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Abstract: Thermally-induced gelling systems based on Poloxamer 407 (PL) and polysaccharides are
known for their biomedical applications; however, phase separation frequently occurs in mixtures
of poloxamer and neutral polysaccharides. In the present paper, the carboxymethyl pullulan (CMP)
(here synthesized) was proposed for compatibilization with poloxamer (PL). The miscibility between
PL and CMP in dilute aqueous solution was studied by capillary viscometry. CMP with substitution
degrees higher than 0.5 proved to be compatible with PL. The thermogelation of concentrated PL
solutions (17%) in the presence of CMP was monitored by the tube inversion method, texture analysis
and rheology. The micellization and gelation of PL in the absence or in the presence of CMP were
also studied by dynamic light scattering. The critical micelle temperature and sol–gel transition
temperature decrease with the addition of CMP, but the concentration of CMP has a peculiar influence
on the rheological parameters of the gels. In fact, low concentrations of CMP decrease the gel strength.
With a further increase in polyelectrolyte concentration, the gel strength increases until 1% CMP, then
the rheological parameters are lowered again. At 37 ◦C, the gels are able to recover the initial network
structure after high deformations, showing a reversible healing process.

Keywords: Poloxamer 407; carboxymethyl pullulan; compatibility; viscoelastic properties; sol–gel
transition; dynamic light scattering

1. Introduction

Thermally-induced gelling systems have received great attention over the last
few decades [1,2]. These materials, which are in liquid state at room temperature and
undergo a sol–gel transition upon heating at a temperature close to that of the human
body, have proved to be very attractive as injectable drug delivery matrices. Polymers
used in thermogelling systems are based on polypeptides (gelatin, elastin), polysaccha-
rides (chitosan and its derivatives, hydroxypropylmethyl cellulose), or synthetic polymers
(pluronics, polyesters). These thermosensitive polymers have a particular structure that
reflects a fine balance between the hydrophobic and hydrophilic groups [1].

Poloxamers are synthetic poly(ethylene oxide)-poly(propylene glycol)-poly(ethylene
oxide) (PEO–PPO–PEO) block copolymers with amphiphilic properties [3]. Among them,
Poloxamer 407 (PL), known also as Pluronic F127, with the structure (EO)100–(PO)65–(EO)100
is the most studied triblock copolymer due to its thermogelling behavior at physiologically-
relevant temperatures [4]. Due to the interaction between the hydrophobic chain’s segments,
the poloxamer macromolecules aggregate into micelles with the increase in the temperature
or concentration [5]. The micelles have a spherical hydrophobic core formed by PPO and a
hydrophilic corona from PEO segments. At high concentrations (above 15% Poloxamer 407),
the micelles are formed first, then with a further increase in the temperature, the remaining

Polymers 2023, 15, 1909. https://doi.org/10.3390/polym15081909 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym15081909
https://doi.org/10.3390/polym15081909
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0001-6449-8408
https://orcid.org/0000-0003-3810-6145
https://orcid.org/0000-0003-0962-0372
https://orcid.org/0000-0003-2165-4671
https://doi.org/10.3390/polym15081909
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym15081909?type=check_update&version=1


Polymers 2023, 15, 1909 2 of 21

PL chains are removed from the solution and inserted into micelles. The micelles are then
packed into a face-centered cubic structure, which leads to reversible thermogelation [6–8].

The main biomedical application of PL micelles is as drug carriers, these being used
to solubilize hydrophobic drugs [9]. In situ thermo-gels based on PL are proposed as
drug delivery systems in ophthalmic, rectal, vaginal, nasal or buccal formulations [10–14],
or as injectable hydrogels [15,16]. The main limitations for the use of PL thermo-gels
are their rapid dissolution in contact with physiological fluids, their modest mechani-
cal strength and bioadhesive properties [9,17]. To overcome these drawbacks, PL has
been mixt with water-soluble polymers such as Carbopol, polyvinylpyrrolidone, different
polysaccharides [10–14], or PL chains grafted on other polymeric backbones [18–20]. Ionic
polysaccharides such as carboxymethyl cellulose [21], alginate [12,22], hyaluronic acid [23],
chitosan [11], or neutral polysaccharides such as hydroxypropylmethyl cellulose [13] were
mixed with PL to obtain thermo-gels with increased bioadhesive properties and mechanical
strength. Usually, with the increase in the polysaccharide concentration in the thermo-gel,
the sol–gel transition temperature decreases, while the gel strength and mucoadhesive
force increase [11,12,21,23]. However, when neutral hydrophilic polysaccharides such as
dextran, pullulan, or guar gum are mixed with pluronic, phase separation occurs [24–26],
similar to the polymeric mixture systems of PEG (the hydrophilic component of the triblock
copolymer) with dextran or pullulan [27,28].

Pullulan is a linear polysaccharide produced from the yeast-like fungus Aureobasidium
pullulans by fermentation [28,29], which has become an important industrial source of
polymeric materials, economically competitive with natural gums made from marine
algae and other plants [30]. Its molecule is composed of repeating maltotriose units
(consisting in three α-1,4-linked glucose molecules) linked together via α-1,6-glycosidic
bonds. The alteration of α-1,4 and α-1,6 bonds confer chain flexibility and high solubility
to the pullulan chains [29,31]. These properties, together with their biodegradability,
biocompatibility, lack of mutagenic or carcinogenic effects, availability of reactive sites for
chemical modification, good bioadhesive and mechanical properties, make pullulan ideal
for biomedical applications in tissue engineering and drug delivery [32–34].

Although the physical mixture of pullulan and pluronics has been used previously by
other authors for intranasal [35] or dermal [25] drug delivery, there are no reports about
its use as an injectable formulation. Instead, the carboxylated [36] and carboxymethylated
derivatives of pullulan (CMP) [37], frequently used as drug carriers [38,39], were success-
fully conjugated with heparin [36] or Poloxamer 407 [20], and they showed interesting
stimuli-sensitive properties with applications in tissue-engineering. As far as we know, no
injectable in situ formulations based on the physical mixture of Poloxamer and CMP have
been reported.

