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Abstract: There is a need for innovative pharmaceutical intervention in light of the increasing preva-
lence of metabolic disease and cardiovascular disease. The kidneys’ sodium-glucose cotransporter 2
inhibitors (SGLT2) receptors are targeted to reduce glucose reabsorption by SGLT2. Patients with
type 2 diabetes mellitus (T2DM) benefit the most from reduced blood glucose levels, although this
is just one of the numerous physiological consequences. To establish existing understanding and
possible advantages and risks for SGLT2 inhibitors in clinical practice, this article will explore the
influence of SGLT2 inhibitors on six major organ systems. In addition, this literature review will
discuss the benefits and potential drawbacks of SGLT2 inhibitors on various organ systems and their
potential application in therapeutic settings.
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1. Introduction

A recently developed family of drugs known as sodium-glucose cotransporter-2
(SGLT2) inhibitors lowers serum glucose by preventing the absorption of glucose by the
tubules and increasing the excretion of glucose through the urine [1].

The S2 and S3 parts of the proximal tubules (along with the intestine) are the primary
sites for type 1 and type 2 sodium-glucose cotransporters, which reabsorb a significant
amount of filtrated urine glucose [2]. Around 80–90% of the glucose reabsorption process
is carried out by SGLT 2 and the remaining 10–20% by SGLT 1 [3].

Six oral SGLT2 inhibitors are currently approved for the treatment of type 2 diabetes
mellitus (T2DM) by the US Food and Drug Administration (FDA) together with the
European Medicines Agency (EMA): canagliflozin (CANA), empagliflozin (EMPA),
dapagliflozin (DAPA), ertugliflozin (ERTU), bexagliflozin, and sotagliflozin.

The European Society of Cardiology’s (ESC) recommendations for the year 2021 state
that individuals with heart failure and reduced ejection fraction (HFrEF) are eligible for
first-line treatment with SGLT2 inhibitors like dapagliflozin and empagliflozin. Regardless
of the existence of diabetes, these medications should be given together with other first-
line recommendations unless they are contraindicated or poorly tolerated (class I). In
addition, patients with T2DM who are at risk for cardiovascular events should utilize
canagliflozin, empagliflozin, dapaglifozin, sotagliflozin, and ertugliflozin. This is done to
reduce the number of hospitalisations caused by heart failure (HF), major cardiovascular
events (MACE), end-stage renal disease (ESRD), and CV deaths (also class I) [4]. Table 1
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shortly illustrates the pharmacological properties of the SGLT2 inhibitors that are currently
on the market.

Table 1. Pharmacological characteristics of SGLT2 inhibitors available in the market.

SGLT2 Inhibitors Therapeutic Indication Dosing

Canagliflozin • Type 2 diabetes mellitus 100 mg once a day

Dapagliflozin
• Type 2 diabetes mellitus 10 mg once a day
• Heart failure 10 mg once a day
• Chronic kidney disease 10 mg once a day

Empagliflozin
• Type 2 diabetes mellitus 10 mg once a day
• Heart failure 10 mg once a day

Ertugliflozin • Type 2 diabetes mellitus 5 mg or 10 mg once a day

Sotagliflozin • Type 1 diabetes mellitus 200 mg or 400 mg once a day

Bexagliflozin • Type 2 diabetes mellitus 20 mg once a day

The strong relationship between diabetes and HF results from the deleterious influence
of key pathogenic variables, including chronic glucotoxicity, lipotoxicity, and altered insulin
signalling. Decades of research have shown that diabetes causes detrimental comorbidities
and consequences. Chronic hyperglycemia induces alterations in the cytoarchitecture of
the Langerhans’ islets, including α cell hyperplasia, pancreatic beta cell dedifferentiation
into glucagon-producing cells, and loss of paracrine and endocrine control due to cell mass
loss [5].

Oxidative stress, increased production of advanced glycation end products, different
intracellular calcium handling, inflammation, and endothelial dysfunction cause struc-
tural and functional abnormalities in the myocardium [6]. A 1% increase in glycosylated
hemoglobin A1c (HbA1c) is associated with a 25% increased risk for cardiovascular events
or death in patients with T2DM, according to the results of the Candesartan in Heart
Failure: Assessment of Mortality and Morbidity (CHARM) research [7]. HF is prevalent
among T2DM patients, with an estimated prevalence of >64 million new cases [8]. This
emphasizes how crucial it is for T2DM patients to maintain strict glycemic control and
cardiovascular treatment. The effects of SGLT2 inhibitors on glucose have been extensively
studied, regardless of whether these medications are taken alone or in combination with
other glucose-modulating medications (such as metformin, glucagon-like polypeptide 1
(GLP-1) agonists, dipeptidyl peptidase 4 (DPP-4) inhibitors, or insulin). They have been
demonstrated to significantly aid the preservation of ideal glucose homeostasis [9–11].

