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Abstract: Vaginal dysbiosis can lead to serious infections in asymptomatic women. Lactobacillus
probiotics (LBPs) are being investigated as a promising therapy for reversing vaginal microbiota
dysbiosis. This study aimed to investigate whether administering LBPs could improve vaginal
dysbiosis and facilitate the colonization of Lactobacillus species in asymptomatic women. 36 asymp-
tomatic women were classified based on the Nugent score as Low-NS (n = 26) and High-NS (n = 10)
groups. A combination of Lactobacillus acidophilus CBT LA1, Lactobacillus rhamnosus CBT LR5, and
Lactobacillus reuteri CBT LU4 was administered orally for 6 weeks. The study found that among
women with a High-NS, 60% showed improved vaginal dysbiosis with a Low-NS after LBP intake,
while four retained a High-NS. Among women with a Low-NS, 11.5 % switched to a High-NS. Genera
associated with vaginal dysbiosis were positively correlated with the alpha diversity or NS, while
a negative correlation was observed between Lactobacillus and the alpha diversity and with the NS.
Vaginal dysbiosis in asymptomatic women with an HNS improved after 6 weeks of LBP intake, and
qRT-PCR revealed the colonization of Lactobacillus spp. in the vagina. These results suggested that
oral administration of this LBP could improve vaginal health in asymptomatic women with an HNS.

Keywords: Lactobacillus; probiotics; cervicovaginal fluid; vaginal microbiota; vaginal dysbiosis;
bacterial vaginosis; Nugent score

1. Introduction

The composition of the vaginal microbiota is associated with beneficial or detrimental
effects on vaginal health [1,2]. Vaginal microbiota ecology, especially the high relative abun-
dance of Lactobacillus spp., is considered crucial for vaginal health in preventing the invasion
of pathogens and decreasing susceptibility to gynecological infections, such as sexually
transmitted infections (STIs), including bacterial vaginosis (BV) [3–5]. Lactobacillus spp.
produces lactic acid via metabolic processes, thus, contributes to an acidic environment
(low pH) in the vagina, where they exert antimicrobial, antiviral, and immunomodulatory
effects [6]. Lactobacillus crispatus, Lactobacillus gasseri, Lactobacillus iners, and Lactobacillus
jensenii are the most frequently detected microbial species in a healthy vagina and may be
involved in the prevention of pathogenic infections by maintaining richness in the vaginal
microbiota’s abundance [7]. A high abundance of Lactobacillus spp. in the vaginal micro-
biota indicates vaginal eubiosis and is associated with a healthy vaginal environment [8,9].
In contrast, vaginal dysbiosis is characterized by decreased levels of Lactobacillus spp. and
increased levels of anaerobic bacteria, primarily Gardnerella spp., Atopobium spp., Prevotella
spp., and Ureaplasma spp. [10–12]. Vaginal dysbiosis dynamics can lead to a significant
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increase in the risk of BV, preterm birth, and urinary tract infections [13–16]. In terms of
BV, the following eight genera have been reported to be associated with vaginal dysbiosis:
Gardnerella, Atopobium, Megasphaera, Eggerthella, Aerococcus, Leptotrichia/Sneathia, Prevotella,
and Papillibacter [17].

Probiotics are “living microorganisms” that have beneficial health effects when
consumed in appropriate amounts, as defined by the World Health Organization and
the United Nations Food and Agriculture Organization in 2002 [18,19]. Probiotic intake
plays a role in maintaining and improving the diversity and dynamics of the gut mi-
crobiota profile [20,21]. In addition, probiotics prevent diseases through functions such
as stabilizing the gut microbiota, generating short-chain fatty acids, and inhibiting the
settlement of pathogenic microbiota [22]. The gut microbiota significantly influences
metabolic pathways of distant organs, including reproductive homeostasis [23–25]. Al-
though the gut microbiota and vaginal microbiota represent two different ecosystems,
the gut microbiota is considered an extravaginal reservoir that might influence the risk
of vaginal dysbiosis through dysbiotic gut microbiota [26]. Specific probiotics, such as
Lactobacillus probiotics (LBPs), are suggested to have safe and promising therapeutic
effects to modulate microbiota homeostasis in the general population [27]. Studies have
shown that oral LBP intake not only improves vaginal microbiota dysbiosis significantly,
but also improves leucorrhea, itching, and vulvo-vaginal erythema/edema [28,29]. In
addition, Lactobacillus surface active molecules (peptidoglycan, lipoteichoic acid, ex-
opolysaccharides, etc.) antagonize the pathogenic microbes [30]. Therefore, specific LBP
combinations could be novel treatments against pathogenic microbes that cause vaginal
dysbiosis by increasing Lactobacillus abundance.