The aim of the present work is to design and develop a new injectable gel based
on a physical mixture of PL and CMP as a promising platform for the local treatment of
damaged skin or articular cartilage. In the first step, we identified the CMP sample with
the appropriate degree of substitution to ensure the best miscibility of the two polymers in
the aqueous solution. Then, a systematic study on the effect of the addition of CMP on the
strength of the thermo-gels while maintaining its self-healing properties was performed.

The thermogelation of poloxamer solution (17%) in the presence of CMP was mon-
itored by rheology and by the tube inversion method. The textural properties and the
self-healing abilities of the gels at 37 ◦C were also evaluated. Dynamic light scattering
investigations were performed for a better understanding of the generation and association
of the micelles with temperature. In conclusion, the present study provides necessary
information regarding the appropriate substitution degree of CMP and the composition of
PL/CMP mixture to prepare the best gel formulation.
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2. Materials and Methods
2.1. Materials

Poloxamer 407 (Mw = 12.6 kDa) (PL) was purchased from Sigma-Aldrich Co. (St. Louis,
MO, USA) and used without purification. Pullulan (Mw = 200 kDa) was purchased from
Hayashibara Lab Ltd. (Okoyama, Japan). Monochloroacetic acid (MCA), sodium borohy-
dride (NaBH4) and isopropyl alcohol were supplied from Sigma-Aldrich Co. (St. Louis,
MO, USA). Twice distilled water was used in all the experiments.

2.2. Synthesis of Carboxymethyl Pullulan

CMP was obtained according to our previous papers [20,37]. Briefly, 10 g of pullulan
and 0.05 g of NaBH4 were dissolved in 17.5 mL of distilled water and dispersed under
vigorous stirring in 60 mL of isopropyl alcohol. Then, 10 mL of NaOH solution (NaOH/OH
molar ratio 0.5/1 or 1/1) was added and left for 30 min at 70 ◦C. At this temperature,
the corresponding amounts of sodium monochloroacetate (MCANa) in 20 mL of water
followed by 40 mL of isopropyl alcohol (MCANa: anhydroglucosidic unit of pullulan
molar ratio 1:1 or 2.5:1) were added sequentially in three steps. The reaction was continued
under stirring at 70 ◦C for 5 h. The reaction mixture was cooled at room temperature,
the aqueous phase was separated from the mixture and dialyzed against distilled water
(dialysis bag from Medicell International, England; molecular weight cut-off 12,000 g/mol)
for 7 days, until the presence of chlorine ions in the washing water was no longer detected
(by checking with 0.1% AgNO3 solution). The final product, CMP in the form of sodium
salt, was recovered by freeze-drying (−57 ◦C, 0.03 mbar) using a lyophilizer ALPHA 1–2
LD Christ, Germany. The degree of substitution (DS, number of carboxylic groups per
anhydroglucose unit) was determined by conductometric titration according to the method
of Constantin et al. [20] and found 0.42 and 0.95.

CMP with a higher DS (DS = 1.6) was obtained by repeating the synthesis procedure
starting with carboxymethyl pullulan with DS 0.95. The CMP samples code names are
CMP0.42, CMP0.95, and CMP1.6, where the number in subscript represents the substitution
degree with carboxymethyl groups. The characterization of pullulan derivatives by con-
ductometric titration and FT-IR spectroscopy (Figure S1) is presented in the Supplementary
Materials. The general structures of CMP and PL are presented in Figure 1.
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Figure 1. The chemical structure of the polymers.
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2.3. Miscibility Studies in Dilute Aqueous Solution

The viscometric measurements were carried out at 37 ◦C with an Ubbelohde viscome-
ter for dilution series with type 0a capillary (diameter of 0.53 mm) and using an AVS 350
Schott automatic viscosity measuring system (Schott, Mainz, Germany). The aqueous
stock solutions, 1.5 g/dL PL and 1.5 g/dL CMP, were kept in the refrigerator for 24 h to
reach equilibrium, filtered through a sintered glass filter G3 to remove the dust, and then
mixed to obtain the desired ratio between the two polymers. The weight fraction of CMP
(wCMP) was calculated as wCMP = mCMP/(mPL + mCMP), where mCMP and mPL represent,
respectively, the weight of CMP and PL in the polymer mixture. Samples with different
weight fractions of CMP0.42 and CMP0.95 in the polymer mixture were investigated, from
wCMP = 0, corresponding to pure PL, to wCMP = 1, corresponding to pure CMP solution.
The initial mixture solutions were successively diluted with water inside the viscometer
and maintained for at least 20 min at 37 ◦C for thermal equilibration. Each flow time was
measured five times and the mean value was used for the calculation of relative viscosity.

2.4. Thermogelation Studies in Concentrated Solutions
2.4.1. Preparation of Formulations

For the thermogelation studies, a stock PL solution (17%, wt:wt) was firstly prepared
by the “cold method”: the polymer was added to water under stirring for 4 h on an ice
water bath, then maintained at 4 ◦C for at least 24 h. Formulations containing CMP were
prepared by the addition of CMP to this stock solution. The concentration of CMP varied
from 0 to 4%.

2.4.2. Tube Inversion Method

For the first approximation, the sol–gel transition temperature was measured using
the tube inversion method [40,41]. Briefly, 1 mL of each formulation in glass vials (12 mm
diameter) was heated from 20 ◦C to 40 ◦C in a water bath with an 0.2 ◦C temperature step.
At each temperature, the samples were equilibrated for 5 min and their ability to flow was
observed by inverting the vials. The sol–gel transition temperature was recorded as the
temperature at which the liquid was immobile (no movement of the meniscus over a period
of 30 s). The experiments were performed in triplicate.