This literature review will explore the advantages and potential risks of SGLT2 in-
hibitors on various organ systems, as well as their prospective use in therapeutic situations.

2. Materials and Methods

This literature narrative review investigates the effects of SGLT2 inhibitors, both
positively and negatively, on six essential organs and systems. These systems consist of
the kidneys, the liver, the pancreas, the nervous system, the pulmonary system, and the
cardiovascular system. This article does not feature any new investigations; instead, it is
based on research that has already been done. A review of the literature found in Scopus
and PubMed was done between January 2016 and January 2023. Several combinations
of the keywords, such as SGLT2 inhibitor, type 2 diabetes mellitus, cardiovascular effects,
heart failure, and renal effects, were employed. Observational research, review articles,
systematic reviews, and randomized controlled trials were also checked.
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3. Results
3.1. Benefits and Risks of SGLT2 Inhibitors on the Renal System

Both substantial adverse effects and favorable outcomes for kidney disorders are asso-
ciated with SGLT2 inhibitors. By suppressing the renin pathway through reduced sodium
reabsorption, SGLT2 has an impact on the renin-angiotensin-aldosterone system (RAAS)
pathway in the kidneys. By minimizing hyperfiltration damage, the downregulation of this
mechanism provides renoprotection [11]. The RAA axis is upregulated in patients with
diabetic kidney disease (DKD), which is responsible for many progressive kidney diseases.
Patients with DKD have higher levels of angiotensin-2 (ANG2) and, as a result, higher
levels of SGLT1/2 receptors [10,12]. The glucose excretion can control glucose levels in
diabetics [13]. Reduced renal glucose reabsorption and increased insulin sensitivity are two
benefits of SGLT2 inhibitors. By excreting glucose, these effects contribute to caloric loss
and weight loss [13,14].

An SGLT2 inhibitor known as dapagliflozin has been shown to benefit individuals with
CKD by slowing the course of the disease and reducing albuminuria [15]. Canagliflozin
was shown in a different study, the CREDENCE trial, that reduces the chance of developing
end-stage renal disease and having one’s creatinine level double by at least 32 percent [14].

One innovative application for SGLT2 inhibitors is helping patients who have just
undergone kidney transplants. Although the results are limited, SGLT2 assist kidney
transplant recipients in maintaining glycemic control, maintaining healthy body weight,
and reducing uric acid levels (KTR) [15].

When prescribing SGLT2 inhibitors, one should also consider the potential adverse
effects. According to the findings of one study, patients with T2DM who took SGLT2
inhibitors were at an increased risk for developing acute kidney injury (AKI), particularly
when the drugs were combined with non-steroidal anti-inflammatory drugs (NSAIDs), anti-
Ras, or diuretics [15]. There is evidence that dapagliflozin contributes to the advancement
of renal dysfunction [11]. Another study has revealed the link between pyuria and urine
microbiome dysbiosis, as well as other unfavorable outcomes, in diabetes patients treated
with SGLT2 inhibitors [16].

Although SGLT2 inhibitors may have some unfavorable side effects, the overall per-
formance of this class of drugs appears to be quite promising for many patients suffering
from CKD, reduced Glomerular Kidney Filtration (GFR), and albuminuria.

3.2. Benefits and Risks of SGLT2 Inhibitors on the Hepatic System

Researchers have been looking into how SGLT2 inhibitors affect the liver to determine
the extent of potential metabolic advantages. These drugs, in particular, have demon-
strated low adverse events associated with other glycemic control medications, specifically
hypoglycemia and diabetic ketoacidosis (DKA). SGLT2 inhibitors are effective because
they block glucose reabsorption in the proximal convoluted tubule of the kidney, which
allows glucose to be excreted in the urine. This mechanism operates independently of
insulin and demonstrates the potential to reduce body mass index (BMI) and enhance CV
outcomes [17]. Additionally, SGLT2 inhibitors have demonstrated promise in improving
liver biomarkers and recovery from liver injury, hepatic fibrosis, and steatosis [18,19]. In
most studies, therapy with SGLT2 inhibitors led to a statistically significant decrease in
ALT and AST compared to a non-statistically significant decrease in the control group for
other clinical parameters. In most investigations, γ-glutamyl transferase (GGT) and HbA1c
decreased significantly after SGLT2 inhibitors therapy while they reduced non-significantly
in the control group [18,19].