Symptomatic vaginal dysbiosis, such as the STI BV, is characterized by symptoms
such as vulvovaginal itching, burning, irritation, bad odor, rashes, unusual discharge, and
pain in the vagina [5]. In addition, approximately half of BV-positive women have no
clear symptoms and are considered to have asymptomatic vaginal dysbiosis [31,32]. The
Nugent score (NS) is used as the gold standard tool for screening for asymptomatic BV and
identifying suitable treatments, such as antibiotics [33,34]. Limited data exist concerning
the effect of LBPs and effectiveness of molecular-based diagnosis methods, such as STI-PCR
and 16S rRNA amplicon sequencing, in asymptomatic vaginal dysbiosis [35–38]. To obtain
accurate information on pathogenicity, molecular-based diagnostic validation can better
confirm a diagnosis and improve understanding of how to manage a microbial dysbiosis. In
the present study, it was hypothesized that LBP intake could improve vaginal dysbiosis and
facilitate the colonization of Lactobacillus spp. in the vagina in women with asymptomatic
vaginal dysbiosis. To investigate whether the LBP modulates vaginal dysbiosis and changes
the microbiota dynamics to improve vaginal dysbiosis and maintain a normal vaginal
environment, the NS was used to first categorize the study subjects. Then, 16S rRNA gene
amplicon microbiota analysis (NGS) and quantitative real-time polymerase chain reaction
(qRT-PCR) were performed for validation of the vaginal microbiota in cervicovaginal fluid
(CVF) samples of women with asymptomatic vaginal dysbiosis.

2. Materials and Methods
2.1. Enrolled Subject Criteria and Sample Collection

Overall, 57 premenopausal women aged between 19 and 55 years old who visited the
Obstetrics and Gynecology outpatient clinic or the Health Examination Center at Ewha
Womans University Mokdong Hospital from June 2021 to September 2021 were enrolled.
Several subjects were excluded based on the following exclusion criteria: undergoing
immune or hormonal therapy; taking probiotics or antibiotics; having a history of alcohol or
drug addiction; or being at risk of pregnancy. Finally, after counseling, women who agreed
to participate in the trial/study provided written informed consent prior to enrolment.

The CVF samples of the participants were collected using an NBG-S5V Swab kit (Noble
Biosciences, Suwon-si, Gyeonggi-Do, Republic of Korea) by swabbing the exocervix, and
the swabs were then dipped into buffer. Collected samples were immediately transferred



Nutrients 2023, 15, 1862 3 of 18

to a laboratory and stored at −80 ◦C for further microbiome analysis. The CVF samples
were stored under strict regulations for research and analysis institutes.

The Institutional Research Board (IRB) of Ewha Womans University (Mokdong Hospi-
tal, Seoul, Republic of Korea) approved this prospective study (IRB approval no. 2020-11-
035-007) of LBP oral intake by healthy women with asymptomatic vaginal dysbiosis. The
study was conducted in accordance with the approved guidelines.

2.2. Probiotic Combination and Intervention

The LBP used in the study contained a combination of Lactobacillus acidophilus CBT
LA1 (LA1, KCTC 11906BP), Lactobacillus rhamnosus CBT LR5 (LR5, KCTC 12202BP), and
Lactobacillus reuteri CTB LU4 (LU4, KCTC 12397BP) strains isolated from Korean human
feces by Cell Biotech (Gimpo-si, Republic of Korea). The CBT of LA1, LR5, and LU4 was
prepared with dextrose, fructooligosaccharide, xylitol, pomegranate powder, pomegranate
spice, malic acid, corn starch, and Starch 1500, which are known as safe materials used in
the preparation of various asymptomatic functional foods.

The intake method was one packet of probiotics (2 g) per day, which contained
1 × 1010 CFU of total bacterial strains, either directly or with water. After the collection
of CVF on the first visit (the initial visit), probiotics were administered for 3 weeks, and
Gram staining, NGS, and qRT-PCR were performed. After 3 weeks, i.e., on the second visit
(mid-visit), CVF samples were again collected, probiotics were administered for another
3 weeks, and Gram staining, NGS, and qRT-PCR were performed on the collected sample.
Finally, on the third visit (the final visit), which was the endpoint of the study, CVF samples
were collected, and Gram staining, NGS, qRT-PCR, and STI-PCR (only on the third visit)
were performed on the collected sample. In addition, on the second and third visits, the
subject’s medication compilation was recorded after LBP intake.

The study subjects who were diagnosed with vaginitis according to the Gram stain
results of the CVF sample collected on the first visit and ones who needed treatment
were subjected to additional testing with the genital mycoplasma culture or culture and
sensitivity test. The subjects were then guided to appropriate treatment and were not
included in the study. In total, 142 samples were collected from 57 women across three
visits; however, only 108 samples from 36 women were included in the final analysis
(Figure 1).

