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Abstract: Background: This study aimed to evaluate short- and long-term humoral and T-cell-specific
immune responses to SARS-CoV-2 vaccines in patients with multiple sclerosis (MS) treated with
different disease-modifying therapies (DMTs). Methods: Single-center observational longitudinal
study including 102 patients with MS who consecutively received vaccination against SARS-CoV-2.
Serum samples were collected at baseline and after receiving the second dose of the vaccine. Specific
Th1 responses following in vitro stimulation with spike and nucleocapsid peptides were analyzed
by quantifying levels of IFN-γ. Serum IgG-type antibodies against the spike region of SARS-CoV-
2 were studied by chemiluminescent microparticle immunoassay. Results: Patients undergoing
fingolimod and anti-CD20 therapies had a markedly lower humoral response than those treated
with other DMTs and untreated patients. Robust antigen-specific T-cell responses were detected in
all patients except those treated with fingolimod, who had lower IFN-γ levels than those treated
with other DMTs (25.8 pg/mL vs. 868.7 pg/mL, p = 0.011). At mid-term follow-up, a decrease in
vaccine-induced anti-SARS-CoV-2 IgG antibodies was observed in all subgroups of patients receiving
DMTs, although most patients receiving induction DMTs or natalizumab and non-treated patients
remained protected. Cellular immunity was maintained above protective levels in all DMT subgroups
except the fingolimod subgroup. Conclusions: SARS-CoV-2 vaccines induce robust and long-lasting
humoral and cell-mediated specific immune responses in most patients with MS.

Keywords: SARS-CoV-2 vaccination; immune response; COVID19; multiple sclerosis;
disease-modifying therapies

1. Introduction

Over the past decade, the disease course of multiple sclerosis (MS) patients appears
to have become milder. This may be partly due to the availability of effective disease-
modifying therapies (DMTs) that better reduce inflammatory disease activity and delay
disability progression [1]. The various mechanisms of action of the DMTs, including
lymphocyte depletion, disruption of lymphocyte replication, or alteration of lymphocyte
trafficking, impact the immune system [2,3]. As a result, patients with MS receiving DMTs
could not only have an increased risk of infections but also reduced vaccine effectiveness
because of a decreased ability to mount an adaptive immune response [4,5].

The COronaVIrus Disease 2019 (COVID-19) pandemic, caused by severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2), is a rapidly evolving situation that continues
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to cause unprecedented disruption of normal life. As the COVID-19 pandemic spread
worldwide, an increasing number of SARS-CoV-2 vaccines were developed. Preliminary
data suggest that the humoral response to the SARS-CoV-2 vaccines is impaired in MS
patients treated with fingolimod and anti-CD20 therapies [6–8]. However, vaccine-induced
T-cell responses are believed to play an essential role in protection against subsequent
SARS-CoV-2 infections. Accordingly, some studies reported effects of some DMTs on
cellular immune responses following vaccination [9–11].

We aimed to evaluate the humoral and cellular immune responses to SARS-CoV-2
vaccines in patients with MS receiving different DMTs and to explore their protective role
against COVID-19 during patient follow-up.

2. Materials and Methods
2.1. Study Design

We performed a single-center observational longitudinal study including 102 MS
patients who consecutively received vaccination against SARS-CoV-2 at Hospital Universi-
tario Ramón y Cajal in Madrid, Spain. Inclusion criteria were: diagnosis of MS according to
McDonald 2017 criteria [12] and completed vaccination cycle of an mRNA or viral-vector
SARS-CoV-2 vaccine. Both untreated patients and patients treated with DMTs were in-
cluded. Approval was obtained from the Ethical Committee of Hospital Universitario
Ramón y Cajal. Patients provided written informed consent before inclusion.

2.2. Data Collection

At baseline, before vaccination, demographic characteristics, time since first MS symp-
toms, MS phenotype, disability according to the Expanded Disability Status Scale (EDSS)
score, current DMT, time since DMT initiation, last DMT administration (in patients under-
going pulsed therapy), and occurrence of COVID-19 before vaccination were recorded.

Patients were subsequently evaluated every 3 months after vaccination to assess the
occurrence of COVID-19.