2.4.3. Evaluation of Gel Hardness

Texture profile analysis (TPA) of the gels was performed using a Brookfield Texture
PRO CT3® (Brookfield Engineering Laboratories Inc., Middleboro, MA, USA). The PL
solutions introduced into vials (20 mm diameter, wide neck) were thermostated for 1 h
at 37 ◦C using a water bath. The compression was performed at the same temperature,
introducing the probe (10 mm diameter) into the gel at defined depth (10 mm) with a speed
of 1 mm/s. Three replicate analyses were performed for each formulation at 37 ◦C. The
hardness was determined as the maximum compression force [36,42].

2.4.4. Rheology

The rheological investigations were carried out with a MCR 302 Anton-Paar rheometer
(Gratz, Austria) equipped with a Peltier system for temperature control, RHEOPLUS
software and plane-plane geometry with a diameter of 50 mm. A gap of 0.5 mm was used
for all tests. An anti-evaporation device (Malvern Instruments Ltd., Worcestershire, UK),
which creates an atmosphere saturated with solvent in the vicinity of the sample, was used
to limit the water evaporation.

The temperature of gelation was determined in oscillatory regime of deformation by
following the evolution of viscoelastic parameters as a function of temperature for a heating
rate of 0.5 ◦C/min, in the temperature range 4–50 ◦C. The viscoelastic moduli, G′ (storage
or elastic modulus) and G” (loss or viscous modulus), were determined as a measure of the
stored or dissipated deformation energy during one cycle of deformation, respectively. The
loss tangent, tan δ = G”/G′, expresses the sample’s degree of viscoelasticity.
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The gelation time was determined at 37 ◦C, using solutions stored in a refrigerator
and introduced into the rheometer’s geometry at 4 ◦C. The temperature was switched at
37 ◦C at the beginning of the test and the viscoelastic parameters were monitored as a
function of time at a constant oscillation frequency (ω) of 1 rad/s and strain amplitude (γ)
of 1%. When the gel state was achieved, the thixotropy test was carried out to evaluate the
self-healing behavior. The viscoelastic moduli parameters were monitored as a function
of time for ω = 1 rad/s and γ successively settled at low 1% and high (values from the
nonlinear domain of viscoelasticity) strain amplitude values, respectively.

2.4.5. Dynamic Light Scattering (DLS)

The DLS measurements were performed using a Zetasizer Nano ZS (Malvern Instru-
ments, Malvern, Worcestershire, UK) with a He-Ne Laser (633 nm incident laser wave-
length). The back scattering detection system (detection at 173◦ to the incident beam)
used by this instrument allows the measurement of highly concentrated samples because
the light does not travel to the entire sample in the cuvette and the multiple scattering
phenomenon can be avoided [43]. Using a SOP Player, the temperature was increased from
7 ◦C to 39 ◦C with a step of 1 ◦C, and for each temperature the measurement began after an
equilibration time of 10 min. The time-intensity correlation function (ICF), or second-order
normalized autocorrelation function, g(2)(q, t) was obtained from the instrument and used
for further calculations.

3. Results and Discussion
3.1. Miscibility Studies in Dilute Solutions

Viscometry is a simple method to study the interactions between two polymers and
their compatibility in the presence of a common solvent. This evaluation is based on
the deviation of the intrinsic viscosity obtained experimentally for the polymer mixture
and the ideal value of this parameter calculated using the additivity law [44,45]. Intrinsic
viscosity, [η], is a measure of the hydrodynamic volume of macromolecules in the limit
of infinite dilution, where the polymer chains are separated from each other. When the
solute contains two types of macromolecules, an isolated coil may contain more than
one macromolecule [44].

When a polyelectrolyte, such as CMP, is one component of the polymer blend, [η]
cannot be obtained from the Huggins plots because the reduced viscosity increases ex-
ponentially with dilution due to the uncoiling of the charged polymeric chain. For these
systems, Wolf approach (Equation (1)) can be applied to obtain the intrinsic viscosity, as it
was previously shown for polyelectrolytes or polyelectrolyte/neutral polymer mixtures in
aqueous solution without added salt [46–48]:

ln ηrel =
c[η] + Bc2[η][η]∗

1 + Bc[η]
(1)

where ηrel is the relative viscosity of the solution, c is the concentration (mass per volume),
[η]∗ is a specific characteristic hydrodynamic volume (for uncharged molecules [η]∗ = 0),
and B is a viscometric interaction parameter corresponding to the Huggins constant.

On the basis of Equation (1), the values of [η] were obtained for polymer mixtures
with different PL/CMP compositions by modeling the experimental data of ln ηrel as a
function of concentration. Figure 2 shows the experimental data and the fitting curves of
ln ηrel versus c for three different systems: PL/CMP0.42, PL/CMP0.95 and PL/CMP1.6.

The extended conformation in solution of the pullulan derivatives due to the elec-
trostatic repulsion between the charges led to higher values of viscosity of the poloxamer
solutions containing CMP. The viscosity in solution of pure PL is very low due to its low
molecular weight. However, it should be mentioned that at 37 ◦C, coiled unimers exist
at low concentrations, whereas the micelles are formed at higher concentrations. Being a
neutral polymer, the Wolf plots for poloxamer present a linear dependence. On the other
side, solutions of CMP and their mixtures with PL show typical polyelectrolyte behavior.
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The obtained values of [η] for the three systems PL/CMP0.42, CMP0.95 and PL/CMP1.6, are
presented in Figure 3a. The value of [η] for pure CMP0.95 was higher than that of CMP0.42
due to the increased charge density. Unexpectedly, for pure CMP1.6, the intrinsic viscosity
was lower than for the other two derivatives. The decrease in [η] is probably related to the
decrease in molecular mass caused by the degradative synthesis procedure, since CMP1.6
was obtained by the carboxymethylation of pullulan in two steps.
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Considering the coexistence of isolated CMP coils and isolated poloxamer coils in dilute
solution, the ideal intrinsic viscosity of the polymeric blend, [η], is calculated as (Equation (2)):