Non-alcoholic fatty liver disease is characterized by fat accumulation in the liver
that results from factors other than alcohol consumption, drug use, or hypothyroidism.
According to a recent thorough assessment of the literature, patients with T2DM who
took various SGLT2 inhibitor medications had improved non-alcoholic fatty liver disease
(NAFLD). It is unclear if the improved mechanism is caused directly by the SGLT2 inhibitor
compounds or is mediated through metabolism [18,19]. On the other hand, in one of
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the studies mentioned above, it is good to know that the characteristics of Japanese and
Caucasian patients differ significantly. For instance, the BMI of Japanese study participants
is significantly lower than that of Caucasians, and Japanese pancreatic cells are significantly
more susceptible to hyperglycemia than Caucasians. Indeed, under diabetes conditions,
insulin secretory ability is quickly diminished in Japanese subjects [19]. Because of the
changes brought on by insulin resistance and the changes in metabolic indicators, T2DM is
linked to an increased risk of developing NAFLD. NAFLD is a primary cause of cryptogenic
cirrhosis, which can proceed to cirrhosis, and 17% of T2DM patients with NAFLD had
advanced liver fibrosis (78 million) [20].

Increased lipogenesis of liver is brought on in NAFLD patients by T2DM-induced high
glucose levels [19]. The liver’s natural processes are interfered with by the proinflammatory
adipokines generated as a result of this particular disease [21].

Exenatide and dapagliflozin together, as opposed to exenatide alone or with a placebo,
improved liver enzymes and fatty liver indicators in T2DM patients, according to a recent
clinical trial [21–23]. Combination therapy produced more weight loss in T2DM patients
with NAFLD than either medication used independently or a placebo in these patients [21].
It has been demonstrated that a decreased BMI is associated with an increased NAFLD
activity score [21].

SGLT2 inhibitors reduced controlled attenuation parameter and liver stiffness measure-
ment in another meta-analysis despite considerable heterogeneity. Hence, SGLT2 inhibitors
may delay hepatic fibrosis and steatosis and treat NAFLD specifically [22,23]. Therefore,
further long-term, randomized, double-blinded, multi-centered clinical trials of SGLT2
inhibitors on hepatic fibrosis and steatosis are needed to help patients and physicians make
the best treatment decisions.

Patients with T2DM who were given dapagliflozin for treatment for eight weeks
experienced a reduction in liver fat and volume, according to the findings of a more
recent randomised controlled trial. In addition, it has also come to light that lowering
fibroblast growth factor 21 (FGF21) improves mitochondrial function [24]. This strategy
lowered visceral adipose tissue (AT) and the inflammatory biomarker Interleukin-6 (IL-6)
substantially [24]. The reduction in visceral AT results from the loss of liver fat and
improvement in NALFD. High amounts of IL-6 in the blood are connected with myocardial
infarctions, which is the importance of decreasing IL-6 [24].

A literature review looked for possible mitochondrial benefits of SGLT2 inhibitors
managed to find that they can modulate mitochondrial functions through at least three
different pathways: by changing the biogenesis and morphology of mitochondria, by
controlling the generation of reactive oxygen species in mitochondria, and by regulating
the amount of adenosine triphosphate (ATP) produced in mitochondria [25].

Based on these findings, SGLT2 inhibitors appear to be a compound with great poten-
tial for treating hyperglycemia and metabolic disorders.

3.3. Benefits and Risks of SGLT2 Inhibitors on the Pancreas

Although SGLT2 inhibitors’ main actions occur in the nephron, the fact that they
are involved in controlling glucose allows us to consider the effects on the pancreas.
Because these medications promote glycosuria, glucagon has an immediate effect on the
pancreas [26].