2.3. Gram Staining and NS

For Gram staining, one drop of CVF sample was smeared on a glass slide, dried,
stained with crystal violet for 1–2 min, and bleached, after which the slides were observed
under a microscope for the presence of gram-positive bacteria. The presence and type of
microorganisms in the vagina were examined to compare the microbiota present before
and after LBP intake. Therefore, not only were changes in the microorganisms in the vagina
noted, but also whether the vaginal environment was asymptomatic or more vulnerable to
vaginitis or other infections/diseases. Slide smears were examined by three independent
microbiologists who scored and interpreted the slides independently using the NS method.
Using the Gram stain of CVF samples, the NS was applied as follows: 0–3, normal; 4–6,
intermediate; and 7–10, BV. Based on the NS at first visit, the study subjects with a Low
NS (LNS ≤ 3) were designated as Group A (normal group), and those with a High NS
(HNS ≥ 4–10) were designated as Group B (abnormal group).

2.4. DNA Extraction and STI-PCR

For STI-PCR, the CVF samples were vigorously agitated in a buffer to dislodge the cells.
Microbial DNA was extracted using the FastDNA SPIN Kit for Soil (MP Biochemicals, Santa
Ana, CA, USA) according to the manufacturer’s instructions. The extracted microbial DNA
was purified using a DNeasy PowerClean Pro Cleanup Kit (Qiagen, Hilden, Germany),
and the DNA quality was assessed using a QuickDrop (Molecular Devices, San Jose, CA,
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USA). The concentration of the purified DNA was measured using the Qubit dsDNA BR
Assay kit (Thermo Fisher Scientific, Waltham, MA, USA).
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2.5. V4–V5 Targeted 16S rRNA Gene Sequencing

Sequencing of 16S rRNA was performed to determine the relative abundance of
Lactobacillus spp. and to assess the shift in the presence and type of each bacterial species
before and after LBP intake. Extracted DNA was used for PCR amplification. The amplicon
(5 µL) of each participant was subjected to electrophoretic separation on a 1.5% agarose gel
(Cosmogentech, Ltd., Seoul, Republic of Korea), and the product (~490 bp) was visualized
under UV light (Daihan Scientific, Ltd., Wonju, Republic of Korea). A sequencing library
with subsequent steps (purification, sample indexing, sample quantification, and pooling)
was prepared according to the Illumina 16S metagenomic sequencing library preparation
guide (Illumina, San Diego, CA, USA). The V4–V5 region of the bacterial 16S rRNA gene
was amplified using 16S rRNA gene sequencing using the following primers: a forward
primer in the V4 region (CCA GCM GCC GCG GTA ATW C) and a reverse primer in the V5
region (CC GTC AAT TYY TTT RAG TTT). The amplified sequencing library was purified
using Agencourt® AMPure XP beads (Beckman Coulter, Brea, CA, USA), and the quality of
the library was assessed using a 2100 Bioanalyzer (Agilent, Santa Clara, CA, USA). The
library pool was sequenced with 250 bp paired-end reads on the MiSeq platform (Illumina,
San Diego, CA, USA) using the MiSeq reagent kit V2 (Illumina, San Diego, CA, USA).

2.6. qRT-PCR

qRT-PCR was performed to confirm whether the three Lactobacillus spp. in the LBP
colonized the vagina or not. After culturing the three bacterial strains that were ingested
by the subject, the cells were counted and used as a standard for the experiment. Then,
DNA was extracted using the FastDNA SPIN Kit for Soil (MP Bio-chemicals) following the
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manufacturer’s instructions. The extracted microbial DNA was purified using the DNeasy
PowerClean Pro Cleanup Kit (Qiagen), and the DNA quality was assessed using QuickDrop
(Molecular Devices). The concentration of the purified DNA was measured using the Qubit
dsDNA BR Assay kit (Thermo Fisher Scientific). Purified DNA was used as a qRT-PCR
standard. Values of cells/mL were converted to DNA concentration values (cells/ng) and
used for calculations. Prime Q-Master mix (Genet Bio, Chungnam, Republic of Korea) was
used for qRT-PCR. The primers used for qRT-PCR are listed in Supplementary Table S1 and
the amplification conditions are listed in Supplementary Table S2.

2.7. Data Processing and Statistical Analysis

Targeted sequencing of the V4–V5 region of the microbiota was performed using
Illumina MiSeq. Raw sequencing data were processed using the Quantitative Insight Into
Microbial Ecology software package 2 (QIIME2, v2021.11, http://qiime2.org, accessed on 6
February 2023). Denoising was performed using DADA2 and a taxonomy table was created
using the SILVA database (v138). Data were normalized to a depth of 14,000, which was the
minimum depth of the sample that was used for alpha (amplicon sequence variants [ASVs],
Shannon diversity, and Pielou’s evenness) and beta diversity analyses. The results following
data processing, analysis, and visualization were analyzed using the ggplot2 package of R
(v4.1.3), and statistical analysis was performed using the Wilcoxon rank-sum test, Wilcoxon
signed-rank test, Kruskal–Wallis test, Mann–Whitney test, and PERMANOVA using the
vegan package. Linear discriminant analysis effect size was performed using Galaxy
(https://huttenhower.sph.harvard.edu/galaxy. accessed on 6 February 2023). The data
were then filtered and normalized. For clinical parameter statistical analysis, the two-tailed
p-value was applied, and a p-value < 0.05 was considered to be significant.

