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Abstract: Purpose: COVID-19 presents complex pathophysiology, and evidence collected points
towards an intricate interaction between viral-dependent and individual immunological mechanisms.
Identifying phenotypes through clinical and biological markers may provide a better understanding
of the subjacent mechanisms and an early patient-tailored characterization of illness severity. Meth-
ods: A multicenter prospective cohort study was performed in 5 hospitals in Portugal and Brazil
for one year between 2020–2021. All adult patients with an Intensive Care Unit admission with
SARS-CoV-2 pneumonia were eligible. COVID-19 was diagnosed using clinical and radiologic criteria
with a SARS-CoV-2 positive RT-PCR test. A two-step hierarchical cluster analysis was made using
several class-defining variables. Results: 814 patients were included. The cluster analysis revealed a
three-class model, allowing for the definition of three distinct COVID-19 phenotypes: 407 patients
in phenotype A, 244 patients in phenotype B, and 163 patients in phenotype C. Patients included
in phenotype A were significantly older, with higher baseline inflammatory biomarkers profile,
and a significantly higher requirement of organ support and mortality rate. Phenotypes B and C
demonstrated some overlapping clinical characteristics but different outcomes. Phenotype C patients
presented a lower mortality rate, with consistently lower C-reactive protein, but higher procalcitonin
and interleukin-6 serum levels, describing an immunological profile significantly different from
phenotype B. Conclusions: Severe COVID-19 patients exhibit three different clinical phenotypes
with distinct profiles and outcomes. Their identification could have an impact on patients’ care,
justifying different therapy responses and inconsistencies identified across different randomized
control trial results.
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1. Introduction

The SARS-CoV-2 infection causes a wide spectrum of clinical manifestations, ranging
from the complete absence of symptoms to a severe acute respiratory syndrome with a
high fatality rate [1].

The natural history and pathophysiology of COVID-19 involves complex mechanisms,
including viral infection and replication, immunological mechanisms, and a broad dysreg-
ulation of clotting, host defense, and endothelial dysfunction [2,3]. The evidence collected
shows that many clinical and biochemical parameters are altered in COVID-19 patients,
and this seems to be correlated with the severity of the disease and its prognosis [4].
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On that regard, the characterization of clinical phenotypes within COVID-19 infected
patients may represent a paramount clinical step, allowing us to increase our knowledge
about the mechanisms of this disease and to comprehend inherent changes in patients’
diagnoses, prognoses, and treatment responses [5]. Azoulay et al. and Fish et al. have
already provided insights into the biological plausibility of these phenotypes and their
unique associations between several different biomarkers and patients’ prognoses [6,7]. Sev-
eral clinical studies have further extended the characterization of these COVID-19 clinical
phenotypes. Bruse et al. aimed to apply previously established clinical sepsis phenotypes
to patients with COVID-19. The authors identified different phenotype distribution and
biomarkers profiles when comparing to those previously established, confirming the need
to conclusively establish clear clinical phenotypes to aid prognostication and prediction
of treatment efficacy [8]. Siepel et al. attempted to confirm these clinical phenotypes
using an unsupervised machine learning analysis. The authors conclude that the dynamic
interchange of patients through phenotypes over time could explain the heterogeneity of
results when aiming to describe these COVID-19 clinical phenotypes [9]. This evidence
was in agreement with more recent studies that found similar clinical phenotypes across
different countries [10–16].

The role of different biomarkers profiles in defining these COVID-19 phenotypes in
critically ill patients has yet to be confirmed, but it could potentially aid to characterize
these clinical phenotypes and to predict patients’ outcomes. In fact, biomarkers have
been shown to be able to provide an assessment of several organ dysfunctions in COVID-
19 patients, such as the risk of acute respiratory distress syndrome and disseminated
intravascular coagulation [17,18]. Patients who present with lymphopenia, elevated D-
dimer and troponin, hyperferritinemia, and increased lactic dehydrogenase usually have
an unfavorable course of the disease [19]. Other non-specific biomarkers of COVID-19,
such as the presence of neutrophilia, thrombocytopenia, hypoalbuminemia, elevation of
liver enzymes and creatinine, as well as inflammatory markers, such as C-reactive protein
(CRP) and interleukin 6 (IL-6), were also associated with a worse prognosis [20–26].