2.3. Sample Collection

Serum samples (5 mL) were collected after vaccination (at the earliest, 28 days after
vaccination), aliquoted, and stored at 80 ◦C until studied. Peripheral blood mononuclear
cells (PBMCs) were obtained from heparinized whole blood by Ficoll density gradient
centrifugation (Abbott).

2.4. Cell Cultures

Fresh PBMCs were cultured in 96-well flat-bottom plates at 106 cells/well resuspended
in a volume of 200 µL of complete medium enriched with 10% human serum (Merck).
Four culture wells were prepared for each patient: one well with complete medium (nega-
tive control), another well with 10 µL (10 µg/mL) of OKT3 as a positive control; the other
two wells were stimulated with 4 µL (50 µg/mL) of spike (S) peptides of SARS-CoV-2
(PepTivator® SARS-CoV-2 Prot_S, Miltenyi Biotec) and with 4 µL (50 µg/mL) of nucleocap-
sid (N) peptides of SARS-CoV-2 (PepTivator® SARS-CoV-2 Prot_N, Miltenyi Biotec). After
30 min, 6 µL (25 µg/mL) of CD28/CD49d co-stimulator was added to each well, and cells
were incubated at 37 ◦C, 5% CO2, and 95% humidity for 24 h. Then, the cellular suspension
was centrifuged, and supernatants were collected and stored at −80 ◦C until analysis.

2.5. Interferon-Gamma Quantification

Supernatant interferon-gamma (IFN-γ) levels were quantified in a SR-X instrument
(Quanterix, Billerica, MA, USA) using the single-molecule array IFN-γ Advantage Kit
technique (Quanterix). Since no consensus has been established on the best cut-off value to
consider a good cellular response to SARS-CoV-2, we considered a positive result when
the concentration of IFN-γ was higher than 80 pg/mL, based on results obtained in our
untreated patients.
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2.6. Serum Anti-Spike Antibodies

Serum IgG-type antibodies against the spike region of SARS-CoV-2 (S1 subunit) were
studied by chemiluminescent immunoassay of micro-particles (CMIA) in the automated
system ALINITY (Abbott Laboratories, Chicago, IL, USA). Following the instructions for
using the WHO International Standard and Reference Panel for anti-SARS-CoV-2 anti-
body [13,14], anti-spike SARS-CoV-2 antibodies were expressed in binding antibody units
per milliliter (BAU/mL) in this study. For this purpose, arbitrary units per mL (AU/mL)
were converted to BAU/mL using the conversion factor provided by the manufacturer
(1 BAU/mL = 0.142 × AU/mL). Anti-spike IgG antibody titers greater than 50 AU/mL
(i.e., 7.1 BAU/mL) were considered positive by the manufacturer, but titers greater than
260 BAU/mL are protective against SARS-CoV-2 disease, based on recent data [15].

2.7. Persistence of Immune Response to SARS-CoV-2 Vaccines

To evaluate the persistence of immune responses after two vaccine doses, serum
samples obtained from each patient were classified into two groups: samples obtained
between 0 and 90 days after the second vaccine dose (early sample) and samples obtained
beyond 90 days after the second vaccine dose (late sample). The immune response was
considered persistent when determinations were positive before and after 90 days or when
a patient without an early sample presented a positive late sample.

2.8. Statistical Analysis

Analyses were performed using the GraphPad Prism 6.0 software (GraphPad Prism
Inc., La Jolla, CA, USA). Categorical variables were summarized using frequencies (percent-
ages) and were analyzed with the χ2 test. Continuous variables were reported as median
[interquartile range, IQR] and were analyzed with Wilcoxon rank-sum test. Kruskal–Wallis
test was used for between-group comparisons. Associations between demographic, clinical,
and laboratory data and humoral and cellular immune responses were assessed using
Spearman’s rank correlations. Two-tailed p-values < 0.05 were considered significant.

3. Results
3.1. Patients

One hundred and two patients were prospectively included in the study. Baseline
demographic and clinical characteristics are shown in Table 1. Ninety-seven patients were
treated with DMTs: 16 with first-line therapies (FLT), 13 with fingolimod, 15 with cladribine,
seven with natalizumab, 28 with anti-CD20 therapies, and 18 with alemtuzumab.

