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Abstract

Background: Estimation of genetic relatedness, or kinship, is used occasionally for recreational purposes and in forensic applications.
While numerous methods were developed to estimate kinship, they suffer from high computational requirements and often make
an untenable assumption of homogeneous population ancestry of the samples. Moreover, genetic privacy is generally overlooked in
the usage of kinship estimation methods. There can be ethical concerns about finding unknown familial relationships in third-party
databases. Similar ethical concerns may arise while estimating and reporting sensitive population-level statistics such as inbreeding
coefficients for the concerns around marginalization and stigmatization. Results: Here, we present SIGFRIED, which makes use of exist-
ing reference panels with a projection-based approach that simplifies kinship estimation in the admixed populations. We use simulated
and real datasets to demonstrate the accuracy and efficiency of kinship estimation. We present a secure federated kinship estimation
framework and implement a secure kinship estimator using homomorphic encryption-based primitives for computing relatedness
between samples in two different sites while genotype data are kept confidential. Source code and documentation for our methods
can be found at https://doi.org/10.5281/zenodo.7053352. Conclusions: Analysis of relatedness is fundamentally important for identifying
relatives, in association studies, and for estimation of population-level estimates of inbreeding. As the awareness of individual and group
genomic privacy is growing, privacy-preserving methods for the estimation of relatedness are needed. Presented methods alleviate the
ethical and privacy concerns in the analysis of relatedness in admixed, historically isolated and underrepresented populations.

Short Abstract
Genetic relatedness is a central quantity used for finding relatives in databases, correcting biases in genome wide association studies
and for estimating population-level statistics. Methods for estimating genetic relatedness have high computational requirements, and
occasionally do not consider individuals from admixed ancestries. Furthermore, the ethical concerns around using genetic data and
calculating relatedness are not considered. We present a projection-based approach that can efficiently and accurately estimate kinship.
We implement our method using encryption-based techniques that provide provable security guarantees to protect genetic data while
kinship statistics are computed among multiple sites.
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BACKGROUND
Genetic relatedness or kinship between two individuals is the
probability that two alleles at a random position in the genomes
of the individuals are identical-by-descent (IBD), i.e. they are
inherited from the same ancestor [1, 2]. The kinship coefficient
is related to other metrics such as the inbreeding coefficient [3]
and IBD-sharing probabilities [4], which are essential for estimat-
ing population-level genetic information. Kinship estimates are
central in behavioral science [5], human evolution [6], linkage
mapping studies [7] and association studies [8–10] for the cor-
rection of biases caused by cryptic relatedness [9, 11]. Numer-
ous computational methods are developed to estimate kinship
from marker genotypes but privacy and ethical concerns are
sidelined. Kinship statistics are sensitive to individual privacy
as they can be used to detect relatives in third-party databases
without the consent of the owners, for example, by law enforce-
ment [12, 13]. Similarly, population-level inbreeding estimates
can cause marginalization and stigmatization risks [14–16]. In
addition, it is well known that genetic data are very identifying due
to their high dimensionality [17–20] and numerous ‘attacks’ have

demonstrated that databases can be linked [21–23] to reveal
sensitive information. Similarly, genotypes can be recovered [24–
26] and sensitive phenotypes can be inferred [27–31] using a small
number of marker genotypes. These attacks implicate and create
discrimination and stigmatization risks to individuals and their
families [32–35]. Therefore, genetic kinship estimation presents
numerous unaccounted challenges regarding individual and kin
privacy [32, 34, 36] (Supplementary Information).

Kinship estimation methods can be broadly divided into
four categories [37]. Moment estimators such as KING [38],
REAP [39], plink [40], GCTA [41], GRAF [42] and PC-Relate [43]
use identical-by-state (IBS) markers and genotype distances
to estimate expected kinship statistics. Maximum-likelihood
methods (RelateAdmix [44] and ERSA [45]) use expectation–
maximization (EM) to jointly estimate the kinship statistics.
Recent methods utilize IBD-matching on phased genotypes
(RAFFI [46], IBDKin [47]) and kinship estimation from low-
coverage next-generation sequencing data (NGSRemix [48], LASER
[49] and SEEKIN [50]). While most methods can accurately
estimate kinship for individuals with homogeneous ancestry,
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this is not a tenable assumption in admixed populations with
assortative mating [2, 51]. Also, large-scale principal component
analysis (PCA) or costly EM steps are generally not feasible in
the privacy-aware computation. Several methods have been
proposed for privacy-aware analysis of ancestry using software
guard extensions (SGXs) [52], sketching [53], fingerprinting [54]
and differential privacy [55] (Supplementary Information). While
these methods are promising, the impact of admixture is not
generally taken into account, and the methods are evaluated only
for one kinship statistic that provides partial information about
relatedness. In addition, there are challenges specific to each
approach. For example, SGX is currently deprecated on client
central processing units and differential privacy may severely
degrade the genetic data quality.

Here, we present Secure Inference of Genetic Federated Relat-
edness In admixED populations (SIGFRIED), a projection-based
approach to utilize existing reference genotype datasets for esti-
mating admixture rates for each individual and use these to
estimate kinship and related statistics [49] in admixed popula-
tions. The modular formulation of SIGFRIED enables an efficient
secure implementation where admixture rates can be estimated
much more efficiently than PCA or EM-based methods and later
used for kinship estimation among multiple sites. Usage of com-
ponent analysis and reference populations has shown promise
in previous studies [56, 57]. We capitalize on these and pro-
pose an efficient modular approach to estimate kinship statis-
tics. We formulated and implemented secure federated kinship
estimation among two-sites wherein genetic data are kept confi-
dential while kinship statistics are estimated. Our implementa-
tion relies on homomorphic encryption [58], which enables the
processing of encrypted genotype data directly without being
decrypted and therefore provides provable security guarantees on
the genetic data.

MATERIALS AND METHODS
The overall methodology is illustrated in Figure 1. The expected
kinship and zero-IBD sharing probabilities for different degrees of
relatedness are shown in Figure 1A.

Variant selection
We downloaded the variants from The 1000 Genomes Project
portal (Reference Panel), which contains the genotypes of 2504
individuals for approximately 80 million variants. These variants
were filtered by selecting the biallelic variants on autosomal
chromosomes with minor allele frequencies greater than 5%,
which results in 6 864 701 variants. We next subsampled the
variants at every 10th variant (on each chromosome) to decrease
computational requirements, which results in 686 460 variants.

Next, we divided 2504 samples with respect to the 26 popula-
tions defined by the sample information (ftp://ftp.1000genomes.
ebi.ac.uk/vol1/ftp/technical/working/20130606_sample_info/2013
0606_sample_info.xlsx), which includes African (AFR), American
(AMR), European (EUR), East Asian (EAS) and South Asian (SAS)
populations. To ensure that the variant alleles were distributed
in concordance with Hardy–Weinberg equilibrium (HWE), we
excluded the variants that exhibited more than 1% error from
their expected heterozygosity for any population. Filtering the
overall variant set with respect to HWE resulted in 5 619 232
variants. We finally overlapped the subsampled set of variants
and found 562 064 variants that represent the final set of variants
that we used in follow-up experiments.