Blair et al. tried to stratify COVID-19 patients in different clusters using distinct blood
inflammatory biomarkers. Their results pointed to three distinct inflammatory biomarker
patterns that could stratify a heterogeneous population and that were associated with co-
morbid diseases and illness severity of those patients. This exploratory step gave important
insights regarding the inclusion of biomarkers in the definition of clinical phenotypes,
suggesting that these could be used for a personalized approach to the triage of care and
therapeutic indications [27].

It has become progressively clearer that this biomarker phenotyping could lead the
way to a more precise and personalized care for COVID-19 patients, highlighting the
possibility of future treatments and interventions taking into account the disease’s partic-
ularities and patients’ predisposition and response [5,28,29]. Notably, the refinement of
trials through prognostic enrichment is expected to increase the likelihood for beneficial
effects of an intervention to emerge. Following these developments, this precision medicine
paradigm may enable the tailoring of treatment to apparently similar patients with vastly
different biochemical profiles and outcomes [30–32].

The main aim of our study is to assess and identify COVID-19 patients’ phenotypes
using clinical and biomarker profiles, allowing the establishment of plausible correlations
with clinical outcomes.

2. Materials and Methods
2.1. Design and Setting

This was a prospective observational cohort study performed in five ICUs of Brazil and
Portugal. Briefly, during the study period (March 2020 to June 2021), we evaluated every adult
patient (≥18 year) who required ICU admission with PCR confirmed SARS-CoV-2 infection.
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2.2. Definitions, Selection of Participants and Data Collection

The Ethics Committees of the Hospital Copa Star and Hospital Copa D’or in Rio
de Janeiro, Brazil, and of the Portuguese Ethics Committee for Clinical Investigation in
Lisbon, Portugal, approved the study (CAAE: 17079119.7.0000.5249; and REC: 2020_EO_02,
respectively) and we received the waiver of the written informed consent.

Sample size was calculated considering COVID-19’s population prevalence from
Portugal and Brazil at the time of the study’s proposal, using the highest limit of the 95%
confidence level and considering a 5% marginal error. We collected demographic, clinical,
and laboratory data using standardized case report forms and patients’ daily chart revisions,
and included the Simplified Acute Physiology Score (SAPS) III [33] and the Sequential
Organ Failure Assessment (SOFA) at admission [34].

Need of mechanical ventilation (MV), intensive care unit (ICU), hospital length of stay
(LOS), and mortality rates from any cause were also assessed. All patients were followed
up with until death or hospital discharge. One investigator conducted a revision of the data
collected through a random check of 10% of all datasets in order to confirm internal validity
and data consistency. After data collection, patients’ individual data with missing values
per variable rate above 10% were excluded from the initial analysis. The remaining missing
values were handled under the assumption of missing at random and no imputation
methods were applied (missing values percentage negligibly small (1.257%)) [35].

CRP, procalcitonin (PCT), IL-6 and D-dimer levels, and leucocyte and lymphocyte
counts were measured at ICU admission, considering their value as inflammatory biomark-
ers in COVID-19 patients [20–26]. Lymphocyte serum counts, regardless of the leucocyte
serum counts analysis, were considered, due to the previously collected evidence of an inde-
pendent association between disease severity and mortality in COVID-19-patients [17,18].
Biomarkers levels were determined with the Roche Cobas Integra 800 analyzer (Roche
Diagnostic, Indianapolis, IN, USA).

The main outcome of interest was to correlate clinical and biomarker signatures at ICU
admission to derive COVID-19 phenotypes and determine their correlation with clinical
outcomes. Other measured outcomes were organ dysfunctions assessed by SOFA, ICU and
hospital LOS, and mortality.

2.3. Data Processing and Statistical Analysis

Baseline clinical and serum data collected were considered for the Principal Compo-
nent Analysis and clustering after data processing as previously described, confirming its
completeness, consistency, and missing values.