The alpha pancreas cells contain the SGLT2 proteins on their own. These SGLT2
transporters are made more active by glucagon in alpha cells, but they do not colocalize
with insulin or somatostatin in beta cells. This shows that when an excess of glucose
has not been controlled, glucagon and SGLT2 proteins are directly related [27]. With the
administration of SGLT2 inhibitors, there is an increase in glucagon because lower glucose
absorption causes more gluconeogenesis and less glycolysis, which limits the production
of ATP.

Dapagliflozin is the only SGLT2 inhibitor that demonstrates significant interactions
with glucagon. Several studies have shown that dapagliflozin increases glucagon secretion
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and liver metabolism, especially gluconeogenesis, shortly after delivery, decreasing hypo-
glycemia episodes that can be hazardous or episodes where Empagliflozin is more efficient
with its mechanism when given in conjunction with a DPP-4 inhibitor, such as linagliptin,
and this further improves glycemic control in an insulin-resistant condition [28]. Since
less insulin must be secreted due to the improved sensitivity, less nicotinamide adenine
dinucleotide phosphate (NADPH), phosphatidylinositol 3′-kinase-dependent free radical
generation results as an additional confusing effect of empagliflozin administration [28].

It is clear from looking at how SGLT2 inhibitors affect the pancreas that the mecha-
nisms used to stimulate alpha and beta cells are different. According to research on the
pancreatic side effects of SGLT2 inhibitors, notably dapagliflozin, pancreatitis happened
intermittently in 1% of patients. However, these results can be the result of confounding
factors considering that diabetes and hyperglycemia are already important risk factors
for pancreatitis.

3.4. Benefits and Risks of SGLT2 Inhibitors on the Central Nervous System

Numerous brain regions, including the cerebellum, hippocampus, and blood–brain
barrier (BBB), contain SGLT2 receptors. SGLT2 inhibitors are being intensively studied
for their potential to prevent or protect against specific neurological diseases. SGLT2
inhibitors reduce reactive oxygen species (ROS), minimise BBB leakage, and decrease
microglia load and acetylcholinesterase levels; these are the three primary pathways linking
SGLT2 inhibitors to cognitive performance [29]. SGLT2 inhibitors are lipid-soluble and
can pass the BBB, achieving a brain-to-serum ratio of 0.3 (Canagliflozin and Dapagliflozin)
to 0.5 (Empagliflozin) [30]. There are SGLT receptors in the central nervous system (CNS).
Many isoforms of these proteins can be identified in many regions of the CNS. Inhibitors of
SGLT1 are found in pyramidal cells of the brain cortex, Purkinje cerebellum cells, pyramidal
hippocampus cells, and granular cells [31]. SGLT2 expression in the brain is lower than
that of SGLT1, and it occurs mainly in the microvessels of the blood–brain barrier, as well
as in the amygdala, hypothalamus, periaqueductal gray, and dorsomedial medulla—the
nucleus of the solitary tract [32].

Parkinson’s disease (PD) and Alzheimer’s disease (AD) are common age-related
neurodegenerative conditions. AD also affects glucose metabolism; hence, it is frequently
referred to as “Type 3 diabetes” or “diabetes of the brain” [33]. Patients with T2DM had
a 53% greater relative risk of AD compared to non-diabetic individuals, according to a
meta-analysis by Zhang J. et al. [34]. SGLT2 inhibitors may help Alzheimer’s patients
through anti-inflammatory, anti-oxidative, or atheroprotective effects, as well as through
direct neuroprotective effects like increasing brain-derived neurotrophic factor (BDNF)
and blocking acetylcholinesterase (AChE). Insulin resistance is found in 8 out of 10 AD
patients [35].

In prior investigations with mouse models, SGLT2 inhibitors therapy significantly de-
creased AD pathology, including tau phosphorylation and senile plaque density. This effect
was related to enhancing cognitive functions, including memory and learning processes, as
measured by the new object discrimination test and the Morris water maze test [36].

In the CNS, selective SGLT2 inhibitors have a place since, according to the findings of
Erdogan MA. et al., Dapagliflozin lowers seizure activity at both the electrophysiological
and clinical levels in a rat model of epilepsy [37]. No clinical data compare the effectiveness
of ketogenic diets and dapagliflozin medication on brain epileptic activity; nonetheless,
adherence to a ketogenic diet is challenging and must be regularly monitored. Contrarily,
dapagliflozin is a safe medication routinely prescribed to diabetic patients. Cognitive
impairment shares the same risk factors as epilepsy and atherosclerosis, and anti-epileptic
medications, such as phenytoin, carbamazepine, and valproic acid, are associated with an
elevated CV risk [38].