[η] = w∗CMP[η]CMP + w∗PL[η]PL (2)

where w∗CMP and w∗PL are the weight fractions of the components in the mixture, [η]CMP
and [η]PL are, respectively, the intrinsic viscosity of the two polymers alone in their aqueous
solution. The deviation from the ideality of the experimental values of [η] determined for
the polymer mixture can be expressed using a parameter ε defined as:

ε =
[η]− [η]

[η]
(3)

The absence of interactions between the two polymers leads to an ideal behavior and
ε is close to 0. Negative values of parameter ε reflect the favorable interaction between the
segments of the two unlike polymers when the hydrodynamic volume of the mixt coil is
smaller than in ideal conditions (an isolated coil can contain two unlike molecules) [44].
Positive values of parameter ε mean that the hydrodynamic volume of both polymers
in the mixture is larger than the sum of those corresponding to the two binary isolated
macromolecular coils [44,49,50].

According to Figure 3b, for the PL/CMP0.42 and PL/CMP0.95 mixtures, the parameter
ε > 0 over the whole composition range. This means that the interaction between PL and
CMP chains determines the increase in the hydrodynamic volume of the isolated coils, or the
existence of mixed coils of CMP and PL with increased dimensions. This deviation is more
pronounced for CMP0.42 in the presence of high fractions of PL. Such behavior was also
obtained for other polymeric mixtures with different hydrophobic-hydrophilic character
such as PL/poly(aspartic acid) [51], poly(vinyl alcohol)/bovine serum albumin [50], or
poly(vinyl alcohol)/poly(urethane) [52]. For PL/CMP1.6 mixtures, at high fractions of
PL, the parameter ε is also positive. However, with the increase in CMP1.6 fraction, this
parameter decreases, reaching even slightly negative values; this means that the deviations
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from the ideal hydrodynamic volume are very low and some interactions between the
two polymers take place. A similar behavior was observed for the PL/hydroxypropyl
cellulose aqueous mixtures at 37 ◦C [45].

If the parameters [η] and ε offer information about the isolated coils, the parameter B
from the Equation (1) is related to the deviation of ln ηrel versus c from the linear dependence
on the entire studied concentration domain (0–1.5 g/dL). This parameter quantifies the
viscometric interaction between the polymer segments. It can offer information about
the quality of the solvent: B has positive values in thermodynamically good solvents and
negative values in sufficiently unfavorable solvents [53]. Figure 3c presents the variation
of this parameter with the composition in PL/CMP mixtures. It can be observed that
B passes through a pronounced maximum at low fractions of CMP, which signifies the
least probability for the formation of intersegmental polymer contact. In other words, in
the presence of high fractions of PL, the polymeric chains have an increased interaction
with water. The B value is higher for PL/CMP0.42 in pure water compared to PL/CMP0.95
or PL/CMP1.6, a tendency found also for other cationic derivatives of dextran [54]. This
phenomenon is related to the substitution degree of CMP. Higher DS of CMP means a
more extended chain conformation in solution and higher probability to interact to PL
chains (micelles). The B values for the PL/CMP1.6 system were expected to be lower than
those for the other two mixtures due to the increased interaction between components.
However, these values were close to those of the PL/CMP0.95 system (Figure 3c) and the
similarity could be explained by the lower molecular weight of the CMP1.6 derivative. As
it is known, the B parameter increases with the decrease in the molecular weight of the
polyelectrolyte [55], confirmed by the smaller values of [η] for CMP1.6 (Figure 3b). Once the
maximum is passed, the B values decrease almost linear with the increase in CMP fractions
in the polymer mixture until w*CMP ∼= 0.3 and then remained constant. This behavior
can be attributed to the prevalence of the thermodynamic favorable contacts between
polymer segments over contacts between solvent molecules and polymer segments; in
these conditions the viscosity increase occurs via the formation of a weak physical network
and leads to lower B values [54]. Furthermore, with the increase in CMP concentration,
the electrostatic shielding of the charged groups and, hence, the shrinkage of the chains,
takes place.
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Figure 3. Intrinsic viscosities obtained for PL/CMP0.42, PL/CMP0.95 and PL/CMP1.6 mixtures at
37 ◦C—the lines represent ideal intrinsic viscosities calculated according to Equation (2) (a). The
variation of parameter ε (b) and parameter B (c) with the composition of the mixtures (obtained
at 37 ◦C).

When CMP0.42 is added to the concentrated PL solution (17%), a phase separation
occurs and turbidity appears (Figure 4a). The phase separation that appears in pullu-
lan/PEO, dextran/PEO mixtures or other aqueous two-phase systems can be explained
from two points of view: (i) energetically unfavorable segment–segment interactions of
polymers overcome the entropy increase involved in phase separation, or (ii) another
key factor of phase separation is the structure of water around the polymeric chains,
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meaning that the two polymers form different polymer-specific water hydrogen bond
domains with dissimilar solvent properties, and in concentrated solutions, these domains
are immiscible [56–58].

The observation of the phase separation in concentrated solutions of PL with CMP0.42,
together with the high values of the parameters ε and B for PL/CMP0.42 diluted mixtures
(Figure 3b,c), shows the incompatibility between these two polymers at high fraction of
PL. Increasing the substitution degree of pullulan with carboxylic groups leads to a better
miscibility with PL. The introduction of ionic groups on the pullulan chains brings ion-
dipol interactions with water molecules for solubilization, so the water structure around
CMP chains is modified. The lack of chemical interactions between CMP and PL was
demonstrated by FTIR spectroscopy (Supplementary material, Figure S2), but the ionized
carboxylic groups from CMP can interact trough Na+ ion bridges with the –OH groups
from PEO [47] or through hydrogen bonds between the undissociated -COOH groups and
the oxygens from the poloxamer chains [51,59,60]. Therefore, the mixture of 17% PL with
CMP0.95 or CMP1.6 does not present turbidity (Figure 4a), regardless of the temperature.
Consequently, only these two pullulan derivatives were used in further experiments.
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Figure 4. (a) Concentrated poloxamer solution (17%) with 1% and 3% added CMP0.42, CMP0.95, and
CMP1.6 (from left to right) at room temperature. (b) Tube inversion method for 17% poloxamer with
1% CMP0.95 below (left) and above (right) the gelation temperature.