3. Results
3.1. Demographic Profile, Gram Stain, and NS

A total of 57 asymptomatic women aged 19–55 years were enrolled in this study. Of
the 57 subjects, five withdrew their consent, one declined to take the oral LBP, seven had
to be treated with antibiotics, two were lost to follow-up, and six had samples that failed
during NGS library construction. Therefore, only 36 women were included in the final
analysis. The study subjects with an LNS ≤ 3 were designated as the normal group, and
those with an HNS ≥ 4–10 were designated as the abnormal group, after analysis of the
NS of the Gram stain results performed at the first visit (Table 1). The median age was
41.0 years, and the median BMI was 23.2 on the first visit for all 36 subjects. There were no
significant differences in age or BMI between the two groups. In the LNS group (n = 26),
four women had positive gram stains on the second visit, and three women had positive
gram stains on the third visit, whereas in the HNS group (n = 10), four women had positive
gram stains on the second and third visits (Table 1). There was a 60% reduction in the HNS
group (n = 6) after LBP intake. Concerning the NS, at the first visit, the difference was
significantly high (p < 0.001) between groups, while the difference decreased at the second
visit (p < 0.04) and the third visit (p < 0.06) with the decrement of the NS after LBP intake.

3.2. Alpha Diversity and Vaginal Microbiota Taxonomy of the Normal and Abnormal Groups

Amplicon sequencing of 16S rRNA was performed to compare the taxonomic compo-
sition of the vaginal microbiota in the samples collected on the first, second, and third visits.
Alpha diversity was measured using three indices: observed ASVs, Shannon diversity, and
Pielou’s evenness, at the different visits. At the initial visit, samples classified as LNS were
categorized into Group A, and samples classified as HNS were categorized into Group B. It
was confirmed that in Group B, samples with a decreased NS (samples that changed from
an HNS to an LNS) showed a significant difference in alpha diversity as the number of
visits increased. Furthermore, it was observed that the alpha diversity values of 60% of
the samples that changed from an HNS in Group B to an LNS became similar to those of
Group A; however, for the LNS, there was no significant difference between the visits at
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any indices of alpha diversity (Figure 2A–C). Observably, the indices of alpha diversity
decreased significantly in six women with an HNS who were classified as having an LNS
on the second and third visits (Figure 2A–C).

Table 1. Clinical characteristics of asymptomatic women after Nugent scoring.

Parameters Women with an LNS
(n = 26)

Women with an HNS
(n = 10) p Value

Age (Median) 40.50 (11) 46.50 (11) NSD

BMI (Median) 22.71 (3.71) 24.88 (4.86) NSD

Gram stain (number of positive subjects)

First visit 0 10 <0.05

Second visit 4 4 NSD

Third visit 3 4 NSD

Nugent score (Mean ± SD)

First visit 0.81 ± 0.94 5.70 ± 1.83 <0.001 *

Second visit 1.54 ± 1.98 2.80 ± 2.44 <0.04 *

Third visit 1.69 ± 1.91 3.80 ± 3.33 NSD *
BMI, body mass index; LNS, Low Nugent score (LNS ≤ 3); HNS, High Nugent score (HNS ≥ 4–10); NSD, no
significant difference. * Kruskal–Wallis test.

The taxonomic composition of six phyla in the vaginal microbiota: Firmicutes, Acti-
nobacteria, Bacteroidota, Proteobacteria, Verrucomicrobiota, and Fusobacteriota, was ob-
served (>1%) at each visit. It was found that Firmicutes were the dominant bacteria in
most of the vaginal samples analyzed. Additionally, it was observed that Actinobacteriota
were predominantly dominant in HNS samples (Figure 2D). At the genus level, 17 genera:
Lactobacillus, Atopobium, Megasphaera, Prevotella, Alloscardovia, Rhodococcus, Gardnerella, Strep-
tococcus, Bacillus, Aerococcus, Fastidiosipila, Enterobacteriaceae, Ralstonia, Chlamydia, Sneathia,
Dialister, and Peptostreptococcus, were observed (>1%) on all visits (Figure 2E). The relative
abundance of the genus Lactobacillus belonging to the phylum Firmicutes was assessed in all
samples from Groups A and B. After LBP oral intake, in Group B, six samples that changed
from HNS to LNS were dominated by Lactobacillus at the second and third visits, while
three samples in Group A that changed from LNS to HNS at the third visit showed that the
relative abundance of Lactobacillus decreased and the ecosystem appeared destroyed, but
alpha diversity did not increase significantly (Figure 2E).