Variables selected to be included for modeling were age, SAPS III score, SOFA score,
CRP, D-dimer, PCT, IL-6 levels, and leucocyte and lymphocyte counts at ICU admission
after standardization, in order to reduce magnitude effect.

We used agglomerative clustering on the selected variables using Ward’s method and
applying squared Euclidean Distance as the similarity measure [36]. The classification was
conducted without consideration of clinical outcomes. The aim of this statistical method
was to find relatively homogeneous clusters of cases based on measured characteristics.
The log-likelihood method was used to determine inter-subject distance and specific classi-
fication of participants. The model was produced using the Schwarz-Bayesian criterion,
aiming to identify the most goodness of fit of the clustering model. We considered grouping
patients into 2–6 phenotypes and determined the optimal number of three as the model
with higher goodness of fit. The number of clusters was confirmed using an elbow plot,
where the inflection point was used as a cutoff.

We then performed a Principal Component Analysis on the average covariance matrix
to visualize the relationships among the three phenotypes and assess variable contributions.

Once the clusters were determined, we compared the association between classes and
clinical outcomes (ICU and hospital LOS, mortality, MV need, vasopressor support, and
renal replacement therapy) using logistic regression models. We used standard descriptive
statistics and reported continuous variables as median [25–75% interquartile range]. Com-



J. Clin. Med. 2023, 12, 3035 4 of 10

parisons between groups were performed with two-tailed unpaired Student t-test, one-way
ANOVA, Mann-Whitney U, or Kruskal-Wallis H tests for continuous variables according to
data distribution. The Fisher exact test and Chi-square test were used to carry out compar-
isons between categorical variables as appropriate. All Gaussian distributed variables were
expressed as mean (SD) and non-normally distributed variables as median (interquartile
range [IQR]). Categorical variables were expressed as numbers and percentages.

We carried out all statistical analyses using the SPSS 23.0 software package (Chicago,
IL, USA) and Prism 6.0 (Graphpad, Boston, MA, USA).

3. Results
3.1. Cluster Analysis

In total, 814 patients were included. The main demographics and clinical charac-
teristics are depicted in Table 1. The cluster analysis revealed a three-class model as the
most useful in the analyzed population, as presented in Table 2. The principal component
analysis also defined three principal population-describing factors as appreciated through
an elbow plot (Figure S1, Tables S1 and S2 of Supplementary Materials), supporting that
three-class model after plotting for those factors (Figure 1).

Table 1. Demographic, clinical and outcome variables of patients according to the COVID-19
phenotype *.

PHENOTYPE A
(n = 407; 60%)

PHENOTYPE B
(n = 244; 24%)

PHENOTYPE C
(n = 163; 16%) p ¥

Age, years, (median (IQR)) 81 (65–97) 62 (47–79) 63 (47–80) <0.001
Gender, males, (n, %) 221 (54.3%) 131 (53.7%) 78 (47.9%) 0.08

Previous Medical Comorbidities
Chronic Obstructive Pulmonary Disease (n,

%) 37 (9.1%) 18 (7.4%) 14 (8.9%) 0.528

Asthma (n, %) 18 (4.4%) 8 (3.3%) 5 (3.1%) 0.347
Chronic Kidney Disease (n, %) 89 (21.9%) 29 (11.9%) 23 (14.1%) 0.125

Obesity (n, %) 64 (15.7%) 36 (14.8%) 27 (16.7%) 0.214
Diabetes Mellitus (n, %) 129 (31.7%) 82 (33.6%) 47 (28.8%) 0.08

Ischemic Cardiopathy (n, %) 147 (36.1%) 64 (26.2%) 39 (23.9%) 0.04
SOFA at admission (median (IQR)) 10 (5; 13) 3 (2; 5) 1 (0; 3) <0.001
SAPS III at admission (mean ± SD) 78 ± 10 50 ± 7 47 ± 12 <0.001

Mechanical Ventilation (n, %) 173 (42.5%) 11 (4.6%) 11 (6.9%) <0.001
Vasopressor Support (n, %) 112 (27.5%) 38 (15.6%) 38 (14.4%) <0.001