3.2. Gelation Temperature

The thermogelation of 17% PL solution in the presence of CMP0.95 or CMP1.6 in
different concentrations was investigated. In a first approximation, the sol–gel transition
temperature was determined by the tube inversion method [26,40] (Figure 4b). This method
makes it possible to measure the temperature required for the formation of hard gels, and
it is different from the sol–gel temperature determined by rheology [26,40,41]. From
Figure 5a, which presents the effect of CMP addition on the gelation temperature, it can
be observed that CMP0.95 and CMP1.6 have almost the same effect. Low concentrations of
polyelectrolyte (below 0.5%) determine an increase in the gelation temperature, a further
increase in the CMP concentration, leading to a reduction of it, as expected [11,14,21,61].
When 5% CMP was added, a very soft gel was formed displaying flow properties, and the
gelation temperature could not be measured by the tube inversion method. This behavior
could be explained by the modest viscosity of CMP due to its relatively low molecular mass
and high chain flexibility, compared with other ionic polysaccharides.

It is known that the addition of polymers such as sodium carboxymethyl cellu-
lose [21,62], gellan gum [63], sodium alginate [14] or chitosan [11] increases the viscosity
of poloxamer solution and decreases the gelation temperature. Despite this, there are also
studies showing that Carbopol 971P, Polycarbophyl, or xanthan gum at low concentrations
increase the gelation temperature of pluronic solution, and at high concentrations decrease
this temperature [26,64,65].
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Figure 5. Variation in the gelation temperature (determined by test inversion method) (a) and of
the gel hardness (texture analysis method) (b) of 17% PL solution with the addition of CMP in
different concentrations.

3.3. Gel Hardness

The influence of CMP addition on the hardness of poloxamer gels obtained at 37 ◦C is
presented in Figure 5b. The hardness of the 17% poloxamer gels decreases with the addition
of low concentrations of CMP (below 0.5%), then increases, with a maximum at around 1%
polyelectrolyte being observed. Above this concentration, the addition of CMP decreases
the hardness of the gel. Generally, the addition of polyelectrolytes such as chitosan, sodium
carboxymethylcellulose, sodium alginate, and poly(acrylic acid) [11,12,62,66] leads to an
increase in poloxamer gels hardness; however, a similar trend in gel hardness formed
at 37 ◦C of mixture of Carbopol 971P or Polycarbophil and Poloxamer 407 (15%) was
found by De Souza Ferreira [64,65]: a decrease at low concentration of polyelectrolyte,
an increase at 0.15% polyelectrolyte, then again a decrease with a further increase in
polyelectrolyte concentration. Furthermore, the same peculiar behavior was observed for
CMP0.95 as for CMP1.6 due to their relatively high charge density and probably similar
configuration in solution. In further studies, only the influence of CMP0.95 was investigated
by rheology and DLS.

3.4. Rheological Behavior

All studies concerning the thermogelation behavior of poloxamer solution (17%) in
the presence of CMP were realized for the formulations presented in Table 1.

Table 1. Composition of some of the studied formulations.

Formulation
Code

PL Solution Used for the
Preparation of the Sample

(%, wt:wt)

CMP0.95
Concentration

(%, wt:wt)

Sample Composition

PL
(%, wt:wt)

CMP0.95
(%, wt:wt)

Water
(%, wt:wt)

PL17

17

0 17.0 0 83.0
PL17/CMP0.95-0.4 0.4 16.9 0.4 82.7
PL17/CMP0.95-1 1 16.8 1 82.2
PL17/CMP0.95-3 3 16.5 3 80.5

Figure 6 presents the sol–gel transition induced by temperature increase by following
the variation in rheological parameters. According to Figure 6a, the sol state is clearly
evidenced by the small values of viscoelastic moduli G′< G” and tanδ > 1. Below the
temperature To, which marks the onset of gelation, the PL unimers and micelles coexist in
solution with CMP chains and the temperature increase has a small influence. Above To,
when the temperature rises by less than 10 ◦C, the viscoelastic moduli suddenly increase
within several decades and the increase in G′ is faster than G”. This is due to structural



Polymers 2023, 15, 1909 10 of 21

changes induced by temperature, from micelles to polymicelles and network structure.
At the transition point from sol state to gel state, denoted Tsol–gel (which is close to To),
G′ = G” and tanδ = 1. G′ > G” above this temperature and around Tgel the network is
formed and the equilibrium is reached. The samples behave differently when CMP0.95 is
added in the PL system (Figure 6b), and the temperatures To and Tsol–gel are shifted to
lower values (Table 2), as expected from the literature [11,21,62,63]. The addition of a small
amount of CMP decreases the transition temperatures and disturbs the gelation kinetics
and PL network structure.
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Figure 6. Sol–gel transition illustrated for sample PL17/CMP0.95-0.4 through the dependence of the
viscoelastic parameters on temperature (a); variation of loss modulus during temperature induced
gelation for PL17/CMP0.95 samples (b) (heating rate of 0.5 ◦C/min,ω = 1 rad/s, γ = 1%).

Table 2. Thermogelation parameters for PL17 and PL17/CMP0.95 mixtures determined from differ-
ent measurements.