To decrease the computational requirements, the 562 064 vari-
ant set was uniformly subsampled. While testing the impact of
number of variants, we first sorted the variants by chromosome
and position then subsampled uniformly (e.g. 5000 variants set
was generated by subsampling every 112th variant). Over 50 000
variants, we qualitatively did not observe a major difference in
increasing the number of variants and decided to use a min-
imum of 60 000 variant set in the following experiments. For
simulation experiments, we used 62 451 variants by subsampling
every ninth variant. We also evaluated the variant selection using
a genetic distance-based cutoff to assess the impact of linkage
disequilibrium among variants. For this, we selected variants by
ensuring that the genetic distance (in centiMorgans) between con-
secutively selected variants is greater than a preset cutoff. In this
process, we assigned genetic distance to each variant using the
genetic maps downloaded from IMPUTE2 (https://mathgen.stats.
ox.ac.uk/impute/1000GP_Phase3.html). For selecting the variants
based on heterozygosity, we computed the heterozygosity of each
variant using 1 − f2

alt − f2
ref, where fref and falt denote the refer-

ence and alternate allele frequencies of the variant within 1000
Genomes subjects. Next, the variants were sorted with respect
to the assigned heterozygosity and divided into bins of 60 000
variants that represent the highest to lowest heterozygosity bins.
Variants in the bins were used for evaluations. For HAPMAP kin-
ship analysis, we downloaded HAPMAP genotype dataset (https://
ftp.ncbi.nlm.nih.gov/hapmap/) that includes 1 015 491 variants
for MEX sample and 1 018 430 variants for GIH sample. This
set was subsampled by selecting every fifth variant to yield 203
090 variants for MEX sample and 203 675 for GIH sample. The
genotypes for these variants were extracted from the HWE- and
MAF-filtered variants of the 1000 Genomes Project subjects and
made sure that there were no missing variants in the final refer-
ence genotype dataset. This variant set was used for the HAPMAP
project data analysis. Finally, time and memory benchmarks are
performed on the HAPMAP’s 86 MXL subjects with a varying
number of variants that are uniformly sampled from the filtered
variants as described above.

Projection-based estimation of kinship statistics
Figure 1 summarizes the kinship estimation approach by
SIGFRIED. Kinship estimation takes a query genotype matrix, GN×S,
that contains the genotypes of N variants for S individuals. The
output is S × S matrix of kinship-related statistics.

Decomposition of reference panel population and
computation of population-specific centroids
SIGFRIED utilizes principal components and centroids com-
puted using a reference population panel that contains geno-
types of N variants from Sref individuals and nref popula-
tions (Figure 1B and Supplementary Figure S1), which contain
Spindividuals for population p ∈ [1, nref] and S1+S2+· · ·+Snref = Sref.
The reference panel genotype matrix, G(r)

i , from all populations of
Sref individuals are first centered for each variant:

�

G
(r)

i =
(

G(r)
i − 1

Sref

∑
j
G(r)

j

)
, (1)

where
�

G
(r)

i denotes the genotype vector (containing N variants)
for ith individual in which each variant’s genotypes are centered
around the mean genotype vector of the corresponding variants in
the reference panel and r indicates that the genotype matrix is for
the reference population. The reference genotypes are centered
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Figure 1. Illustration of the kinship estimation. (A) The expected values of kinship coefficient (φij) and probability of zero-IBD sharing (δ0
ij ) for relatives

with varying degrees of relatedness. Each dot corresponds to a relationship. The expected values of φij and δ0
ij are shown on y- and x-axis, respectively,

for each relatedness level. (B) nrefreference population panels are used for computing the principal components (�N×K) and the population-specific
centroid coordinates Cnref×K. Given the query genotype matrix, GN×S, they are first projected onto K reference panel components, where the projected
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on each individual. Next, the centered reference genotype matrix
is decomposed using PCA (Figure 1C):

cov
(

�

G
(r)

N×Sref

)
= � × � × �′, (2)

where cov(
�

G
(r)

N×Sref
) denotes the covariance matrix of the centered

reference panel genotype matrix. Each principal component, �·,j
(j ≤ K), has N dimensions and is a unit-length vector that is orthog-
onal to other components. � is a diagonal matrix of eigenvalues.
Choice of K is further discussed in the ‘Results’ section.

Next, the genotypes for Sref individuals are projected onto top
K components (Figure 1C):

ci,j =
〈
�

G
(r)

i ·�·,j
〉

=
∑

k≤N

�

G
(r)

i,k × �k,j, j ≤ K, i ≤ Sp (3)

where G(r)
i denotes the centered genotype vector (containing N

variants) for the ith individual, �j denotes the jth PC and ci,j is the
jth component of projection for ith individual. For each of the nref

populations, a centroid in K-dimensions is computed as follows:

Cp = 1
Sp

·
∑

i<Sp
ci,j, p ≤ nref. (4)

The centroids from the nref populations are stored in a matrix
Cnref×K. The centroid matrix and the principal components are
used in admixture estimation. In Equation (4), the summation is
performed over the individuals in pthreference population.

Admixture estimation
The input to admixture estimation is the query genotype matrix
for S individuals, G(q)

N×S, the principal components of the reference
panel (�) and the centroid coordinate matrix (C) (Figure 1C). First,
the query genotype matrix is centered with respect to the refer-
ence allele frequencies, similar to Equation (1):

�

G
(q)

i =
(

G(q)

i − 1
2· Sref

∑
i
G(r)

i

)
. (5)

This computation only requires the overall allele frequencies of
the reference panel (not the actual genotypes). Next, the centered
genotypes are projected onto the top K components:

ri,j =
〈
�

G
(q)

i ·�·,j
〉

=
∑

k≤N

�

G
(q)

i,k × �k,j, j ≤ K, i ≤ S, (6)

where
�

G
(q)

i is the N-dimensional genotype vector for ith query
individual (i ≤ S) that is centered with respect to the reference
population allele frequencies. In Equation (6), ri,j denotes the
projected coordinates for ithindividual within the jthreference
panel component. We next compute the Minkowski distances of

all samples to the centroids of every nref populations:

�i,p = ∣∣ri − cp
∣∣
L =

(∑
k

∣∣ri,k − cp,k
∣∣L)−L

, i ≤ S, p ≤ nref, (7)

where �i,p denotes the Minkowski distance of ithquery individual
to the centroid of pth reference population. We use L = 2
(Euclidean) in this study. We have evaluated different distance
metrics, including Mahalanobis, Manhattan, Chebyshev and
Minkowski distance with other L values. Among these, Chebyshev
distance represents a limiting case of Equation (7) as L reaches
infinity and Manhattan distance is a special case of Equation
(7) with L = 1. Mahalanobis distance was used to estimate the
distance of each subject to the subjects of the population, which
also consider the covariance of the reference sample subjects. In
this computation, only the covariance matrix of the variants is
required and population centroids were not used. Mahalanobis
distance was computed using R’s existing Mahalanobis function
and other distances were implemented into SIGFRIED.