Lin B. et al. demonstrated an additional potential effect of SGLT2 inhibitors on
the CNS for empagliflozin, which dramatically enhanced cerebral BDNF (brain-derived
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neurotrophic factor) levels in db/db mice. In addition, this effect was accompanied with
enhanced cognitive functions [39].

Cerebrovascular dysfunction is a brain disorder associated with vascular pathology.
A hyperglycemic state damages the microvascular structure of the brain, resulting in
neurovascular remodeling, including a loss of endothelial integrity, basement membrane
thickening, loss of myelin and neurons, and disruption of astrocytes and pericytes [40].
Empagliflozin demonstrated a neuroprotective impact on neurovascular remodeling in a
mouse model of T2DM [41].

Ischemic or hemorrhagic blood flow disturbances are the most common causes of
cerebrovascular dysfunction. Empagliflozin reduced neuronal mortality, infarct size, and
cognitive impairment via HIF-1/VEGF signalling in a dose-dependent manner in a rat
model of cerebral ischemia/reperfusion damage [42]. By avoiding neurovascular remod-
elling and lowering well-known risk factors for stroke, SGLT2 inhibitors may preserve
cognitive functioning in diabetes individuals. Reducing inflammation, salt influx, and the
HIF-1/VEGF pathway can also benefit individuals with post-stroke.

Due to the presence of SGLT2 in the CNS, SGLT2 inhibitors, which are used to treat
diabetes and have other favourable metabolic effects, have been revealed to have potential
neuroprotective qualities. These data, taken together, point to the potential therapeutic
value of empagliflozin and dapagliflozin for various neurological disorders. New additional
research is required in this relatively new research field.

3.5. Benefits and Risks of SGLT2 Inhibitors on the Pulmonary System

The prevalence of several respiratory diseases decreased with the use of SGLT2 in-
hibitors, including acute pulmonary edema, bronchitis, chronic obstructive pulmonary
disease, asthma, non-small cell lung cancer, pleural effusion, pneumonia, pulmonary
edema and masses, respiratory tract infections, and sleep apnea syndrome [43]. According
to the findings presented in another study, pretreatment with empagliflozin was found
to have powerful pulmonary protective effects against reperfusion-induced lung injury
in vivo [43,44]. These benefits were related to the activation of pulmonary ERK1/2. In
addition, suppression of ERK1/2 activation was sufficient to nullify the protective effects of
empagliflozin on the lungs completely. The lung protection induced by empagliflozin and
observed in the study is therefore associated with ERK1/2-dependent pathways. SGLT2
inhibitors may offer a potential and novel therapeutic option for patients at a high risk of
sustaining lung injury during the perioperative phase. This is because SGLT2 inhibitors
have considerable protective efficacies and a unique insulin-independent mode of ac-
tion [44]. In addition, the risk of developing acute pulmonary oedema, asthma, and sleep
apnea syndrome can all be significantly decreased by taking SGLT2 inhibitors [45].

According to another study’s findings, dapagliflozin could not improve the remodeling
and dysfunction of the right ventricle in response to pressure overload with or without
pulmonary angiopathy, nor could it reduce the amount of pulmonary vascular remodelling
in rats with pulmonary arterial hypertension [46].

In a large, national cohort trial, the use of SGLT2 inhibitors was linked with decreased
risks of total respiratory events, pneumonia, and respiratory failure among T2DM patients
compared to the use of DPP-4 inhibitors [47]. All SGLT2 inhibitor compounds exhibited
these respiratory improvements, indicating a possible class effect [47]. In another retrospec-
tive cohort analysis of individuals with T2DM in Hong Kong, SGLT2 inhibitor use was
linked with a decreased incidence of incident obstructive airway disease (OAD) and a lower
rate of OAD exacerbations in clinical settings compared to DPP-4 inhibitors use. Identical
outcomes were likewise reported in both males and women [48]. According to the findings
presented in another retrospective study, patients with T2DM on SGLT2 inhibitors have
a lower incidence of pneumonia and sepsis, as well as a lower mortality risk associated
with pneumonia, sepsis, and infectious diseases, in comparison to those initiated on DPP-4
inhibitors, regardless of age, sex, prior CV disease, or type of SGLT2 inhibitor used [49].
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Further studies on SGLT2 inhibitors for primary and secondary prevention of respira-
tory illnesses are going to be done as a result of these results.