Renal replacement therapy (n, %) 58 (14.2%) 19 (7.8%) 19 (11.6%) 0.152
Laboratory results

C reactive Protein at admission, mg/dL
(median (IQR)) 32.3 (24.8; 81.5) 20.0 (10.3; 40.6) 17.20 (4.0; 23.7) 0.013

Max registered C-Reactive protein, mg/dL
(mean ± SD) 32.3 ± 11.0 25.3 ± 10.4 18.6 ± 12.5 <0.001

Procalcitonin at admission, ng/mL (median
(IQR)) 3.30 (0.55; 3.35) 0.17 (0.05; 0.23) 0.22 (0.12; 0.23) <0.001

Max registered Procalcitonin, ng/mL
(median (IQR)) 9.73 (0.86; 13.54) 0.34 (0.06; 0.74) 1.30 (0.70; 1.40) <0.001

D-dimer level at admission, ng/mL
(median (IQR)) 1165 (587; 1663) 610 (97; 753) 202 (119; 262) 0.003

Max D-dimer registered, ng/mL (median
(IQR) 2778 (875; 3822) 655 (48; 1305) 303 (78; 307) 0.018

Minimum Leucocyte count registered, ×109

(mean ± SD)
11.0 ± 7.09 5.0 ± 2.03 5.3 ± 2.2 <0.001

Minimum Lymphocyte count registered,
×109 (median (IQR)) 0.52 (0.32; 0.62) 0.36 (0.12; 0.39) 0.57 (0.68; 1.09) 0.146

IL-6 serum levels, mg/mL (median (IQR)) 57.9 (5.7; 61.0) 35.4 (6.6; 42.7) 41.0 (16.0; 49.0) 0.01
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Table 1. Cont.

PHENOTYPE A
(n = 407; 60%)

PHENOTYPE B
(n = 244; 24%)

PHENOTYPE C
(n = 163; 16%) p ¥

Remdesivir, (n, %) 359 (88.2%) 243 (99.6%) 147 (90.2%) 0.167
Corticosteroid therapy

(n, %) 176 (43.2%) 137 (97.9%) 147 (90.0%) 0.001

Ventilator-free days, days, (median (IQR)) 23 (20; 24) 12 (4; 20) 10 (4; 17) 0.001
ICU length of stay, days, (median (IQR)) 14 (11; 15) 6 (5; 11) 10 (3; 10) <0.001

Hospital Length of stay, days, (mean ± sd) 18 (7; 20) 9 (1; 14) 13 (2; 14) 0.001

* IQR denotes Interquartile range and SD denotes standard deviation. ¥ p-values were determined using Chi-
square test, ANOVA test and Kruskal-Wallis H test.

Table 2. Cluster class fitting analysis.

Number of Individuals per Class/Phenotype

Number of Classes BIC ¥ Entropy * N1 N2 N3 N4 p-Value **

2 6034.4 0.77 787 27 0.227
3 2094.1 0.87 244 163 407 0.007
4 8056.7 0.52 11 44 757 6 0.183

¥ BIC stands for Bayesian information criterion. * Entropy is an index of how well the classes are separated. It
ranges from zero to one and values around 0.8 and up are generally considered a sign of a useful model. ** By
likelihood ratio test, testing whether the number of classes improved the model fitness compared to a model using
one fewer class.

Figure 1. Factor map of the Principal Component Analysis showing the distribution of each patient
in each cluster.

This three-class model allocated 407 patients in phenotype A, 244 patients in phenotype
B, and 163 patients in phenotype C, allowing for the definition of three distinct COVID-19
phenotypes (Table 1).

3.2. Phenotype’s Characterization and Clinical Outcomes

The main demographic, clinical, and analytical characteristics among the three pheno-
types are presented in Table 1.