Formulation

Tube Inversion
Method

Textural
Analysis Rheology DLS

Tgel
(◦C)

Hardness (a)

(N)
To

(◦C)
Tsol–gel
(◦C)

Tgel
(◦C)

G′ (b)

(kPa)
G′′ (b)

(kPa)
η* (b)

(kPa·s)
CMT
(◦C)

Tgel
(◦C)

PL17 26.4 ±0.4 0.23 ± 0.014 22 22 26.9 11.2 3.1 11.6 16 21
PL17/CMP0.95-0.4 29.3 ± 1 0.12 ± 0.004 21.2 21.9 29.3 4.3 1.7 4.6 16 29
PL17/CMP0.95-1 25.2 ± 0.3 0.30 ± 0.018 20.8 21.4 25.8 7.6 2.7 8.1 15 26
PL17/CMP0.95-3 23.8 ± 0.4 0.16 ± 0.005 16.3 18.6 22.5 4.7 1.9 5.07 14 24

(a) measured at 37 ◦C, (b) measured in gel state at 37 ◦C,ω = 1 rad/s, γ = 1%.

With the increase in the CMP concentration, Tsol–gel decreases, but Tgel, which is
in good accordance with the Tgel measured by the tube inversion method (temperature
required for hard gel formation), shows a peculiar behavior: first it increases (sample
PL17/CMP0.95-0.4), then decreases. The gel hardness and the rheological parameters
(the complex viscosity and viscoelastic moduli) in gel state showed the same tendency:
a pronounced decrease with the addition of CMP in low concentration, an increase
with the further increase in CMP concentration until 1% CMP, then a decrease again
(Table 1 and Figure 5b).

The CMP has two different effects on gel formation: (i) it increases the concentration
of PL in the polyelectrolyte-free domains (that is why the critical micelle temperature
(CMT) and the Tsol–gel decreases with the increase in CMP concentration), (ii) it perturbs the
aggregation of PL micelles into a face-centered cubic structure in the whole network (that
is why the rheological parameters of the gels in the presence of CMP are lower compared
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to PL17). As presented in Figure 7, the polyelectrolyte has an extended conformation
at low concentrations, dividing the PL network in many domains and decreasing the
gel strength (Figure 7b). With the increase in CMP concentration, the conformation of
polysaccharide becomes more coiled, forcing the agglomeration of PL micelles in large
macrodomains. Thus, the interactions between micelles are stronger, so the strength of the
PL network increases until 1% CMP concentration (Figure 7c). With the further increase
in CMP concentration, the flexibility of the gel increases due to the progressive isolation
of PL micelles and increasing contribution of CMP (Figure 7d), and the gel rheological
parameters decrease.
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behavior: PL17 (a), PL17/CMP0.95-0.4 (b), PL17/CMP0.95-1 (c) and PL17/CMP0.95-3 (d).

In the literature, it was shown that if the addition of xanthan gum with high viscosity
onto 17% PL solution increases the viscosity of the gel at 37 ◦C, the addition of agar gum
with low viscosity decreases the viscosity of the gel [26]. This means that the viscosity
of the polyelectrolyte has an important influence on the rheological properties of the
PL thermogels.

The kinetics of gelation were followed at a constant temperature of 37 ◦C by monitor-
ing the viscoelastic behavior in time. The samples stored in the refrigerator were poured
on the lower plate of the rheometer thermostated at 5 ◦C and then the temperature was
switched at 37 ◦C. The gel formation is very fast: 30 s for all the samples with the ex-
ception of PL17/CMP0.95-0.4, where the gelation (G′ > G′′) takes place in about 70 s. For
PL17/CMP0.95-0.4, the equilibrium structure was reached after about 300 s, as it is observed
from the variation in the complex viscosity during gelation (Figure 8). This also suggests
that a small amount of CMP0.95 added to PL solutions disturbs the micelle organization
when the temperature increases at 37 ◦C.
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3.5. Dynamic Light Scattering Studies

DLS, also known as photon correlation spectroscopy, was usually used to study
the micelles formation and micelles hydrodynamic radius in dilute or semidilute pluronic
copolymers solutions [67–70]. Recently, this method was used to investigate the aggregation
behavior of pluronic in concentrated solution (20%) without and with added chitosan
(0.06%) and montmorilonite [71].

DLS can be also used to investigate the formation of chemically or physically cross-
linked gels, as shown by Martin and co-workers [72], Shibayama and co-workers [73–75],
or other authors [76,77]. The results obtained by this technique are well correlated with
the rheological measurements [75,77]. Generally, the gelation threshold was character-
ized by the appearance of a power-low in the intensity-time correlation function (ICF), a
suppression of the initial amplitude of ICF and a speckle pattern in the scattering intensity.

In this study, DLS measurements of the 17% poloxamer solution, without and in the
presence of CMP0.95 in different concentrations, were performed. The effect of the temper-
ature increases in the range 7–39 ◦C on the ICF was investigated. Figure 9a presents the
intensity correlation functions for poloxamer 17% solution at different temperatures. At low
temperatures (7–15 ◦C), two inflection points in the representation of g(2)(q, t)− 1 vs. log (t)
can be clearly evidenced, showing the existence of a two-step relaxation. The fast relax-
ation mode, in the time scale/region 10−6–10−4, is attributed to the diffusion of the small
poloxamer chains—unimers. The slow relaxation mode can be attributed to the hindered
motion of interacting polymeric chains in concentrated solution [78] and it is also observed
for pluronic solutions in semidilute or concentrate regime, when the chains are overlapped
and entangled [70,71].