The distance matrix is next converted to admixture rates
using inverse-power of the distances for mapping the individual-
centroid distances to admixture rates corresponding to each one
of the nrefpopulations in the reference population dataset:

qi,p = 1
α

·�−κ

i,p , α =
∑

p
�−κ

i,p , i ≤ S, p ≤ nref, (8)

where κ denotes the distance weight which tunes the effect of
distance on the admixture rates and qi,p is the admixture rate
of pth population in ith individual. Similarly, an exponential dis-
tance function can be used for mapping the centroid distances to
admixture rates:

q(exp)
i,p = 1

α
· exp

(−κ × �i,p
)

, α =
∑

p
exp

(−κ × �i,p
)

. (9)

Admixture rates for S individuals are stored in a S by nref admix-
ture matrix, [qi,p]i≤S,p≤nref

. It can be seen from the formulation of
admixture estimation that

∑
pqi,p = 1 for each individual in the

admixture rate matrix. In principle, when the query individual
has genetic ancestry from the reference population p, the dis-
tance is expected to be small and the weight for this population
should be high in admixture estimation. In Equations (8) and
(9), the distance matrix is converted to admixture rates using a
function that is monotonically decreasing with distance. Similar
approaches have been used in previous studies [56, 57] to estimate
admixture rates. We make use of a similar approach that utilizes
computationally efficient distance metrics to assign admixture
rates and use these in the estimation of kinship. In this study, we
use the inverse distance-based admixture estimates in Equation
(8). In Equation (8), the impact of distance weight κ is further
assessed later (see ‘Parameter’ section).

coordinates are stored in RS×K. The admixture rates are computed by comparing the population-specific centroids to the projected coordinates. The
estimated admixture rates are used to compute individual-specific allele frequencies for each of the N variants for each of the S individuals in the
query genotype matrix. The individual-specific allele frequencies are used in the estimation of the correlation and distance-based kinship coefficients
and IBD-sharing probabilities. (C) Illustration of decomposition and projection of a query individual. The pooled reference genotype matrix is by PCA
and projected on the top two components for the three reference populations. The centroids of each population are identified as the mean projected
coordinates for individuals in the respective population. The query individual is projected onto the two components and distance of the projection to
the three centroids is used to estimate admixture rates for this individual. It should be noted that two components are used for illustration purposes,
the number of components that SIGFRIED uses can be changed by the user.
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Secure implementation of admixture estimation
One of the main advantages of our approach is that it relies on a
projection operation followed by mapping the distances to admix-
ture rates in three distinct steps: (1) centering of the genotype
matrix is a subtraction of a constant publicly known value from
the genotype matrix. (2) Projection is an inner product and has
been implemented efficiently in a secure domain using homo-
morphic encryption [58]. (3) The distance-to-admixture mapping
function in Equation (8) is fundamental and has existing efficient
secure implementations [59]. Thus, the usage of this function can
be justified in the secure computation of kinship statistics.

Assignment of individual-specific allele frequencies
For each individual in the query dataset, the individual-specific
allele frequencies are assigned using the estimated admixture
rates as a weighted average over the population-specific allele
frequencies:

μi,j =
∑

p
qi,p × μ

(r)
p,j , i ≤ S, j ≤ N, p ≤ nref, (10)

where μ
(REF)

p,j denotes the alternate allele frequency of jth variant
in pthreference population:

μ
(r)
p,j = 1

2· Sp
·
∑

Sp
G(r)

k,j . (11)

Finally, μi,j denotes the individual-specific allele frequency of
the jthvariant in ith individual.

Kinship coefficients
Given the query genotype matrix G(q), we calculate the kinship
between subjects at indices i and j using the conditional correla-
tion metric defined as

φ
(Corr.)
ij = 1

2N
·

∑
1≤k≤N

(
0.5 × G(q)

i,k − μi,k

) (
0.5 × G(q)

j,k − μj,k

)
√

0.5μi,k
(
1 − μi,k

) × 0.5μj,k
(
1 − μj,k

) (12)

where the summation is performed over all of the N variants
(indexed by k). In numerator of Equation (12), any deviation from
allele frequency that is concordant between i and j increases
φ

(Corr.)
ij . As the variants in non-IBD segments are independent

among i and j, they have zero mean contribution to the statis-
tic. When i and j are unrelated (no shared IBD segments), the
numerator tends to 0 over all variants. As the IBD sharing (i.e.
relatedness) increases, the variants in IBD segments contribute
to Equation (12) with certain expected discrete frequencies of
concordant deviations around allele frequencies. The moment
estimators rely on the convergence of these statistics to expected
values and kinship can be estimated without inferring the exactly
shared IBD segments (Supplementary Information).

We also use a modified genotype distance-based kinship that
is defined as follows:

φ
(Dist.)
ij = 1

2
− 1

4
·

(∑((
G(q)

i,k − μi,k

)
−

(
G(q)

j,k − μj,k

))2
)

∑(
2 ×

√
μi,k × (

1 − μi,k
) × μj,k × (

1 − μj,k
)) (13)

where the distance in the numerator and the variance estimates
of the allele frequency in the denominator are also corrected with
respect to the individual-specific allele frequencies. The estimator
in Equation (13) is a modification of KING’s kinship estimator

such that individual-specific allele frequencies are used to cor-
rect genotype distance (numerator) and heterozygosity estimates
(denominator). Distance-based estimator relies on the conver-
gence of the genotype distances to expected values conditioned
under different IBD-sharing probabilities (Supplementary Infor-
mation). In comparison, the correlation-based estimator in Equa-
tion (12) relies on the convergences of the covariance between
genotype signals to expected values. This distinction is important
because the correlation-based estimator can be used to detect
excess co-variations from the mean allele frequencies, e.g. excess
co-varying homozygosity, which can be indicative of inbreeding
events (Supplementary Information).

For a privacy-aware implementation, the distance and
correlation-based kinship coefficients can be computed using
different strategies. For distance-based metric, sites must share
the genotypes and allele frequencies. Allele frequencies do not
immediately reveal genetic information but they correlate signif-
icantly with actual genotypes and may need to be encrypted. In
Equation (13), the numerator and denominator can be computed
in parallel and the final kinship statistic can be computed at each
site locally. Correlation-based metric in Equation (12) decomposes
into an inner product of two normalized genotype matrices as we
discuss later.