3.3. Correlation between NS and the Vaginal Microbiota Taxonomy of Normal, Intermediate, and
BV Groups

The correlation between alpha diversity and the NS was analyzed to compare the
composition of microbiota as assessed by the NS and 16S rRNA amplicon sequencing. The
HNS group was further classified into intermediate and BV groups, and the LNS group was
considered the normal group. The mean alpha diversity indices of the intermediate and BV
groups were significantly different from those of the LNS group (p < 0.05; Figure 3A–C).
Moreover, there was a positive correlation between the NS and alpha diversity for each
index of alpha diversity (p < 0.05; Figure 3D–F). At the phylum level, a high abundance of
Firmicutes (~>80–90%) was observed in the normal and intermediate groups compared to
that in the BV group (>40–60%) (Figure 3G). At the genus level, Lactobacillus was dominant
at >90% and slightly improved among visits in the normal group after LBP intake. The
abundance of Lactobacillus in the intermediate group was ~70–90%, while that in the BV
group was ~20–40% due to the increased abundance of other genera across all visits
compared with that in the normal group (Figure 3H). The genera Atopobium, Megasphaera,
Prevotella, Gardnerella, and Streptococcus were highly distributed in the BV group (Figure 3H).
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Figure 2. Changes in alpha diversity and taxonomy composition for each visit in the two groups
divided by the Nugent score of the first visit. Boxplot showing (A) observed amplicon sequence
variants (ASVs), (B) Shannon diversity, and (C) Pielou’s evenness in Group A and B. Relative
abundance at the (D) phylum and (E) genus levels in Group A and B. Each group was classified as
LNS or HNS based on the NS at the first visit. * p < 0.05, ** p < 0.01 (Wilcoxon rank-sum test). An
average of <1% was labeled as other.

3.4. Correlation between Alpha Diversity and the NS with Dominant Vaginal Microbiota

A correlation analysis was performed between the parameters alpha-diversity, NS,
and vaginal microbiota, and a heatmap was constructed. A positive correlation was ob-
served between all indices of alpha diversity and dominant vaginal microbiota, such as
Aerococcus, Gardnerella, Parvimonas, DNF00809, Veillonellaceae, and Mageibacillus. In addition,
genera Prevotella, Sneathia, Dialister, Anaerococcus, Peptoniphilus, Fenollaria, Actinomyces, and
Mobiluncus showed a highly significant positive correlation for the ASV index of alpha
diversity only (p < 0.01). As well as Aerococcus, Prevotella, Gardnerella, Sneathia, Dialister,
Parvimonas, DNF00809, Veillonellaceae, and Mageibacillus, three genera, Streptococcus, Gemella,
and Haemophilus, showed a significant positive correlation with the NS (p < 0.05). As
expected, Lactobacillus showed a significant negative correlation with all indices of alpha
diversity and the NS (p < 0.05) (Figure 4A). Concerning a highly significant negative corre-
lation of beneficial Lactobacillus and a highly significant positive correlation of pathogenic
Gardnerella with alpha diversity and NS, correlation analysis was performed with the first
and third visits (p < 0.001) (Figure 4B). The correlation between Lactobacillus and parameters,
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including Shannon diversity, Pielou’s evenness, and Gardnerella, at the third visit showed
much greater significance than that at the first visit. It was evident that LBP intake resulted
in a significant effect on asymptomatic vaginal dysbiosis (Figure 4B).
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Figure 3. Alpha diversity and correlation between the Nugent score and alpha diversity, and the
taxonomic composition of the vaginal microbiota between groups at different visits. Boxplot illus-
trating the (A) observed amplicon sequence variants (ASVs), (B) Shannon diversity, and (C) Pielou’s
evenness. Spearman’s correlation between the Nugent score with the (D) observed ASVs, (E) Shan-
non diversity, and (F) Pielou’s evenness. Relative abundance by visit order at the (G) phylum and
(H) genus levels. * p < 0.05, *** p < 0.001 (Wilcoxon rank-sum test).