When the temperature increases above 15 ◦C, the shape of the ICF starts to modify,
and the second relaxation mode moves to faster relaxation times due to the formation of the
micelles. The critical micelle temperature (CMT) for 17% Poloxamer 407 solution is around
16 ◦C, a value similar to that found in the literature [6,79,80]. At higher temperatures,
especially over 21 ◦C, the appearance of a large shoulder can be observed on the time scale
in the range 10−4–1 s. This long-time tail was better evidenced in the log−log representation
of the ICF (Figure 9b) and can be ascribed to the formation of large aggregates from
interacting micelles or to the frozen inhomogeneities of the gel from the point of view of
micelles mobility [74].
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In order to describe the presence of two relaxation modes at low temperatures, the
ICF can be written as a combination of a single exponential function (the fast mode) and a
stretch exponential function (the slow mode) [71,73]:

g(2)(t)− 1 = σ2
1

{
(1− A2)exp

(
− t

τ1

)
+ A2exp

[
−
(

t
τ2

)β
]}2

(4)

where σ2
1 is the initial amplitude of ICF, τ1 and τ2 are the relaxation times characterizing

the fast and the slow relaxation process, A2 (0 < A2 < 1) is the amplitude/fraction of the
slow mode, and β (0 < β ≤ 1) is the stretched exponent. This equation fits very well with
the experimental data from 7 ◦C to around 20 ◦C, with the exception of the points of the
end of the curves that are considered residuals. The long time tail that appears at higher
temperatures can be described by the introduction of a power-low decay [72]:

g(2)(t)− 1 = σ2
1

{
(1− A2 − A3) exp

(
− t

τ1

)
+ A2exp

[
−
(

t
τ2

)β
]
+ A3

1

(1 + t/τ∗)Dp/2

}2

(5)

where A3 is the amplitude of the power-low tail, τ∗ is the time at which the power-
low tail begins, and Dp is the fractal dimension of scatter photons. This equation fits
the experimental intensity correlation functions for poloxamer solution at temperatures
T ≥ 21 ◦C (Figure 9b). The decay times obtained by fitting the experimental data with the
Equations (4) and (5) are presented in Figure 10a. The fast relaxation process is almost inde-
pendent of the temperature, but the amplitude of this mode is higher at low temperatures
where the unimers are predominant. With the increase in the temperature above 15 ◦C,
unimers are also present in the solution, but their concentration decreases in the favor of the
micelles [6]. Even after the complete micellization, the unimers are continuously released
and reabsorbed into the micelles [71,81]. The size of the unimers is around 3 nm.

The decay time of the slow relaxation mode, τ2, drops suddenly above 16 ◦C, showing
the formation of the micelles. With a further increase in the temperature, the micelles
shrink due to both the dehydration of the PPO core and of the PEO corona [6,69]. That is
why τ2 moves to faster decay times. The size of the micelles was reduced from 250 nm at
17 ◦C to around 40 nm at 25 ◦C. At this concentration, the micelles organize themselves
into close-packed configuration, so above 26 ◦C, when the gel becomes macroscopically
immobile, τ2 remains almost constant. With a further increase in the temperature, the time
at which the power-low tail begins (τ*) moves to longer times and the amplitude of the
power-low tail (A3) rises from 0.1 at 21 ◦C to around 0.25, showing that the increasing
physical interactions between the micelles restricts the movement of the system.
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In order to study the behavior of both polymers (the block copolymer and poly-
electrolyte), DLS experiments with increasing temperature were also performed for a 1%
aqueous solution of CMP0.95 (Figure 10b-inset). Two relaxation modes were observed for
CMP0.95, as expected for a polyelectrolyte in salt-free solution [78]. The fast mode can
be interpreted in this case as “mutual diffusion” (coupled diffusion of individual poly-
electrolyte chains and of their counter-ions), and the slow mode can be interpreted as
“collective diffusion” (diffusion of the center of the mass of the polyelectrolyte chains under
the constraints induced by electrostatic interactions with other surrounding chains) [78].
The FIC curves kept the same shape with the increase in the temperature. The decay times
obtained by fitting the curves with Equation (4) are presented in Figure 10b. The decay
times of the fast mode (5 × 10−6–2 × 10−6) and of the slow mode (5 × 10−2–3 × 10−2) are
practically temperature independent.

Starting from these considerations, the dynamical behavior of poloxamer in the pres-
ence of different concentrations of CMP0.95 was then analyzed. Figure 11a–c present the
intensity correlation functions g(2)(q, t)− 1 at different temperatures for PL17/CMP0.95-0.4,
PL17/CMP0.95-1 and PL17/CMP0.95-3. Compared to PL17, it can be observed that the slow
relaxation mode becomes slower with the increase in the polyelectrolyte concentration,
probably because the movement of the CMP0.95 chains is hindered by the total viscosity
of the system. The shape of the ICF curves changed when the temperature is around the
critical micelle temperature, as in the case of PL17. After the formation of the micelles
(above 14–16 ◦C), three relaxation processes are observed: a fast relaxation due to the
diffusion of poloxamer unimers and to the “mutual diffusion” of the polyelectrolyte, a
second relaxation ascribed to the diffusion of the micelles, and the slowest mode attributed
to the “collective diffusion” of the polyelectrolyte. For the systems with high concentrations
of CMP0.95 (PL17/CMP0.95-1 and PL17/CMP0.95-3), a decrease in the initial amplitude of
ICF can be observed when the temperature reached the gel temperature determined by the
tube inversion method. Above this temperature, the shape of the last relaxation mode was
transformed from a stretched exponential to a power-low tail.