Zero-IBD sharing probability
The zero-IBD sharing probability among individuals is derived
from the expected number of zero-IBS values:

δ0
i,j =

∑ (
I
(
Gi,k = 0, Gj,k = 2

) + I
(
Gi,k = 2, Gj,k = 0

))
∑(

μ2
i,k × (

1 − μj,k
)2 + μ2

j,k × (
1 − μi,k

)2
) . (14)

This relationship can be derived from the expected number of
zero-IBS sites, i.e. non-matching homozygous genotypes in two
individuals (i = AA, j = aaor i = aa, j = AA), and its relation to
zero-IBD, δ0

i,j:

P
(
IBSi,j = 0 at variant k

) = p
(
AA, aa at variant k

) × δ0
i,j

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

μ2
i,k × (

1 − μj,k
)2

︸ ︷︷ ︸
AA in individual i,
aa in individual j

+ μ2
j,k × (

1 − μi,k
)2

︸ ︷︷ ︸
aa in individual i,
AA in individual j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

× δ0
i,j (15)

This relationship stems from the fact that IBS = 0 is only possi-
ble at variant k when IBD = 0 since no alleles are matching among
i and j. Genotype probabilities in Equation (15) are formulated with
the assumption of HWE holds for the variant k. The remaining
IBD sharing probabilities can be estimated using the following
relationships:

δ1
i,j = 2 − 2· δ0

i,j − 4·φij (16)

δ2
i,j = δ0

i,j + 4·φij − 1 (17)

It can be easily seen that δ0
i,j + δ1

i,j + δ2
i,j = 1.
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Inbreeding coefficient
The inbreeding coefficient for each individual can be estimated
from the correlation-based kinship estimator using the estab-
lished relationship between kinship and inbreeding:

hi =
(
2 × φ

(Corr.)
ii − 1

)
(18)

where φii denotes the self-kinship coefficient for ithindividual
and hi denotes the inbreeding coefficient for this individual. It
is also worth noting that the distance-based kinship estimator in
Equation (13) is not informative for the inbreeding coefficient as
it always results in zero inbreeding coefficient.

Simulations and comparison metrics
We describe details of simulations and comparison metrics.

Pedigree simulations
We used a 16-member pedigree (Supplementary Figure S2) to sim-
ulate the pedigrees using the pedigreeSim tool [60]. This pedi-
gree contains eight founders and eight descendants with varying
degrees of relatedness up to third-degree cousins. We used the
pedigreeSim tool in default settings by setting ploidy to 2 and
using genetic distances for hg19 assembly for the selected vari-
ants. The genetic distance estimates are required by pedigreeSim
to simulate the recombination events to generate the genomes
of the children using the parents’ genomes. We used the genetic
distance estimates from the 1000 Genomes Project, which were
downloaded from the IMPUTE2 website at https://mathgen.stats.
ox.ac.uk/impute/1000GP_Phase3.html. For each simulated pedi-
gree, we first selected the founders randomly from the pedigree
populations, which can be homogeneous or heterogeneous. For
admixed population simulations, the founders are selected ran-
domly from multiple populations.

Selection of founding (pedigree) and reference populations
The population information is extracted from the 1000 Genomes
Project sample information available (Data Availability). The
founding members of the pedigrees were selected from different
populations to control the ancestral differences in the homo-
geneous and heterogeneous samples. Reference populations
are used in kinship estimation for computing the principal
components and performing projection-based admixture esti-
mation. For parameter selection experiments, we selected the
founding populations that are from distinct super-populations:
107 Tuscans from Italy (TSI) representing European ancestry,
61 Americans of African Ancestry in Southwest United States
(ASW) representing African ancestry and 104 Japanese from
Tokyo (JPT) representing East Asian ancestry. The reference
populations that are used in parameter selection experiments
were matched to the super-populations: 91 British in England and
Scotland (GBR) representing European Ancestry, 108 Yorubans
from Ibadan (YRI) representing African ancestry and 93 Chinese
from Xishuanagbanna (CDX) representing East Asian populations.
For method comparison experiments, we test homogeneous and
heterogeneous ancestry scenarios. For homogeneous pedigrees,
we used GBR as the founding population and used the GBR
(European), CDX (East Asian) and YRI (African) as the reference
populations. For heterogeneous ancestry scenarios, these three
populations were used as founding and reference populations.

For HAPMAP kinship analysis, we used the samples that are
available in the HAPMAP project, which are the 86 Mexicans in Los
Angeles (MEX) subjects and 101 Gujarati Indians in Houston (GIH).

For this analysis, the reference population comprised subjects of 7
populations from 1000 Genomes Project: 94 CLM subjects (Colom-
bians from Medellin), 107 TSI subjects, 104 JPT subjects, 99 CEU
subjects, 85 PEL subjects (Peruvian from Lima), 91 GBR subjects
and 108 YRI subjects, totaling to 688 subjects in the reference
population, which are representative of the African, Asian and
American admixture of the Mexican subjects. For this analysis,
the MXL population of 1000 Genomes Project was left out because
there are overlapping subjects between the 1000 Genomes Project
and HAPMAP project. For secure kinship benchmarks, we used the
HAPMAP Project’s MEX sample. For HAPMAP project’s GIH sample,
we used a different reference population set including 96 PJL, 86
BEB, 102 STU, 102 ITU, 99 CEU, 104 PUR, 96 ACB, 61 ASW subjects,
which were representative of the South Asian populations.

After the selection of founders, we extracted the genotypes of
the founders and gave them as input to the pedigreeSim tool. To
avoid biases between reference and pedigree populations, we used
a simulation approach similar to hapgen2 and generated a new
genotype dataset from the 1000 Genomes Project genotypes that
were used to simulate the founder genotypes. We used the geno-
types of the 16 individuals within the pedigree (i.e. 256 pairwise
comparisons) to estimate kinship statistics.

Number of pedigrees used in experiments
In the parameter selection experiments, we used 20 pedigree
simulations for each parameter setting. For method comparisons
in homogeneous and heterogeneous ancestry scenarios, 500 pedi-
gree simulations were used whereby each simulation generates all
16 subjects (4000 founders and 4000 descendants) for whom we
computed the kinship statistics.

Compared tools and comparison metrics
In our study, we are focusing on moments-based estimators, par-
ticularly the distance and correlation-based estimators that are
computationally more suitable for privacy-aware implementa-
tions due to one-time calculation of the statistics and dependence
on convergence of the statistics to expected values. In comparison
to the maximum-likelihood methods that predominantly utilize
iterative EM approaches, moment estimators are computation-
ally less demanding when applied to large samples. We selected
KING and REAP, which are well-performing representatives of
the distance and correlation-based estimators, respectively. Most
other moment estimators utilize formulations similar to KING
and REAP, e.g. PCRelate. For comparison of methods, we first qual-
itatively compared kinship statistics assigned to different levels
of relatedness by different methods with the expected kinship
statistics. We also compute absolute deviation between SIGFRIED
and REAP’s estimations to evaluate the concordance between the
kinship statistics.