Table 2 details the duration of treatment, the lymphocyte counts before the first vaccine
dose, and the time elapsed since the last drug dose for anti-CD20 therapies and pulsed
immune reconstitution therapies. Lymphocyte counts before the first vaccine dose were
lower in fingolimod-treated patients and cladribine-treated patients compared to those
treated with other DMTs (p = 0.0001 for both comparisons).

Ninety-two patients (90.2%) were vaccinated with both doses of an mRNA vaccine
(mRNA-1273 or BNT162b2), seven patients (6.9%) were vaccinated with both doses of
ChAdOx1nCoV-19, and three patients (2.9%) were vaccinated with a dose of Ad26.COV2-S
and then a dose of an mRNA vaccine. There were no statistically significant differences
between groups in demographic, clinical, and treatment characteristics. Fifty-two patients
(51%) received a third dose of an mRNA vaccine. However, in all cases, the immune
response was evaluated before the third dose.
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Table 1. Demographic and clinical characteristics.

Characteristics Total Population (n = 102)

Age, median [range] (years) 40.2 [21.1–72.7]

Females, n (%) 64 (62.7)

Time since first MS symptoms, median [range] 8.6 [0.2–35.7]

MS phenotype, n (%)
Relapsing–remitting 82 (80.4)

Secondary progressive 14 (13.7)
Primary progressive 6 (5.9)

EDSS score, median [range] 2.5 [1–8.0]

DMT, n (%)
None 5 (4.9)

First-line therapies 16 (15.7)
Fingolimod 13 (12.7)
Cladribine 15 (14.7)

Natalizumab 7 (6.9)
Ocrelizumab 16 (15.7)

Rituximab 12 (11.8)
Alemtuzumab 18 (17.6)

SARS-CoV-2 vaccine, n (%)
BNT162b2 (Pfizer, New York, NY,

USA/BioNTech, Mainz, Germany) 72 (70.6)

mRNA-1273 (Moderna, Cambridge, MA, USA) 20 (19.6)
AZD1222 (AstraZeneca, Cambridge, UK) 7 (6.9)

JNJ78436735 (Johnson & Johnson, New
Brunswick, NJ, USA) 3 (2.9)

DMT: disease modifying therapy; EDSS: expanded disability status scale; MS: multiple sclerosis.

Table 2. Treatment characteristics at the first vaccine dose.

DMT Treatment Duration, Median
[Range] (Years)

Lymphocyte Count, Median
[Range] × 103 Cells/µL

Time Since Last Infusion,
Median [Range] (Months)

First-line therapies 4.7 [1.2–14.8] 2.06 [0.95–2.97]
Fingolimod 6.4 [1.7–9.5] 0.58 [0.37–1.34]
Cladribine 0.52 [0.2–2.0] 0.99 [0.39–1.60] 4.9 [1.4–20.0]

Natalizumab 2.2 [0.2–8.6] 4.18 [2.24–5.66]
Ocrelizumab 1.6 [0.4–4.2] 1.75 [0.55–2.44] 3.8 [2.2–8.0]

Rituximab 2.1 [0.3–4.2] 1.89 [0.59–2.69] 6.5 [3.6–23.2]
Alemtuzumab 3.6 [0.2–5.7] 1.55 [0.66–2.77] 28.7 [2.5–55.1]

DMT: disease modifying therapy.

3.2. Humoral Immune Response

Fourteen (22.6%) of the 62 patients with available pre-vaccination serological analysis
were positive for IgG anti-SARS-CoV-2 antibodies as a result of previous infection, but only
two had protective titers. After two doses of a SARS-CoV-2 vaccine, 84 (82.4%) patients had
positive anti-SARS-CoV-2 IgG titers, and 65 (63.7%) of them reached protective titer levels.