3.5. Beta Diversity and Microbiota Shift after 6 Weeks of LBP Intake

Changes in the vaginal microbiota composition between the normal, intermediate,
and BV groups were analyzed after six weeks of LBP intake using Bray–Curtis dissimilarity.
Clusters were observed to demonstrate dissimilarity between the normal, intermediate,
and BV groups (Supplementary Figure S1). In the group-wise analysis of the first and
third visits, a pattern was observed after LBP intake; a shift from LNS to HNS clusters was
observed in two of the 26 women in the LNS group (normal) (Figure 5A). Whereas in the
HNS (abnormal), six of the 10 women showed a shift from HNS to LNS clusters (Figure 5B).
The arrow represents the shift from the first to the third visit.
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the first and third visits. * p < 0.05, ** p < 0.01, *** p < 0.001.
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3.6. Quantitative Expression of Lactobacillus Species

qRT-PCR was performed to assess differences in the transcripts of probiotic Lactobacil-
lus spp. in CVF samples among the three visits. The ratio of expression was calculated
by dividing the expression in CVF samples collected on the second and third visits by
that collected on the first visit. After LBP intake, by comparing the expression ratio of the
ingested species, it was found that the total cell of L. acidophilus (p < 0.001), L. rhamnosus
(p < 0.05), and L. reuteri (p = 0.01) increased significantly (Figure 6). Overall, the results
showed that probiotic Lactobacillus spp. colonized the vagina after LBP intake. In Group B,
the majority of samples showed a downward shift on PCoA2 (y-axis) and a rightward shift
on PCoA1 (x-axis).
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(Wilcoxon signed-rank test).
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4. Discussion

Vaginal microbiota diversity is important for maintaining vaginal health and prevent-
ing disease, and this fluctuates with ethnicity, age, and lifestyle [39]. In addition, vaginal
microbiota diversity fluctuates with hormone levels from puberty to menopause [40]. Ac-
cording to the World Health Organization, in women of reproductive age (15–49 years),
Lactobacillus spp. is the dominant species in the vagina [12]. Herein, the study subjects
were asymptomatic women with vaginal dysbiosis aged between 19 and 55 years. Their
vaginal health was analyzed, and the improvement of vaginal dysbiosis by LBP intake for
6 weeks was evaluated (Figure 1). After applying the exclusion criteria, 36 asymptomatic
women were divided into two groups: the LNS group (n = 26; as normal) and the HNS
group (n = 10; as abnormal), after determining the NS on the first visit. The study aimed
to investigate the status of vaginal dysbiosis of asymptomatic women using the NS and
validate it using molecular diagnostic tools through 16S rRNA sequencing and qRT-PCR
in CVF samples. The results suggested a potential therapeutic effect of LBP intake on
vaginal health improvement over the 6-week intervention period through decreased NS
and increased colonization of Lactobacillus spp. in the vagina.

As discussed previously, the NS is considered the gold standard technique for evaluat-
ing BV status, especially during pregnancy [34,41]. In this study, the NS was used to group
the asymptomatic women into the LNS (n = 26) and HNS (n = 10) groups, and vaginal
dysbiosis was evaluated after 6 weeks of LBP intake. More than 27% (n = 10) of women
fell into the HNS group showing asymptomatic vaginal dysbiosis at the first visit, and 60%
(n = 6) of that 27% shifted to the LNS group after 6 weeks of LBP intake, as revealed through
Gram staining (Figure 2). The sample size of 10 individuals in Group B may not have been
representative of the entire population of the HNS group. But Group B was a divided group
among 36 asymptomatic women, and 10 out of 36, or 28%, were applicable. The effect
needs to be verified by making changes in future studies, such as using a larger number of
samples, including patients with vaginitis, and having a longer period. However, the LNS
group had a high relative abundance of Lactobacillus spp. before LBP intake, which was
slightly changed after intake as three women in the LNS group shifted to the HNS group.
This was potentially due to host hormonal or immunological factors or metabolic pathway
differences [42–44]. In a shift from an HNS to an LNS, the vaginal microbiota diversity
decreases with an increased relative abundance of Lactobacillus, which is an indication of
vaginal dysbiosis normalization [45]. As observed, the abundance of Lactobacillus spp. was
high (>90%) in the LNS group, and the high abundance of Gardnerella spp. in the HNS
group suggested potential for the diagnosis of BV and a correlation with the NS [17,46].
The improvement in the abundance of Lactobacillus spp. in the vaginal microbiota from
an HNS to an LNS, i.e., a normal condition, might have been due to the translocation of
Lactobacillus from the gut to the vagina after intake of the LBP.

The normal vaginal microbiota is composed of gram-positive bacilli (Doderlein’s bacilli),
which are thought to translocate from the gut, and are of the genus Lactobacillus [45,47]. The
six common bacterial phyla were Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria,
and Fusobacteria, with a high relative abundance of Lactobacillus spp. present in both the
gut and vagina, as observed through vaginal microbiota analysis [40,48–50]. The Lactobacillus
spp. can colonize the vagina after oral administration through the gut pathway [51]. In a
previous study, a combination of L. rhamnosus GR-1 and L. reuteri RC-14 was administered
as an LBP, and four different samples (buccal mucosa, tongue coat, feces, and vagina) were
analyzed. The longitudinal dataset revealed that there was very limited probiotic translocation
to the vagina [52]. Although LBP spp. were detected more frequently in the feces of healthy
women, an increased abundance of probiotic strains was not observed in the oral or vaginal
samples, suggesting that L. rhamnosus GR-1 and L. reuteri RC-14 do not translocate from the
gut to the vagina [26,52]. In contrast, another study showed that Lactobacillus spp. recover
the asymptomatic or intermediate BV through the gut [53]. A different study reported
that Lactobacillus spp. not only significantly altered the vaginal flora but also reduced the
colonization of pathogenic microbes [54]. In the present study, a significant increase in
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Lactobacillus spp. was found in the CVF sample of the HNS group after LBP intake. By
analyzing the sample dataset from the first, second, and third visits in the normal, intermediate,
and BV groups, significant vaginal microbiota dynamics and LBP efficacy were found based
on a comprehensive analysis of the normalization of BV levels in the HNS, which also showed
a positive correlation between the alpha diversity and NS (Figure 3).