J. Clin. Med. 2023, 12, 3035 6 of 10

A clear distinction can be perceived in phenotype A versus phenotypes B and C.
Phenotype A patients are significantly older, with a higher severity index (either by SOFA
or SAPS III) and a higher requirement of organ support (either ventilatory or cardiovascular)
(Table 1). Furthermore, these patients also showed significantly longer ICU and hospital
LOS, and a higher in-hospital mortality rate.

Phenotypes B and C, on the other hand, demonstrate some overlapping of clinical and
demographic characteristics but with markedly different outcomes. Although no difference
is found between these two phenotypes regarding age, SOFA score, and SAPS III at ICU
admission, and ventilatory, vasopressor, and renal supports, patients with phenotype C
have higher ICU and hospital LOS (10 (3;10) days vs. 6 (5;11) days and 13 (2;14) days vs. 9
(1;14) days, respectively, p < 0.001) but a significantly lower in-hospital mortality rate (1.2%
vs. 7%, respectively, p = 0.007), when compared to patients with phenotype B.

3.3. Phenotype’s Biomarker Profile

Higher baseline inflammatory markers were associated with a higher mortality rate
(p = 0.001). Phenotype A patients presented with higher CRP, PCT, and IL-6 serum levels at
ICU admission (p < 0.001). Furthermore, this phenotype also presented higher white blood
cell counts, although no difference was registered in the lymphocyte count between groups.

Phenotypes B and C presented clearly different inflammatory profiles and mortality
rates. Phenotype C patients presented higher PCT and IL-6 serum levels with lower CRP
serum levels and mortality rate (1.2%). On the other hand, phenotype B patients presented
lower PCT and IL-6 serum levels and higher CRP serum levels and a 4-fold higher mortality
rate (7%).

4. Discussion

In our large cohort of severe COVID-19 patients, we were able to identify three
distinct COVID-19 phenotypes. These phenotypes show significant differences in their
clinical features, inflammatory profiles, and hospital outcomes. Our findings urge the
necessity of comprehending COVID-19 as a disease that encompasses several patients with
heterogenous outcomes. This may potentially prompt more patient-targeting therapeutic
protocols and promote a medical practice based in more individualized and targeted
approach to these patients.

Firstly, our cluster analysis identified a high-mortality rate phenotype (phenotype A)
with an in-hospital mortality rate of 12%. This phenotype is clearly composed of older
patients with high SOFA and SAPS III at ICU admission, a higher pro-inflammatory profile,
and poor outcomes. This data reproduces previous evidence collected, describing a strong
correlation between mortality rate and age, high CRP and PCT levels, and severity indexes
at ICU admission in COVID-19 patients [37–43]. Clearly, this phenotype convenes the most
severe COVID-19 patients, with significant differences to phenotypes B and C.

Phenotypes B and C, on the other hand, represent subpopulations of younger patients
with lower severity scores and fewer organ support requirements. Albeit contrastingly
different when comparing to phenotype A, these phenotypes B and C lose their apparent
overlapping characteristics when their inflammatory biomarker profiles and mortality rates
are considered. In fact, patients with phenotype C exhibit higher PCT and IL-6 serum levels
with lower CRP serum levels and lower in-hospital mortality rates.

These results of COVID-19 patients’ phenotypes also demonstrate biological plausi-
bility and are strikingly similar to those previously described by Azoulay et al. [6]. The
authors reported the clinical and laboratory features of a cohort of 85 consecutive COVID-19
patients admitted to ICU. In this study, the hierarchical clustering also identified three
clinical phenotypes of COVID-19 patients with a significant overlap with those identified in
our study. Based on a bigger cohort of COVID-19 patients, our hierarchical clustering docu-
ments the same three phenotypes, with similar clinical profiles, inflammatory biomarker
patterns, and hospital outcomes.
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Our results are also consistently overlapping and complementary to those found in
other COVID-19 phenotype-defining studies [10–16,27]. In a study by Lusczek et al., three
clinical phenotypes were identified with similar clinical characteristics to those described
in our study. A high-mortality rate phenotype composed of older patients with a higher
number of comorbidities and higher in-hospital complications and CRP serum levels at
admission was also described. Correspondingly, it also described two less-ill phenotypes
of patients with lower mortality rates and lower inflammatory profiles [13]. The same
results were also found in studies by Rodríguez et al. and Siepel et al., which deployed
unsupervised clustering analysis of critically ill patients with COVID-19 in Spain and in
the Netherlands, respectively [9,14]. The derived clinical phenotypes exhibit a marked
similarity to our findings and significantly correlated with host-response patterns and
ICU mortality. Across these studies, three phenotypes were identified with different high
severity of illness and ICU mortality rates, and prominent dissimilarities between clinical
phenotypes were associated to different inflammation profiles.