Secure implementation
We used the C++ SEAL library [61] version 4.0 for implementing
2-site collaborative kinship coefficient estimation using the CKKS
scheme. We used 15 622 variants selected from the common
variants in the 1000 Genomes Project that overlap with HAPMAP
project variants. In the CKKS scheme, we set polynomial modulus
set to 8196, scale to 240 and coefficient modulus is selected from
the default setting with a random sampling of polynomial modu-
lus degrees {60, 40, 40, 60} by SEAL. These parameters satisfy 128-
bit data security guarantees as suggested by the Homomorphic
Encryption Standardization Consortium [62].

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac473#supplementary-data
https://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.html
https://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.html
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RESULTS
Parameter selection
The centroid-distance weight used in the admixture estimation
step (κ) and the number of reference panel components (K) are
the parameters that are required for kinship estimation. To select
these parameters, we simulated admixed samples by selecting
eight founders randomly (Supplementary Figure S2) from three
diverse founding populations (TSI, JPT and ASW) using 66 204
common variants from The 1000 Genomes Project and tested
varying parameter settings. As the reference panel, we used a
set of European, East Asian and African (GBR, CDX and YRI)
populations. For each parameter setting, 20 pedigrees were sim-
ulated and we compared the kinship estimates from SIGFRIED
(correlation-based estimator with projection-based admixtures)
with estimates obtained from REAP using admixture rates esti-
mated by ADMIXTURE tool, as the ground truth. The average of
the absolute deviation between the kinship statistics reported by
two methods was used as the accuracy metric.

We first evaluated the impact of the distance metric and
the distance weight that was used to estimate admixture rates
(Methods). We compared Minkowski distance with varying power
parameters L = 1 (Manhattan), L = 2 (Eucledian), L = 3, L = 5,
L = 10 and L = ∞ (Chebyshev) with varying distance weight
parameters. We also evaluated the Mahalanobis distance metric
(Supplementary Figure S3A). When we compared the metrics
that provided the best concordance (Supplementary Figure S3B),
we found Minkowski distance with L = 2 provided the best
concordance for kinship statistic while L = 3 provided the best
concordance for IBD0 probability statistic. The distance weight
parameter has strong impact on the concordance of zero-IBD
sharing probability estimates, which is minimized at around
κ = 1.6. We therefore recommend the Euclidean distance with
κ = 1.6 for estimation of kinship statistics. We also found that
the number of components in the reference panel does not
have a strong effect on the differences in kinship estimates
(Supplementary Figure S3C). We chose to use five components in
the rest of the study. Although a smaller number of components
renders computation of projections more efficient without
sacrificing accuracy, we chose to use five components to ensure
that more components are considered in the case of highly
admixed subjects while computational requirements are not
increased unnecessarily.

We next compared the admixture rates assigned by our
projection-based approach and ADMIXTURE. For this comparison,
we simulated 500 pedigrees and used the admixture rates
assigned to the 4000 non-founder individuals and compared the
admixture rates assigned by ADMIXTURE and projection-based
approach. We calculated, for each individual, the Wasserstein
distance (Wasserstein function in R) of the admixtures rates of
these two approaches, which yields 4000 values. To set a baseline,
we calculated the Wasserstein distance of the uniform admixture
rates assigned to each of the three reference populations ( 1

3 to
each population) to admixture rates assigned by ADMIXTURE
for each individual. The projection-based method provides
much closer admixture estimates to ADMIXTURE estimates
(Supplementary Figure S3D), which indicates that projection-
based admixture estimation captures non-trivial information
about population structure, which also qualitatively exhibits
good concordance where the admixture rates assigned by the
projection-based approach are similar to the rates assigned by
the ADMIXTURE tool (Supplementary Figures S3E and S3F).

We next evaluated the impact of the number of variants in
the estimation of kinship statistics. For this, we simulated 50

homogeneous pedigrees and computed kinship statistics using
SIGFRIED within each pedigree using an increasing num-
ber of variants from 500 variants up to 150 000 variants
(Supplementary Figure S3G). As the number of variants is increas-
ing, the variance of kinship estimates decreases for each respec-
tive degree of relatedness. Adding more than 50 000 variants
does not provide much change in the variance of the estimated
kinship. Qualitatively, as few as 20 000 variants are sufficient
for distinguishing first- and second-degree relatives. In addition
to uniform subsampling of variants, we tested the impact of (1)
linkage disequilibrium (LD) and (2) heterozygosity for selecting
variants. For LD-based filtering, we selected consecutive variants
with at least a certain genetic distance (a measure of linkage
between variants in centiMorgans). For different genetic distance
cutoffs, we measured the kinship statistic concordance between
SIGFRIED and REAP’s estimators (Supplementary Figure S3H),
which we did not observe a strong effect. For heterozygosity-
based filtering of the variants, we used bins of variants (Methods)
with increasing heterozygosity and measured the statistic
concordance (Supplementary Figure S3I). The concordance of
kinship statistic increases as the heterozygosity is increased. The
concordance of zero-IBD probability is maximized for variants
with heterozygosity approximately at 0.35. These results indicate
that variants can be selected with respect to heterozygosity levels
to increase concordance with the existing methods.

We finally evaluated the quality of the assigned individual-
specific allele frequencies in Equation (10). We computed the Pear-
son correlation between the individual-specific allele frequencies
and the individual genotypes, i.e. ρ(μi,·, Gi,·), for each individ-
ual and analyzed its distribution using 50 simulated pedigrees
with matching and non-matching populations. For both scenar-
ios, we used the admixture rates computed by the projection-
based approach, the ADMIXTURE tool and the uniform assign-
ment over the three reference populations ( 1

3 for each popula-
tion). The distribution of correlation coefficients shows that the
individual-specific AF-to-genotype correlations are very similar
for ADMIXTURE and projection-based approaches and they are
substantially higher than uniformly assigned admixture rates
(Supplementary Figure S3J).

Comparison of methods
We next compared the correlation and distance-based kinship
estimators under homogeneous and heterogeneous pedigree
scenarios. We mainly focused on comparing the approaches
of SIGFRIED with REAP and KING-Robust. For running REAP,
we used the ADMIXTURE tool [63] to estimate the admixture
rates. For SIGFRIED, we use the correlation-based estimator
and the projection-based admixture rate estimation to compute
individual-specific allele frequencies. We also used correlation-
based kinship estimator using uniform admixture assignments
as baseline controls.