Lactobacillus spp. are known as potential biomarkers of a healthy vaginal micro-
biota, while vaginal dysbiosis can increase the colonization of anaerobic bacterial species
associated with STIs, such as Gardnerella, Prevotella, Sneathia, Ralstonia, Dialister, and Strepto-
coccus [17,35,55]. Herein, Lactobacillus, which was the dominant genera in the LNS group,
showed a significant negative correlation with the NS, and genera related to BV, such
as Gardnerella, Streptococcus, Prevotella, Ralstonia, and Dialister, showed a positive correla-
tion [17]. In the present study of healthy women, it was found that the dominant genus
in the vaginal microbiota was Lactobacillus, showing a negative correlation with alpha
diversity (Figure 4). It also showed a negative correlation with the NS, which was related
to Gardnerella. Alpha diversity showed the diversity of the vaginal microbiota, while
NS represented the vaginal environment with some representative species. According to
Wessels et al., high microbial diversity was observed in female sex workers regardless of
the NS, suggesting that the NS may not represent vaginal microbial diversity [56]. Dols
et al. suggested that microbial diversity in the vagina, like the NS, can be used to diagnose
BV [57]. Therefore, it is believed that showing the vaginal microbiota for both markers
will give a clearer indication of the healthy female flora. Although Ureaplasma is one of the
genera most frequently associated with BV, which is further associated with complications,
such as preterm birth, herein, a positive correlation of Ureaplasma only with Shannon
diversity was observed [58]. Additionally, in our recent study, it was found that during
pregnancy Ureaplasma and Prevotella colonization with Lactobacillus abundance facilitates
term birth [59]. Thus, it might be possible that a high abundance of Ureaplasma with Lacto-
bacillus in asymptomatic women carries a risk of preterm birth. Moreover, Gardnerella is
normally present in the healthy vagina; consistently, a significant negative correlation was
observed between Gardnerella with the NS [60]. However, a significant positive correlation
of Haemophilus, which is significantly associated with obesity, with NS was observed [61].
Gestational obesity is associated with a greater risk of invasive Haemophilus infection and
a poor pregnancy outcome [62]. STI-related bacteria, such as Gardnerella, Atopobium, Pre-
votella, Streptococcus, and Ureaplasma, can co-exist with Lactobacillus spp. and not cause
any problems but can cause infections, such as BV, when the balance is disturbed [32]. In
contrast, when Lactobacillus spp. and Gardnerella spp. co-existed, a negative correlation
was observed between these two spp. that maintain vaginal health or susceptibility to
pathogenic infections, respectively [63].

A shift in beta-diversity was confirmed following probiotic intake (Figure 5). Specif-
ically, in Group B, the majority of samples showed a downward shift on the y-axis and
a rightward shift on the x-axis. The vaginal environment often changes due to various
factors, such as menstruation. As female hormone levels change, so does the vaginal
environment. Although 12% (n = 3) of Group A’s LNS changed to an HNS at visit three,
there was no significant change observed in alpha diversity (Figure 2A–C). Moreover, the
taxa composition (Figure 2D,E) was also found to be different from that of Group B’s HNS.
Considering that 88% (n = 26) of Group A did not experience a change in the LNS, and 60%
(n = 6) of Group B changed to an LNS, it was considered that the probiotics may have a
positive impact on maintaining and modifying the vaginal environment.