Post-vaccination anti-SARS-CoV-2 IgG titers by DMTs are represented in Figure 1A.
Patients undergoing fingolimod and anti-CD20 therapies had a markedly lower humoral
response than those treated with other DMTs. Eight of 13 (61.5%) patients receiving fin-
golimod had positive anti-SARS-CoV-2 IgG titers, and three of 13 (23.1%) achieved pro-
tective levels. The median anti-SARS-CoV-2 IgG titer in patients with fingolimod was
21.5 [3.4–160.6] BAU/mL in comparison with 717.8 [87.6–2287.8] BAU/mL in patients with
other DMTs (p = 0.0001). Likewise, seven of 16 (44%) patients under ocrelizumab had positive
anti-SARS-CoV-2 IgG titers, and three of 16 (19%) had protective levels. The median titer was
6.0 [1.2–231.8] BAU/mL, clearly lower than those in patients with other DMTs (p = 0.0001).
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Similarly, eight of 12 (66.7%) patients receiving rituximab had positive anti-SARS-CoV-2 IgG
titers, and five of 12 reached protective levels. The median titer of 106.3 [4.5–384.4] BAU/mL
was again lower than those in patients with other DMTs (p = 0.0001).
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Figure 1. Post-vaccination anti-SARS-CoV-2 IgG titers (A) and IFN-γ levels (B) by disease-modifying
therapy. (A) The lower dotted line marks anti-spike IgG antibody titers considered positive
(7.1 BAU/mL), and the upper dotted line marks anti-spike IgG antibody titers considered protective
(260 BAU/mL). (B) Dotted line marks IFN-γ levels of 80 pg/mL that were considered positive. ALEM:
alemtuzumab; CLAD: cladribine; FING: fingolimod; FLT: first-line therapies; NATA: natalizumab;
NTP: non-treated patients; OCRE: ocrelizumab; RITU: rituximab.

3.3. Cellular Immune Response

Thirteen (21%) of the 62 patients with available pre-vaccination IFN-γ quantification
had levels ≥80 pg/mL due to a previous infection. After two doses of a SARS-CoV-2
vaccine, 81 of the 92 patients with an IFN-γ determination had levels ≥80 pg/mL, with a
median value of 876.9 [270.7–2764] pg/mL.

Post-vaccination IFN-γ levels in patients classified according to their DMTs are repre-
sented in Figure 1B. Patients with fingolimod had lower IFN-γ levels than those receiving
other DMTs (25.8 pg/mL vs. 868.7 pg/mL, p = 0.011). There were no other significant
differences between DMTs.

The concordance between cellular and humoral responses is represented in Figure 2.
Thirteen patients receiving ocrelizumab, seven receiving rituximab, and seven receiving
fingolimod who had anti-SARS-CoV-2 IgG titers < 260 BAU/mL had a positive cellular
response with IFN-γ levels ≥ 80 pg/mL. We found no correlation between anti-SARS-CoV-2
IgG titers and IFN-γ levels (rho = 0.18, p = 0.08).

3.4. Persistence of Humoral and Cellular Immune Responses

The median time between the second dose of the vaccine and sample extraction was
42 [28.5–51.5] days for the early samples and 140 [124–177] for the late samples. After
two doses of a SARS-CoV-2 vaccine in the early samples, 53/80 (66.3%) patients had anti-
SARS-CoV-2 IgG titers ≥ 260 BAU/mL, and 66/75 (88%) had IFN-γ levels ≥ 80 pg/mL.
Twenty-six of the 41 patients (63.4%) with a late sample showed persistent protective
levels of IgG anti-SARS-CoV-2 antibodies, and 18/22 (81.8%) IFN-γ levels higher than
80 pg/mL. When quantitative values were explored, we observed higher antibody titers
in early (n = 89) compared to late (n = 40) samples (855.6 [218.6–2549] BAU/mL vs.
269.7 [132.4–977.3] BAU/mL, respectively, p = 0.03). Likewise, values of IFN-γ decreased
from 855.6 [218.6–2549] pg/mL in the early samples to 269.7 [132.4–977.3] pg/mL in the
late samples (p = 0.005).