Kinship estimates in pedigrees from same
ancestry
We simulated 500 independent pedigrees of four generations
(Supplementary Figure S2) where the eight founding members
are randomly selected from a single European population (GBR)
among The 1000 Genomes Project samples and eight descendants
are simulated. Each pedigree consists of eight founding mem-
bers and eight descendants with varying degrees of relatedness.
Within each pedigree, we computed the kinship and zero-IBD
sharing probabilities between all pairs of members (256 pairs in

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac473#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac473#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac473#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac473#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac473#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac473#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac473#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac473#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac473#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac473#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac473#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac473#supplementary-data
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Figure 2. Scatter plots of kinship coefficients in 500 pedigrees from homozygous ancestries. (A) Correlation-based kinship coefficient (y-axis) versus
zero-IBD sharing probabilities (x-axis) for 500 pedigrees from homozygous ancestry using projection-based admixture estimates. Each dot indicates
an individual and color denotes the degree of relatedness. (B) Scatterplot of correlation-based kinship coefficient (y-axis) versus zero-IBD sharing
probabilities (x-axis) for 500 pedigrees from homozygous ancestry using admixture rates estimated by ADMIXTURE. (C) Distance-based kinship
coefficients versus zero-IBD sharing probabilities using projection-based admixture estimates. (D) KING-Robust kinship coefficients versus zero-IBD
probabilities.

total per pedigree) using KING-Robust [38], REAP (Correlation-
based estimator with admixture rates estimated using ADMIX-
TURE tool), and the distance and correlation-based kinship and
zero-IBD sharing probability statistics for every pair of individ-
uals. For SIGFRIED’s projection-based admixture estimates, we
used three populations from the 1000 Genomes Project (GBR,
CDX and YRI) as the reference populations to ensure that the
admixture estimation step is not trivially applied to a single
reference. To ensure fairness in comparison to REAP, we used the
admixture estimates from the ADMIXTURE tool using the same
three populations, which are provided to ADMIXTURE as known

populations in supervised mode. This is justified as unsupervised
estimation for small populations can be biased and inaccurate
[63] and is computationally more demanding than supervised
admixture estimates. Overall, we observed that all correlation-
based and distance-based methods performed similarly to assign
the expected kinship and zero-IBD sharing probability estimates
for different levels of kinship (Figure 2). One observation is that
distance-based estimators provide tighter estimates of kinship
(Figure 2C and 2D), compared to the correlation-based estima-
tors (Figure 2A and 2B). Considering that distance-based estima-
tors also have lower computational requirements, these results
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Figure 3. Kinship coefficients in 500 pedigrees from heterozygous ancestries using three populations. (A) Barplots show the average kinship coefficient
estimated by each method. Colors indicate the method used to estimate kinship. (B) Distribution of correlation-based kinship estimates using projection-
based admixture rates. (C) Distribution of correlation-based kinship estimates using admixture rates estimated by ADMIXTURE method. (D) Distribution
of distance-based kinship estimates using projection-based admixture rates. (E) Distribution of kinship estimates from KING-Robust.

suggest that they may be more suitable than correlation-based
estimators for samples with homogeneous ancestries.

Kinship estimates in pedigrees from admixed
ancestry
We next tested the estimation of kinship in admixed ancestries.
For this, we simulated 500 pedigrees of eight non-founder

individuals (Supplementary Figure S2). In the simulation, the 8
founders were selected randomly from three distinct populations
of European, East Asian and African descent (GBR, CDX, YRI) in
The 1000 Genomes Project. For admixed ancestries, we compared
the correlation-based estimator using the admixture rates esti-
mated by ADMIXTURE (with supervised references) and also with
a uniform assignment of admixtures that is equally distributed
among three reference populations as a control method. We also

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac473#supplementary-data
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Figure 4. Time and memory requirements of kinship estimation. (A) Time requirements (y-axis) by different methods for kinship estimation. Colors
indicate the methods. SIGFRIED indicates the correlation-based kinship estimation using projection-based estimation of admixtures. REAP indicates
the correlation-based kinship estimation using admixture rates estimated by ADMIXTURE. The x-axis shows the number of populations used in kinship
estimation. (B) Memory usage (y-axis) by kinship estimation methods.

compared the distance-based estimator with projection-based
admixture rates and KING-Robust. In comparison, projection-
based estimators and ADMIXTURE-based estimators provide
the most accurate results for relatives up to fourth degree
(Figure 3A). KING-Robust underestimates the kinship coefficient,
especially for unrelated individuals, which is consistent with
previous studies and is a known limitation of KING-Robust’s
kinship statistics. Our distance-based estimator in Equation
(13) largely corrects the negative and heterogeneous trend of
KING-Robust but the kinship values for unrelated individuals are
underestimated to a certain degree. The distribution of kinship
coefficients indicates that the correlation-based estimators
provide single exact peaks around the expected kinship values
(Figure 3B and 3C). Our distance-based estimator exhibits single
peaks except for unrelated individuals, for which there is a second
peak in negative values. On the other hand, KING-Robust exhibits
a fairly high deviation from the expected values with no clear
peaks (Figure 3D and 3E). A similar heterogeneous distribution of
kinship is observed for correlation-based estimators that use the
pooled reference sample or uniformly assigned admixture rates
(Supplementary Figure S4A and S4B). The scatter plots of zero-
IBD sharing versus kinship coefficients show that the correlation-
based estimators perform fairly uniformly with respect to differ-
ent degrees of relatedness (Supplementary Figure S4C and S4D).
The scatter plots for distance-based estimators exhibit more
divergent estimation of relatedness, our distance-based esti-
mator show less underestimation and more concordance for
first and second-degree relatives compared to KING-Robust
(Supplementary Figure S4E and S4F).

Time and memory requirements
We next compared the time and memory requirements of
the estimators. To compare the resource requirements of the
methods, we estimated the memory and time requirements
of SIGFRIED (correlation-based predictor with projection-based
admixtures), REAP-ADMIXTURE (correlation-based predictor with
admixtures estimated by ADMIXTURE) and KING-Robust by

using 50 simulated pedigrees. For all methods, we measured
the total time required for admixture estimation, and kinship
statistic computations and also the peak memory required for
these steps over the simulated pedigrees. Overall, KING-Robust
runs the fastest and uses the smallest amount of memory
(Figure 4A and 4B). This is expected as KING is optimized to
run only on the variant genotype information using bitwise
operations that are optimized to compute the kinship statistics.
REAP-ADMIXTURE runs the slowest wherein the majority of
time is spent on the estimation of the admixture rates by
ADMIXTURE. SIGFRIED runs at least three times faster than
REAP-ADMIXTURE’s workflow. To test the way that methods
scale with the number of reference populations, we compared
the resource usage by increasing the number of reference
populations (Figure 4A and 4B). REAP-ADMIXTURE’s runtime
exhibits an approximately linear increase in the number of
reference populations. On the other hand, SIGFRIED shows
a sublinear increase. This indicates that for large admixed
populations SIGFRIED’s projection-based approach can provide
good accuracy with less computational resource requirements.
Overall SIGFRIED uses the largest memory among the three
methods. This stems from the current implementation of
SIGFRIED, which loads the whole reference genotype data into
memory in the projection step for centering the genotypes of
query genomes. SIGFRIED’s implementation can be optimized
by pre-computing the mean allele frequencies of the reference
panel and using these in the genotype-centering step. In
comparison, REAP and KING utilizes data accession methods
and structures that suit well for fast accession to data while
kinship is computed.