3.6. Benefits and Risks of SGLT2 Inhibitors on the Cardiovascular System

Inhibitors of sodium-glucose cotransporter 2 (SGLT2) protect myocardium by slowing
the production of inflammatory chemokines [50]. The impact of SGLT2 inhibitors on fat
loss is the primary contributor to this outcome. The death and hospitalisation rates of
dapagliflozin and empagliflozin patients were evaluated in a recent meta-analysis of eleven
CV outcomes trials involving 77,541 patients. The study found a reduction in mortality
and hospitalisation rates regardless of T2DM status [51]. This claim proves their value as
medicine in lowering the risk of death from CV problems. Blood pressure reduction (systolic
and diastolic) is another CV advantage gained from SGLT2 inhibitor usage [52]. The
association between SGLT2 inhibitors and a lower risk of nine different forms of CV disease
was established using a meta-analysis of nine significant clinical trials. Conditions like
atrial fibrillation, acute heart failure, bradycardia, hypertension, hypertensive emergency,
and varicose veins were some of the CV disorders whose incidences were reduced [53].
An increase in hematocrit level is yet another effect attributed to SGLT2 inhibitors. The
researchers investigating this effect hypothesised that it resulted from plasma volume
contraction and diuresis [53].

Another study reveals that empagliflozin medication may improve anthropomet-
ric measurements, metabolic parameters, and blood pressure in T2DM with established
coronary heart disease without impairing kidney function [54].

The use of SGLT2 inhibitors has been linked in several studies to improvements in
lipid profiles, including higher HDL and lower LDL cholesterol and lower triglyceride
level [52,53]. The ratio of HDL-C to LDL-C remained unchanged because the peaks in HDL
and LDL were very similar [53,55]. Another set of findings from a study demonstrated that
empagliflozin, primarily acting on SGLT2, prevented DNA methylation changes brought
on by high glucose [56]. These findings also provided evidence of a new mechanism by
which SGLT2 inhibitors can exert cardio-beneficial effects [56]. Dapagliflozin is safe and
improves outcomes regardless of baseline NT-proBNP concentrations in HF with mildly
reduced Ejection Fraction (HFmrEF) or HF with preserved Ejection Fraction (HFpEF), with
the greatest absolute benefit likely seen in patients with higher NT-proBNP concentrations
according to the findings of another large trial [57]. One of the other effects of their use that
have been documented is a decrease in uric acid levels [52,53,55,56]. Empagliflozin reduces
unfavourable cardiac remodelling in HF by increasing the switch of myocardial fuel usage
from glucose to ketone bodies, enhancing myocardial energetics, systolic function, and
cardiac reversal remodelling [58]. Because SGLT2 inhibitors are weak diuretics, volume
depletion-related side effects such as hypotension, syncope, and dehydration are more
likely to occur [59]. Before starting SGLT2 inhibitors therapies, the patient’s volume status
should be assessed. In cases of low volume status, for instance, dose changes for loop
diuretics may be required.

The effects of this drug class have been verified by several relevant studies, and they
have the potential to be associated with a lower risk of CV diseases.

4. Discussion

The EMPA-REG OUTCOME was the first study to suggest an effect of SGLT2
inhibitors on CV outcomes. An amount of 7028 diabetic patients (BMI 45 kg/mq,
eGFR > 30 mL/min/1.73 mq, and HbA1c between 7 and 10) were randomised to re-
ceive standard or high-dose empagliflozin (respectively, 10 mg or 25 mg) or placebo
and observed for a median observation time of 3.1 years [58]. The study demonstrated
the efficacy of empagliflozin in reducing deaths from CV causes, hospitalisations for
HF, and deaths from any cause compared to a placebo, regardless of the administered
dose. During this time, the EMPA-REG OUTCOME trial showed that the use of em-
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pagliflozin resulted in a reduction of macroalbuminuria that was up to 55% lower than
that of the placebo [58,60].