Vaccines 2023, 11, 786 6 of 12

Vaccines 2023, 11, x FOR PEER REVIEW 6 of 13 
 

 

fingolimod who had anti-SARS-CoV-2 IgG titers < 260 BAU/mL had a positive cellular 

response with IFN-γ levels ≥ 80 pg/mL. We found no correlation between anti-SARS-CoV-

2 IgG titers and IFN-γ levels (rho = 0.18, p = 0.08). 

 

Figure 2. Concordance between cellular and humoral responses. Black dots indicate patients who 

developed a protective humoral response. Red dots indicate patients who did not develop a protec-

tive humoral response. Dotted line marks IFN-γ levels of 80 pg/mL that were considered positive. 

ALEM: alemtuzumab; CLAD: cladribine; FING: fingolimod; FLT: first-line therapies; NATA: natali-

zumab; NTP: non-treated patients; OCRE: ocrelizumab; RITU: rituximab. 

3.4. Persistence of Humoral and Cellular Immune Responses 

The median time between the second dose of the vaccine and sample extraction was 

42 [28.5–51.5] days for the early samples and 140 [124–177] for the late samples. After two 

doses of a SARS-CoV-2 vaccine in the early samples, 53/80 (66.3%) patients had anti-SARS-

CoV-2 IgG titers ≥ 260 BAU/mL, and 66/75 (88%) had IFN-γ levels ≥ 80 pg/mL. Twenty-six 

of the 41 patients (63.4%) with a late sample showed persistent protective levels of IgG 

anti-SARS-CoV-2 antibodies, and 18/22 (81.8%) IFN-γ levels higher than 80 pg/mL. When 

quantitative values were explored, we observed higher antibody titers in early (n = 89) 

compared to late (n = 40) samples (855.6 [218.6–2549] BAU/mL vs. 269.7 [132.4–977.3] 

BAU/mL, respectively, p = 0.03). Likewise, values of IFN-γ decreased from 855.6 [218.6–

2549] pg/mL in the early samples to 269.7 [132.4–977.3] pg/mL in the late samples (p = 

0.005). 

We next studied changes in patients classified according to DMTs. Results are shown 

in Figure 3. Antibody levels were moderately lower in the late samples of patients treated 

with natalizumab (p = 0.03), alemtuzumab (p = 0.04), or FLT (p = 0.005). No significant 

decreases were observed in untreated patients or those treated with cladribine. Finally, 

levels were low in early or late samples of most patients treated with anti-CD20 antibodies 

or fingolimod. 

Figure 2. Concordance between cellular and humoral responses. Black dots indicate patients who
developed a protective humoral response. Red dots indicate patients who did not develop a protec-
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ALEM: alemtuzumab; CLAD: cladribine; FING: fingolimod; FLT: first-line therapies; NATA: natal-
izumab; NTP: non-treated patients; OCRE: ocrelizumab; RITU: rituximab.

We next studied changes in patients classified according to DMTs. Results are shown in
Figure 3. Antibody levels were moderately lower in the late samples of patients treated with
natalizumab (p = 0.03), alemtuzumab (p = 0.04), or FLT (p = 0.005). No significant decreases
were observed in untreated patients or those treated with cladribine. Finally, levels were low
in early or late samples of most patients treated with anti-CD20 antibodies or fingolimod.

Figure 3. Anti-SARS-CoV-2 IgG titers (A) and IFN-γ levels (B) in the early and late samples of patients
classified according to their DMTs. (A) Dotted line marks anti-spike IgG antibody titers considered
protective (260 BAU/mL). (B) Dotted line marks IFN-γ levels of 80 pg/mL that were considered positive.
ACD20: anti-CD20 therapies; ALE: alemtuzumab CLAD: cladribine; E: early sample; FIN: fingolimod;
FLT: first-line therapies; L: late sample; NAT: natalizumab; NTP: non-treated patients.
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Moreover, in most patients receiving induction therapies or natalizumab and in non-
treated patients, anti-SARS-CoV-2 IgG titers remained above protective levels (Figure 3A).
In the case of the cellular immune response, all patients except those treated with fingolimod
showed persistent protective IFN-γ levels in the late sample (Figure 3B). In some cases,
patients treated with fingolimod had an early protective cellular response, but median
IFN-γ levels decreased from 201.42 to 9.47 pg/mL (p = 0.04) in the late samples.