Kinship estimation in HAPMAP Mexican and
Gujarati Indian samples
We next applied SIGFRIED to the genotype data from third
phase of HAPMAP project and computed kinship statistics for
individuals in Mexican (MEX) and Gujarati Indian (GIH) popu-
lations. We selected these two populations as they exhibit high

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac473#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac473#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac473#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac473#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac473#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac473#supplementary-data
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Figure 5. Kinship versus zero-IBD sharing probabilities for HAPMAP individuals in MEX and GIH populations. (A) Correlation-based kinship coefficient
(projection) versus zero-IBD sharing probabilities estimated for individuals in the MEX population. Each dot is a sample and color of the dot indicates
whether the sample is annotated in HAPMAP project. The number of unannotated first-, second- and third-degree pairs are depicted on the figure
next to shaded ellipses corresponding to these relations. (B) Correlation-based kinship coefficient (ADMIXTURE) versus zero-IBD sharing probabilities
estimated for individuals in the MEX population. (C) KING-Robust’s kinship coefficient versus zero-IBD sharing probabilities estimated for individuals
in the MEX population. (D) Correlation-based Kinship coefficient (projection) versus zero-IBD sharing probabilities estimated for individuals in the GIH
population. (E) Correlation-based Kinship coefficient (ADMIXTURE) versus zero-IBD sharing probabilities estimated for individuals in the GIH population.
(F) KING-Robust’s kinship coefficient versus zero-IBD sharing probabilities estimated for individuals in the GIH population.

levels of admixture. For 86 individuals in MEX population, we
used six diverse sets of populations from Europe, Americas,
East Asia and Africa (CLM, TSI, JPT, CEU, PEL, GBR and YRI) as
the reference populations from the 1000 Genomes Project for
estimating admixture for REAP and SIGFRIED. Overall, we found
that there is good concordance between REAP and SIGFRIED
kinship estimations (Figure 5A–C). As concordant with previous
results, KING-Robust underestimates kinship for distant relatives
and unrelated individuals. Among MEX samples, we identified 4
parent–child, 3 sibling, 10 second-degree and 8 third-degree pairs
that were not annotated by HAPMAP project. We also identified

that one of the samples, NA19679, in MEX population exhibits
a high inbreeding coefficient of 0.10 (highest among all MEX
samples), which was also reported in a previous study [64]. For
GIH population, we used a reference panel consisting of American,
South Asian, European and African samples (PJL, BEB, STU, ITU,
CEU, PUR, ACB and ASW) as references. Among GIH samples, we
found three parent–child, one sibling, one second-degree and two
third-degree pairs that were not annotated (Figure 5D–F). These
results show that SIGFRIED’s projection-based estimators can
provide insight into kinship and inbreeding coefficients on real
datasets.



12 | Wang et al.

Figure 6. Illustration of secure kinship and IBD-Sharing probability estimation for 2-site collaboration. (A) Site-2 estimates individual specific allele
frequencies and computes the normalized genotypes �

(2)

i,j , and indicator matrices I(2,AA)

j,k , I(2,aa)

j,k , and sends them to Site-1 after encrypting them with the

public key. Site-1 also computes the normalized genotype matrix, �
(1)

i,j and the indicator matrices. After receiving the encrypted genotype matrix from

Site-2, Site-1 securely estimates the encrypted kinship (
�

φ i,j) and zero-IBD sharing probability matrix (
�

δ
0

i,j) shown in step 4. Site-1 sends the encrypted
matrices to Site-2, which decrypts the kinship statistics and shares them with Site-2. (B) The time requirements of the secure kinship estimation (y-axis
in seconds) of the HAPMAP project’s 86 MEX samples with respect to increasing number of variants (x-axis). (C) Memory requirements of secure kinship
estimation (y-axis in megabytes) with respect to increasing number of variants (x-axis).

Secure federated estimation of kinship statistics
in two-site setting
One of the main advantages of SIGFRIED over previous approaches
is enabling privacy-aware kinship estimation in different sce-
narios due to its modular formulation. Other admixture-aware
tools assume that existence of reliable admixture and principal

component estimates (e.g. REAP and PCRelate). This is not always
feasible in a privacy-aware setting: Estimation of admixture
requires computationally demanding computations on sensitive
genotype data (such as EM) and principal component estimation
in query individuals is computationally very demanding in secure
domain. SIGFRIED takes an alternative approach by utilizing
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admixture estimates from computationally simpler projection-
based approach and utilizes them in kinship estimation.

We focus on a two-site collaborative scenario (such as geneal-
ogy companies or two institutions working under different reg-
ulations) where the sites aim at computing the pairwise kinship
statistics among the collective set of individuals in two sites but
they cannot share genotype data in plaintext format because
of local privacy requirements. We also assume that the sites
behave honestly without collusions or malicious data manip-
ulations [65]. This scenario is illustrated in Figure 6. The sites
utilize the same reference panels to perform projection-based
estimation of admixtures and the individual-specific AFs for each
individual locally.

Secure computation of correlation-based kinship coefficient
The correlation-based kinship estimator can be decomposed into
an inner product of two vectors for individuals i and j:

φi,j = 1
2N

·
∑
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⎛
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i ≤ S1, j ≤ S2. (19)

From above, we define a normalized genotype matrix for each site:
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where �
(a)

i,k denotes the normalized genotype matrix for site a.
The correlation coefficient for individuals i and j can be simply
computed as follows:

φi,j = 1
2N

·
〈
�

(1)

i,· , �(2)

j,·
〉
, (21)

where the summation is computed over N variants. An important
observation is that normalized genotype matrices in each site
can be computed locally and do not depend on the other site’s
private information. However, computation of the inner product in
Equation (21) requires the sites to share the normalized genotype
matrices in plaintext format with each other. Although �

(1)

i,· and

�
(2)

j,· do not explicitly reveal the genotypes, they can be converted to
genotypes by simple analysis. It is therefore necessary to protect
at least one of the matrices by encryption (Figure 6A). However,
encrypted data cannot be readily processed in the inner prod-
uct as it is indistinguishable from noise to anyone who does
not have access to the private decryption key. We make use of
homomorphic encryption to secure the data [59], which enables the
processing of the encrypted data without decrypting it. In this
setup, both sites compute the normalized matrices and Site-
2 homomorphically encrypts and sends its encrypted genotype
matrix to Site-1 (or vice versa). We denote the encrypted nor-

malized genotype matrix of Site-2 with
�

�
(2)

j,· . After Site-1 receives
encrypted genotypes, it computes the kinship coefficient using

a secure inner product 〈�(1)

i,· ,
�

�
(2)

j,· 〉. It is important to note that
Site-1 does not have to encrypt its genotypes in this scenario.
This is advantageous because this inner product can be much
more efficiently computed between the plaintext matrix of Site-1

and the encrypted matrix of Site-2 in the secure domain. Finally,
the computed kinship estimates are sent back to Site-2, which
decrypts and shares the kinship coefficient matrix with Site-
1. For the secure implementation of the distance-based kinship
estimator in Equation (13), the numerator and denominator can
be computed in parallel using a similar approach as above.