A few years later, the EMPEROR-Reduced trial with a randomised group of 3730 patients
(NYHA classes II to IV, eGFR > 20 mL/min/1.73 mq and ejection fraction (EF) below 40%)
to receive empagliflozin (10 mg once daily) or placebo to assess the efficacy of empagliflozin
in HFrEF, regardless of diabetes, was conducted [61]. The results showed that empagliflozin
helped lower the number of hospitalisations for HF (p = 0.001) and improved quality of life.
It was much more effective in patients with lower EF. Also, the estimated GFR decreased
more slowly in the empagliflozin group (p = 0.001), suggesting that SGLT2 inhibitors may
have a protective impact on the kidneys [60]. Specifically, the DAPA-HF trial demon-
strated that dapagliflozin reduced by 26% the relative risk of HF hospitalisation/urgent
visits for HF and CV mortality in HFrEF (patients with NYHA classifications II-IV and
eGFR > 30 mL/min/1.73 mq) [61].

Patients enrolled in the EMPEROR-Preserved trial had more comorbidities, lower EF,
and higher NT-proBNP levels than those in other HFpEF studies, such as the PARAGON-
HF study [62–64].

The importance of SGLT2 inhibitors was further reinforced by a meta-analysis of
the most major trials on gliflozins and HF (DELIVER, EMPEROR-Preserved, EMPEROR-
Reduced, DAPA-HF, and SOLIST-WHF), regardless of EF, supporting their function as
a cornerstone in HF therapy [65]. All of the aforementioned trials examined the effects
of gliflozin on stable, ambulatory patients. By contrast, a recently conducted trial called
EMPA-RESPONSE-AHF, which was later validated by the EMPULSE trial, randomly
assigned patients hospitalised with HF to receive empagliflozin or a placebo within 24 h
of admission [66]. Without regard to left ventricular EF (LVEF), 530 patients with newly
diagnosed or worsening chronic HF were randomly assigned to receive either empagliflozin
10 mg once daily or a placebo. Those who received the drug saw reduced all-cause mortality
and improved quality of life (p = 0.0054) [66].

To provide HF patients with the best possible medical care in the shortest amount
of time, the European Heart Failure Working Group recently published a document rec-
ommending empagliflozin as first-line therapy as soon as possible. In patients with HF,
gliflozins have demonstrated undeniable clinical advantages. However, gliflozins’ methods
of action are still up for debate. Furthermore, SGLT2 inhibitors do not require up-titration,
which is a major benefit on top of the already-mentioned positive advantages. Additionally,
gliflozins are exceptionally well tolerated due to the low frequency and severity of their
side effects among patients using SGLT2 inhibitors, as we can see in Table 2.

Table 2. Adverse events of SGLT2 inhibitors.

Canagliflozin Dapagliflozin Empagliflozin Ertugliflozin Sotagliflozin Bexagliflozin

Hypotension uncommon uncommon Very common common common unknown

Diabetic ketoacidosis rare rare uncommon rare common -

Bone fracture uncommon - - - - -

Genital infections common common common common common common

Urinary tract infections common common common common common common

Fournier’s gangrene unknown very rare rare unknown rare unknown

Amputation of lower limbs uncommon unknown unknown unknown unknown rare

Hypoglycaemia very common in combination very common very common common - -

SGLT2 inhibitor medicines are effective and safe, with only minor and tolerable
side effects.

Fungal infections of the urogenital tract are the most commonly reported adverse
effect [59,67]. These infections are more common in women and the elderly. A bacterial
infection in the urinary tract has the potential to develop into pyelonephritis or urosepsis.
Hypoglycemia, excessive volume depletion, Fournier’s gangrene, and ketoacidosis are all
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possible, though uncommon, side effects of gliflozins. It is also unclear whether or not they
affect cholesterol levels or whether they favour bone fracture risk [68–70]. There has been
talking about a spike in LDL cholesterol levels, but whether or not this is due to gliflozins
is still up for debate after trials produced conflicting results [52,67]. However, there was
clear evidence of increased HDL levels among these patients [59,71].

Over 2500 cases of DKA were reported to the FDA between 2014 and 2016; these cases
were more common in insulin-treated individuals and occurred even at glucose blood
levels below 250 mg/dl [68–70]. The 2020 FDA advisory warnings [72] for increased risk of
perioperative euglycemic DKA say that diabetic patients should stop taking canagliflozin,
dapagliflozin, empagliflozin, and ertugliflozin at least three days and four days before
surgery. Even though the best time to stop taking these drugs before surgery in HF patients
is still debated, there is no evidence to show when this should be done. In these patients,
stopping the drug could hurt how HF is treated [73].