Although no statistical difference was found allowing for the definition of an inflam-
matory biomarker profile to segregate patient phenotypes B and C, this data is strikingly
different from evidence previously collected [41,42]. Most of those results, suggesting a
linear association between PCT, CRP, and IL-6 serum levels and patients’ mortality rate,
stemmed from retrospective and observational analysis. Our results do not support a direct
association between IL-6 and PCT serum levels and mortality rate in severe COVID-19
patients but suggest that CRP may be a more reliable surrogate of COVID-19 patient’s
outcomes [44–47].

These findings could be somehow related to the heterogeneity of RCT results, namely
of IL-6 receptor inhibitors [48]. Our and Azoulay’s results raised the possibility of a lack of
effect or even harm of therapeutic options targeting this individual biomarker [7]. Pinpoint-
ing these isolated biomarkers as therapeutical targets may be insufficient to address all the
inflammatory and mechanisms active in these patients. Furthermore, the prognostic value
of this biomarker may be underlined in a more complex inflammatory profile, dependent
on patient’s immunological variables, and subject to a different prevalence of these clinical
phenotypes [49–52].

Our study conveys several strengths. It is composed of a large cohort of COVID-19
patients for a multinational and multicenter cluster analysis, circumventing some possible
sources of bias. However, it is not without limitations. It is an observational study and,
although it represents a large sample size of COVID-19 patients, it fails to document a
clear segregation between the inflammatory profiles of the three clinical phenotypes that
could reliably identify a subset of patients with higher mortality rates. A higher number of
patients could also improve phenotype homogeneity. Furthermore, an external validation
of the clusters is absent, undermining the potential of finding these phenotypes in other
studied COVID-19 populations. Moreover, it convenes a study period of two variants and
significant therapeutic recommendation changes, specifically, but not limited to, in the use
of invasive and non-invasive mechanical ventilation, that could count for differences within
the studied population. Furthermore, we recognize a significant absence of data concerning
time from onset of symptoms and time until intubation and mechanical ventilation. Finally,
COVID-19 treatment effects were not evaluated, and long-term follow-up of patients was
not performed. Therefore, the impact of these phenotypes on their long-term mortality rate
was not evaluated.

5. Conclusions

Severe COVID-19 patients exhibit three different phenotypes with distinct clinical and
biochemical profiles and outcomes. Our data presents a clearly high-mortality group with
a high level of organ requirements that should be promptly recognized in order to improve
survivability and early organ support. It also suggests an association of CRP serum levels
with patients’ outcomes. In contrast to our expectations, there was no evidence of any
association between IL-6 serum levels and patients’ outcomes, namely in phenotype C,
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which presented intermediate levels of Il-6 serum levels and low patient mortality. Further
validation of these phenotypes with external cohorts could allow the implementation of
point-of-care biomarker determinations to guide patients’ management.

Our data also conveys that different patients’ profiles may translate to an early iden-
tification of patients with variable responses to certain COVID-19 directed therapies and
may help understand heterogeneity of treatment effects. It highlights different prognoses
in similar-appearing patients with COVID-19, reinforcing the potential use of biochem-
ical phenotyping in the clinical characterization of these patients. Furthermore, it may
provide impactful insights in future randomized clinical trial analyses and a concept for
trial enrichment.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jcm12083035/s1, Figure S1: Principal Component analysis using
elbow method of the cluster dataset; Table S1: Principal Components analysis (PCA) of the cluster
dataset; Table S2: Demographic, clinical and outcome variables of patients between Phenotypes B
and C.
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