Secure computation of zero-IBD sharing probabilities (δ0
i,j)

The zero-IBD sharing probabilities in Equation (14) rely on
the number of the matching homozygous genotypes positions
between sites. This comparison can be performed using an inner
product of an indicator function. For example:

∑
I
(
Gi,k = 0, Gj,k = 2

) =
〈
I(1,aa)

i,· , I(2,AA)

j,·
〉
,

where I(1,aa)

i,k denotes an indicator variable that takes on a value

of 1 if G(1)

i,k = 0 (i.e. aa) and is 0. The sites pre-compute and
encrypt indicator functions and exchange them to compute the
numerator in Equation (14). The denominator is computed in
plaintext format on Site-1 using the allele frequencies from the
two sites or it is computed on one site using a secure inner product
(Supplementary Information).

Time and memory requirements
We implemented a 2-site kinship estimation using the SEAL
library [66]. We used the CKKS encryption scheme with default
security settings (see Methods) that satisfy 128-bit security
requirements [62]. We used 86 individuals in HAPMAP’s MEX
sample and used a varying number of variants between 20 000
and 120 000 variants that are uniformly sampled from all of the
variants in the HAPMAP dataset. The normalized genotypes are
encoded and encrypted per individual such that each individual’s
normalized genotypes fit into multiple ciphertexts. The memory
and time usage of secure kinship estimation increases linearly
with increasing number of variants (Figure 6B and 6C). With 60
000 variants, the estimation requires approximately 90 s and 4
gigabytes of main memory which includes encryption, encoding,
evaluation, decoding and decryption. We used a single thread
for encoding and encryption, and kinship is estimated using
40 threads. Overall, we observed that the maximum absolute
difference between plaintext and encrypted kinship coefficients is
10−7, which practically does not cause differences in the analysis
of relatedness.

DISCUSSION
Kinship and related statistics are essential in many genetic stud-
ies and they are sensitive for individual and group-level pri-
vacy. Here, we presented SIGFRIED, an efficient, accurate and
secure method that utilizes projection on existing reference pan-
els. SIGFRIED does not require phased genotype calls (like RAFFI
and IBDKin), and can work for small sample sizes and the results
do not change by addition of new samples. SIGFRIED balances
accuracy and efficiency to ensure that the final algorithm is effi-
ciently implemented with secure primitives. While projection on
existing population panels has been utilized previously by other
methods, SIGFRIED utilizes projection to circumvent computa-
tions that are otherwise hard to implement in the secure domain,
such as performing full secure collaborative PCA or computa-
tionally intensive EM iterations. From this perspective, we view
SIGFRIED as a private-by-design methodology wherein the privacy
considerations are balanced against efficiency and accuracy and
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these are reflected in each step of the method. Projection does not
explicitly require reference panel genotypes, and only reference
population centroid coordinates, allele frequencies and PCs are
necessary for the projection. Since the reference genotypes are not
explicitly shared, we believe the centroids and PCs create minimal
risk for reference panels under restricted access (i.e. TOPMed [67]).
Another venue for requirement of protecting kinship information
is genetic analysis of species whose genomes represent trade
secrets, e.g. livestock which are bred for increasing milk and meat
production and quality [68]. The genetic information of these ani-
mals may be required to be kept privately [69, 70]. The proposed
techniques can be used to perform collaborative analysis of the
secure kinship analysis on animals.

The secure implementation for more than 2-sites can be
performed (1) using a centralized approach where sites encrypt
normalized genotype matrices to an outsourcing service (such
as AWS), which computes the encrypted kinship statistics or
(2) by federation approach where each site receives encrypted
normalized genotypes matrices from other sites and locally
computes the kinship across samples and shares the encrypted
kinship statistics with other sites. The sites can take advantage
of the modular design of kinship estimation by encrypting only
certain intermediate statistics. For instance, the individual-
specific allele frequencies are averages of population-specific
allele frequencies weighted by admixture rates. As such, they
are highly aggregated function of genotypes and can be deemed
safe to share in plaintext form. Finally, while we focused
mainly on admixed populations, distance-based estimators (i.e.
KING), which are accurate for homogeneous ancestries, can
be implemented efficiently to estimate kinship coefficients.
Secure implementation of the distance-based estimation can be
efficiently since encrypted genotype matrices are required only
for distance estimations.

SIGFRIED has several limitations that warrant future research.
First, we evaluated a number of distance metrics and distance-
to-admixture mapping functions that can be optimized further.
Second, SIGRFIED relies on a priori knowledge of the query dataset,
which may be limiting factor in certain cases, especially when
the query samples are of unknown origin. We foresee that the
increase in the number and diversity of available reference pan-
els (i.e. TOPMed Project) will make the reference panels more
complete and inclusive. Additionally, the reference population
centroid-based analysis can be studied further to provide more
flexibility. One example of this is PCAir [71] method, which esti-
mates the principal components using unrelated individuals. A
similar approach can be used to build a more accurate centroid
estimation method in SIGFRIED. Third, the performance of secure
federated kinship estimation may be prohibitive for very large
sample sizes. To get around this limitation, the kinship statistics
can be performed with the use of simpler encryption techniques,
which can provide better performance. The performance can
further be improved using smaller number of variants depending
on furthest degree of relatedness distance that is required from
the estimation––for example, first- and second-degree relatives
can be identified with a smaller number of variants, which can
improve the secure estimation performance. Finally, our results
indicate that the variants can be selected using heterozygos-
ity. Further research is needed to identify minimal variant sets
that provide the highest accuracy, which can also decrease com-
putational requirements of secure kinship estimation in large
samples.

Key Points

• We presented a modular approach for the estimation
of genetic relatedness that utilizes existing population
reference panels to estimate admixture rates.

• Our results show that the presented approach provides
an accurate estimation of kinship with the less com-
putational burden compared to distributed component
analysis and expectation–maximization.

• We presented a secure federated framework for the esti-
mation of genetic relatedness among multiple entities
while genetic data is kept confidential.

• Our framework provides provable security guarantees
and can be deployed on cloud platforms.
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The 1000 Genomes Project data used in simulations are avail-
able from The 1000 Genomes data portal at https://www.
internationalgenome.org/category/ftp/. HAPMAP project geno-
type data and metadata are available for download from https://
ftp.ncbi.nlm.nih.gov/hapmap/. 1000 Genomes population and
sample information can be found at ftp://ftp.1000genomes.ebi.ac.
uk/vol1/ftp/technical/working/20130606_sample_info/20130606_
sample_info.xlsx.

The archive that contains the source code for data processing
and analysis can be downloaded from Zenodo at https://doi.
org/10.5281/zenodo.7053352 using the following command:

wget -c https://zenodo.org/record/7053352/files/Code_Data_09_
06_22_04_11_36.7z?download=1

After download, the archive can be extracted on the command
line using 7zip utility, an open-source file archiving software:

./7z x Code_Data_09_06_22_04_11_36.7z.
7zip is available from https://www.7-zip.org/download.html.

When prompted for the password, use ‘95sigfried22.’
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