Lactobacillus species are considered as candidate probiotics for human health, including
vaginal health [64,65]. Recent studies have shown the potential effects of a single specific
species and/or combination of Lactobacillus species on dysbiotic conditions. In a previous
study, oral intake of a combination of L. rhamnosus GR-1 with L. reuteri RC-14 during preg-
nancy was associated with a low risk for premature birth, which was directly associated
with vaginal health and vaginal microbiota eubiosis [44]. In another study, the adminis-
tration of probiotics, including the combination of 10 species, reduced the vaginal pH in



Nutrients 2023, 15, 1862 14 of 18

women with an intermediate NS [66]. Here, the combination of L. acidophilus CBT LA1,
L. rhamnosus CBT LR5, and L. reuteri CBT LU4 as an LBP was explored for vaginal dysbiosis.
L. acidophilus, L. rhamnosus, and L. reuteri are used as raw materials in healthy functional
foods (daily intake of 108–1010 CFU) according to Health Functional Food Standards,
Ministry of Food and Drug Safety. In another study, administering a 1:1 combination of
L. rhamnosus IMC 501® and Lactobacillus paracasei IMC 502® (5 × 109 CFU/capsule/day for
15 consecutive days) improved leucorrhea, itching, and vulvo-vaginal erythema/edema [29].
In the present study, L. acidophilus, L. rhamnosus and L. reuteri abundance showed a decrease
at visit 2 (Figure 6). This may mean competition in the vaginal microbial community
of Lactobacillus species. Figure 3 confirms that there was a change in the flora. At visits
2 and 3, there was a significant increase in Lactobacillus species abundance, such as for
L. acidophilus, L. rhamnosus, and L. reuteri, suggesting that the vaginal environment was al-
tered by lowering the pH through the secretion of lactic acid. This suggests an environment
conducive to the settlement of Lactobacillus species. In addition, there was a tendency for
Lactobacillus species abundance to increase between visit 1 and 3 through 6 weeks of intake,
and a significant difference would be observed if intake occurred over a longer period
of time.

Studies using probiotics have confirmed changes in vaginal dysbiosis as well as
changes in nitrogen quality, vaginal secretion, odor, and NS [66]. Thus, consistent with the
observations of the present study, consumption of LBPs is believed to inhibit an increase in
alpha diversity and prevent vaginal dysbiosis in asymptomatic women. In addition, the
results of short- and long-term interventions are dependent on the combination of spp. in
the LBP. For example, short-term (1 week) intervention of L. brevis (CD2), L. salivarius subsp.
salicinius (FV2), and L. plantarum (FV9) as an LBP resolved BV infections and improved
vaginal health [67]. On the other hand, long-term (6 months) oral intake of L. rhamnosus GR-
1 and L. reuteri RC-14 as an LBP did not enhance the curing of BV in Chinese women [68].
In the present study, improvement in the vaginal microbiota in women with LBP intake for
just 6 weeks was observed. These findings suggested that the results of LBP intake may
vary according to ethnicity, age, and lifestyle [12,69].

However, there were some limitations in this study. First, compared to 60% of par-
ticipants who showed improvements, 40% with an HNS ≥ 4–10 as the abnormal group
did not demonstrate improvement of vaginal dysbiosis. Therefore, STI-PCR, a multiplex
PCR used to identify the presence of STI-related bacteria, including spp. of Gardnerella,
Ureaplasma, and Chlamydia, was performed with third visit samples to assess the severity of
the infection. An attempt was made to determine whether the levels of these species were
reduced, but no significant results could be obtained. Consequently, additional research on
the variations in the vaginal microbiota at a large scale is required. Second, even though the
effect of LBP intake for a period of 6 weeks was validated, it was not possible to assess how
long the effect would last once oral administration was stopped. Future studies should
establish a prolonged study period and include longitudinal research. Finally, there was
no placebo group in the final study to allow for comparisons. Moreover, subjects with
vaginitis were excluded from the study. However, this study did not aim to investigate
patients suffering from severe vaginitis, but rather those that were able to function normally.
Therefore, the results of this study on the consumption of probiotics and their effects on the
vaginal microbiota may be more relevant to healthy women.

The robust data produced in this study suggest that LBP consumption may assist with
maintaining and increasing the population of Lactobacillus spp., as well as with maintaining
and decreasing microbial diversity for asymptomatic vaginal dysbiosis in the short term.
During the 6 week intake period, colonization of Lactobacillus spp. and a decrease in
the NS were confirmed. This implied that LBP consumption enhanced the colonization
of Lactobacillus spp. in the vagina via translocation from the gastrointestinal tract, as
confirmed by qRT-PCR. Collectively, this microbiota-based study allowed the LNS and
HNS vaginal microbiota to be distinguished in asymptomatic women, thereby facilitating
the development of therapies and treatment options for vaginal dysbiosis. This study found
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that oral administration of an LBP containing L. acidophilus CBT LA1, L. rhamnosus CBT
LR5, and L. reuteri CBT LU4 could promote vaginal health in asymptomatic women.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nu15081862/s1, Figure S1: Changes in the microbial diversity at each
visit based on the levels of different species in the vaginal microbiota. The principal component analysis
shows the change in the beta diversity distance of the samples according to levels. Abbreviations: PCoA,
principal component analysis; Table S1: qRT-PCR primers used in this study; Table S2: Composition of
the reaction mixture for qRT-PCR and PCR thermal cycling conditions. References [70–72] are cited in
the supplementary materials.
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