Type 1 diabetes and an eGFR of less than 25 mL/min per 1.73 m2 are contraindications
for SGLT2 inhibitors. When beginning SGLT2 inhibitor in patients with volume depletion,
active vaginal mycotic infections, hypotension < 95 mmHg, and diabetic ketoacidosis,
caution should be exercised [74,75]. Patients should be cautioned against taking SGLT2
inhibitors during illness and if they cannot maintain enough fluid intake or have an acute
renal injury.

In addition to the landmark trials, barriers to prescribing SGLT2 inhibitors remain an
essential discussion area. Despite the excellent benefits of SGLT2 inhibitors and updated
clinical guidelines, SGLT2 inhibitor prescriptions for eligible patients remain limited [76].
These include a misunderstanding of side effects and a deficiency of guidelines for begin-
ning SGLT2 inhibitors in elderly individuals [77]. In addition, cost and insurance restrictions
impede patients from gaining access to these costly, effective, and protective drugs.

Future studies will continue to investigate the application of SGLT2 inhibitors in type 1
diabetes and pre-diabetes. There are currently few investigations on the use of SGLT2
inhibitors in type 1 diabetes [78]. Current research continues to investigate the safety of
SGLT2 inhibitors in patients with an eGFR of less than 30 mL/min per 1.73 m2. Upcoming
clinical trials can further investigate SGLT2 inhibitors’ capacity to reduce blood pressure.
Now, the EMPACT-MI trial is exploring the use of empagliflozin in patients who have
experienced an acute myocardial infarction, as well as the prospect of reducing the risk of
HF and death.

Flozins may have beneficial effects on T2DM, atherosclerosis, and cognitive im-
pairment via multiple mechanisms. However, long-term clinical trials are required
to determine whether the aforementioned pathways are clinically meaningful, as the
atheroprotective and neuroprotective effects of SGLT2 inhibitors are not instantaneous
and require long-term administration.

As previously stated, SGLT2 inhibitors substantially lower CV risk. By lowering
vascular inflammation, oxidative stress, and endothelial dysfunction, they produce a
pleiotropic anti-atherosclerotic action [79]. In a prior trial, including diabetic individuals, a
three-month therapy with empagliflozin reduced complex intima media thickness (cIMT) by
7.9%. Remarkably, this benefit was already significant after just one month of empagliflozin
medication [80]. CIMT is commonly tested in the carotid arteries [81], as it is a significant
indication of early atherosclerosis. I. Feinkohl et al. [82,83] report that cIMT is also a
significant predictor of cognitive decline in T2DM patients. Future research should assess
the therapeutic significance of SGLT2 inhibitors’ capacity to minimise atherosclerotic lesions
and the consequent impact on cognitive functions.

Gliflozins can potentially improve renal function, glucose blood levels, cardiac func-
tion, and remodelling, making them the ideal medicine to stop the circles from progressing
or to decrease their progression. All of the benefits of SGLT2 inhibitors can be shown in
Figure 1.
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In this review, our primary objective was to evaluate the efficacy of SGLT2 inhibitors in
terms of their positive and negative consequences on the CV, pulmonary, nervous, hepatic,
and renal systems and the pancreas in diabetic patients. There were a strikingly greater
more significant number of protective factors than risk factors, which is evidence of the high
and widespread application of these medications, which are thought to benefit individuals
with hyperglycemia. These positive outcomes come at the expense of a medicine that is
generally well-tolerated, has few adverse effects, and does not require titration. Further
study will aid in comprehending the fantastic benefits of SGLT2 inhibitor drugs.

5. Conclusions

This narrative review highlights the efficacy and widespread use of this class of
medications by many protective factors in hyperglycemic people. Weight loss, enhanced
liver enzymes and biomarkers, optimum glucose homeostasis attributable to the pancreatic
hormones insulin and glucagon, reduced risk of cardiovascular and neurological illnesses,
cardioprotective effects, and lowered blood pressure are only some of the advantages. On
the other hand, volume depletion and hypotension, pancreatitis, and episodes of transient
hypoglycemia are some of the adverse consequences in a tiny percentage of those using
SGLT2 inhibitors. These complications can damage the patient, but they only happen about
1% of the time and may result from chance or the patient’s underlying health condition.

This literature study led us to conclude that SGLT2 inhibitors are helpful for the vast
majority of patients, particularly those with renal impairment. We are hopeful for the
further development of this medication class to minimize the potential risks.
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