth for these classes
and (ii) NuCLS model relying on visual characteristics that are not
reliably captured by our interpretable features (D’Amour et al.,
2020).

4 Conclusions

This article presented computational techniques that enable the de-
velopment of scalable and explainable models for nuclear segmenta-
tion and classification, with implications in computer-aided
diagnostic pathology and discovery of novel quantitative morpho-
logic biomarkers and correlations. We showed how existing general-
purpose object segmentation models can be adapted for improved
performance in the context of nuclear segmentation and classifica-
tion. The adaptations also enable learning from hybrid bounding
box and segmentation datasets that can be crowdsourced scalably.
We also presented DTALE, a novel technique for explaining nucleus
classification models using morphologic features obtained by seg-
mentation. DTALE provides global explanations that approximate
model behavior as a whole, as well as explanations for individual
nuclear predictions, paving the way for trustworthiness and clinical
adoption. Contrary to existing approaches, DTALE explanations
better capture how pathologists assess histological specimens, and
are falsifiable and quantitative by design.T
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We would like to note some of the limitations of the work pre-
sented. We showed that NuCLS models can handle hybrid data with
relatively few segmentation boundaries; only �37% of the nuclei in
the NuCLS hybrid dataset have segmentations. Nonetheless, we did
not systematically examine how low this fraction can be before seg-
mentation performance degrades. The NuCLS dataset contains

segmentations for nuclei as opposed to whole cells. This meant that
while data collection were more standardized, modeling was more dif-
ficult for some classes. Plasma cells, for instance, are distinguishable
not only by their (often nonspecific) cartwheel nuclear morphology,
but also their perinuclear halo and abundant cytoplasm. Additionally,
our NuCLS modeling did not incorporate low-magnification, region-

Fig. 7. DTALE enables fine-grained approximation of NuCLS model decisions. Here, we approximate the process by which NuCLS classifies nuclei as lymphocytes. The UMAP

embedding is shown, along with an overlay of the DTALE path for lymphocyte classification. An intermediate node in the DTALE path corresponds to the most representative

global explanation of NuCLS lymphocyte decisions (left blue circle). The initial set of decision criteria (MajorAxisLength< 36.2 and Haralick.SumSq.Range>2.1) are our best

global explanation for arriving at a lymphocyte classification (F1¼ 0.74). When four extra decision criteria are met, we arrive at the most discriminative explanations (second

blue circle). These criteria are highly specific to lymphocyte classifications (precision¼ 0.98). In addition to providing global per-class explanations, DTALE also provides fine-

grained, within-class, approximations of NuCLS decision-making. Because DTALE relies on regression trees, we can provide six explanations for different lymphocytes, rang-

ing from ambiguous to highly typical morphology

Fig. 6. Explaining NuCLS model decisions using DTALE. (a) Illustrative explanation of the DTALE method. Two-dimensional UMAP embeddings were obtained from the

flattened nucleus classification feature maps. A regression decision tree was then fitted to produce predictions in the embedding space using interpretable nucleus features

as inputs. (b) Classification embeddings, colored by the prediction that the NuCLS model eventually assigns to nuclei. (c) Sample nuclei from the embeddings in b.

Peripheral regions (1–3, 5–7, 10) contain textbook example nuclei, while nuclei closer to the class boundaries have a more ambiguous morphology. (d) A simplified version

of the DTALE tree, showing representative nodes for the three common classes and discriminative nodes for all classes. To reach a discriminative node, DTALE naturally

incorporates more features downstream of the representative nodes. (e) An overlay of the fitted DTALE tree (light gray) on top of the NuCLS classification embeddings. In

black, we show paths to the nodes that allow discriminative, high-precision, approximation of NuCLS decisions. (f) Nuclei within the embedding, belonging to and col-

ored by, discriminative DTALE nodes. (g) Embeddings are colored by the true class. The three superclasses are well-separated
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level patterns. We proposed potential region-cell integration strategies
in the past, and we expect this would improve nuclear classification
performance (Amgad et al., 2019). Finally, we would note that
DTALE explanations are only as rich as the underlying morphologic
features used, and the decision tree may not adequately approximate
model behavior in all contexts.
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