Bellow the critical micelle temperature, the IFCs were well fitted by a sum of a single
exponential and a stretched exponential, according to Equation (4), but after the formation
of the micelles, an additional long time stretched exponential was added to fit the ICFs:

g(2)(t)− 1 = σ2
1

{
(1− A1 − A2)exp

(
− t

τ1

)
+ A2exp

[
−
(

t
τ2

)β
]
+ A3exp

[
−
(

t
τ3

)γ]}2

(6)

Above the gel temperature, the long-time stretched exponential was replaced with a
power-low decay according to Equation (5). The obtained decay times are represented
in Figure 11d–f. If the fast relaxation decay is almost time independent, the drop in τ2
shows the micelle formation. CMT decreases from 16 ◦C in PL17/CMP0.95-0.4 to 15 ◦C
in PL17/CMP0.95-1 and 14 ◦C in PL17/CMP0.95-3 system (Table 2). This may probably
be due not to the involvement of CMP0.95 in the hydrophobic interactions of PPO blocks,
but to the increase in poloxamer concentration in the polyelectrolyte free micro-domains.
The appearance of the power-low tail occurs at 29 ◦C for PL17/CMP0.95-0.4, at 26 ◦C for
PL-17/CMP0.95-1 and at 24 ◦C for PL-17/CMP0.95-3, temperatures at which the gels become
macroscopically immobile (Table 2).

3.6. Self-Healing Behavior

The self-healing behavior, i.e., the ability to recover the structural integrity after apply-
ing a mechanical stress, is a requirement for injectable systems used in tissue engineering
or drug delivery applications [60,82,83]. Viscoelastic behavior as a function of time during
cycles of low-high-low deformations is usually investigated for such materials. In the
present study, the thixotropic behavior was analyzed for the PL-based samples and the
results are given in Figure 12. Low strains of 1% were alternated every 300 s with increasing
high deformations for 5 cycles: 1–50%; 2–100%; 3–200%; 4–500%; and 5–1000%.
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For all samples, there is a high degree of recovery showing the ability of the micellar
structure to be rapidly reestablished once the external stress is removed. However, partic-
ular behaviors can be depicted by calculating the degree of structure recovery after each
strain cycle as:

R (%) =
elastic modulus before the first cycle

elastic modulus after cycle n
× 100 (7)
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According to Figure 13, for samples PL17/CMP0.95-0.4 and PL17/CMP0.95-1, the 
network structure is strengthened after removing the applied strains, suggesting an 
increase in intermolecular interactions and structure reorganization, possibly due to 
changes in conformation under the action of mechanical forces. By increasing the applied 
strain, these interactions are disturbed and R value decreases from 143% after cycle 1 to 
99% after cycle 5. For PL17, an increase in R is observed during the 5 cycles of 
deformation from 83% to 99%, but the R value does not exceed 100%. Sample 
PL17/CMP0.95-3 is not able to recover its structure after high deformations, with the R 
value decreasing from 99% after cycle 1 to about 60% after cycle 4 and 5. 

Figure 12. Self-healing behavior for samples PL17 (a), PL17/CMP0.95-0.4 (b), PL17/CMP0.95-1 (c) and
PL17/CMP0.95-3 (d) by applying step strains cycles of small—high—small strain values. The small
level of strain was always 1% and the high level of strain was increased successively: 1–50%; 2–100%;
3–200%; 4–500%; and 5–1000%.

According to Figure 13, for samples PL17/CMP0.95-0.4 and PL17/CMP0.95-1, the
network structure is strengthened after removing the applied strains, suggesting an increase
in intermolecular interactions and structure reorganization, possibly due to changes in
conformation under the action of mechanical forces. By increasing the applied strain, these
interactions are disturbed and R value decreases from 143% after cycle 1 to 99% after cycle 5.
For PL17, an increase in R is observed during the 5 cycles of deformation from 83% to 99%,
but the R value does not exceed 100%. Sample PL17/CMP0.95-3 is not able to recover its
structure after high deformations, with the R value decreasing from 99% after cycle 1 to
about 60% after cycle 4 and 5.
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4. Conclusions

The viscometric studies in dilute aqueous solution showed that CMP chains are
in a more extended conformation in the presence of PL. The interactions between the
segments of CMP0.42 and PL are lower compared to the interaction between CMP0.95 or
CMP1.6 and PL. In concentrated solution, PL/CMP0.42 systems present phase separation,
while CMP with higher substitution degrees (DS = 0.95 or 1.6) are miscible with PL at a
high concentration.

Having a relatively low viscosity, CMP does not increase the rheological parameters of
the PL gels. At low concentrations, CMP increases the Tgel and decreases the hardness, the
complex viscosity and the viscoelastic moduli of the gels. Between 0.4% and 1% CMP, Tgel
drops significantly while the gel hardness increases, but with a further increase in the CMP
concentration, the gels were softened. The addition of CMP has two opposite effects on the
thermally-induced gelation of PL: it increases the concentration of PL in the polyelectrolyte-
free domains, decreasing the Tsol–gel and CMT and it perturbs the aggregation of PL micelles
into an organized structure in the whole network, softening the gels.

The DLS studies of concentrated PL solution proved to be able to evidence the forma-
tion of the micelles by a decrease in the decay time of the slow relaxation mode, and the
aggregation of the micelles by the appearance of a power-low tail in the autocorrelation
function. In the presence of CMP, the diffusion of the polyelectrolyte chains overlapped
with the organization of the PL micelles, but the formation of hard gels can be evidenced
by the appearance of a power-low in the intensity-time correlation function.

The PL17/CMP gels showed a good recovery even after a strain of 1000%. The
sample PL17/CMP0.95-0.4, which has the lowest rheological parameters due to the extended
conformation of the polyelectrolyte in the PL network, achieved a higher degree of structure
recovery after each strain cycle.

In summary, the carboxymethylation of pullulan can improve its miscibility with PL,
but high substitution degrees are required to obtain miscible polymeric mixtures. The
addition of CMP (with DS = 1 or higher) modifies the strength of the PL thermogels
depending on the polyelectrolyte concentration. However, the addition of 1% CMP to the
PL 17% system led to the obtaining of thermogels with convenient parameters: Tgel around
26 ◦C and a good hardness.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/polym15081909/s1, Figure S1: FT-IR spectra of pullu-
lan, CMP0.42, CMP0.95 and CMP1.6; Figure S2: FT-IR spectra of CMP0.95, PL17 and PL17/CMP0.95
gels. References [20,28,84–88] are from the supplementary materials.
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