3.5. Variables Affecting Humoral and Cellular Immune Response to SARS-CoV-2 Vaccines

Demographic, clinical, and laboratory data that could affect vaccines’ immune re-
sponse were studied. Age weakly correlated with post-vaccination anti-SARS-CoV-2
IgG titers (rho = −0.32, p = 0.001) but not with IFN-γ levels (rho = 0.13, p = 0.22). Dis-
ability measured with the EDSS score did not correlate with either humoral or cellular
immune responses. Absolute lymphocyte counts classified into three grades (>800 cells/µL,
500–799 cells/µL, and <500 cells/µL) in relation to post-vaccination anti-SARS-CoV-2 IgG
titers and IFN-γ levels by DMT are presented in Figure 4. There was no correlation between
humoral or cellular immune response and the lymphocyte counts in patients treated with
fingolimod, cladribine, alemtuzumab, or anti-CD20 therapies.
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Figure 4. Post-vaccination anti-SARS-CoV-2 IgG titers (A) and IFN-γ levels (B) in relation to absolute
lymphocyte counts: >800 cells/µL (gray dot), 500–799 cells/µL (red dot) and <500 cells/µL (green dot).
(A) The lower dotted line marks anti-spike IgG antibody titers considered positive (7.1 BAU/mL),
and the upper dotted line marks anti-spike IgG antibody titers considered protective (260 BAU/mL).
(B) Dotted line marks IFN-γ levels of 80 pg/mL that were considered positive. ALEM: alemtuzumab;
CLAD: cladribine; FING: fingolimod; FLT: first-line therapies; NATA: natalizumab; NTP: non-treated
patients; OCRE: ocrelizumab; RITU: rituximab.

For patients under treatment with alemtuzumab, cladribine, or anti-CD20 therapies,
the effect of the time elapsed between the last dose and the vaccination on the immune
response to SARS-CoV-2 was analyzed. We found no correlation between humoral or
cellular immune responses and the time elapsed since the last drug dose. No significant
differences were found in anti-SARS-CoV-2 IgG titers or IFN-γ levels between relapsing
and progressive MS patients. Along the same lines, we found no statistical differences in
the humoral or cellular responses of the 20 patients treated with anti-CD20 therapies who
had a progressive course and the 11 with a relapsing course.

Since prior SARS-CoV-2 infection influences immune responses to SARS-CoV-2 vac-
cines, we separately analyzed patients recovered from COVID-19 and observed that they
had significantly higher post-vaccination anti-SARS-CoV-2 IgG titers than patients without
prior COVID-19 (2329 vs. 439.4 BAU/mL, p = 0.005). When we analyzed pre-vaccination N-
reactive T-cell responses, patients recovered from COVID-19 had significantly higher IFN-γ
levels than patients without prior COVID-19. After receiving a full course of a SARS-CoV-2
vaccine, IFN-γ levels progressively decreased in both groups of patients, although they
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remained statistically higher in patients with previous COVID-19 (Figure 5A). Meanwhile,
IFN-γ levels measured after in vitro stimulation with S-peptide showed a progressive
increase after vaccination in both previously infected and uninfected patients (Figure 5B),
with no statistical difference between them.
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Finally, we analyzed the influence of COVID-19 vaccine type on vaccination-induced
immune responses and found no differences in anti-SARS-CoV-2 IgG titers or IFN-γ levels
between vaccine types.

3.6. Association between Anti-SARS-CoV-2 IgG titers, IFN-γ T-Cell-Specific Response, and
Subsequent COVID-19

During a median follow-up of 303 [IQR 253–315] days after receiving the first dose of a
SARS-CoV-2 vaccine, 14 patients suffered post-vaccination COVID-19: two patients with no
DMT, three of 16 patients with FLT, two of 16 with ocrelizumab, two of 14 with rituximab,
two of 15 with cladribine, one of 13 with fingolimod, two of 18 with alemtuzumab, and
none of seven patients with natalizumab. There was no significant difference in COVID-19
rates between these groups. The only patient with COVID-19 requiring hospitalization
for oxygen and dexamethasone after vaccination was on fingolimod and had very low
post-vaccination anti-SARS-CoV-2 IgG titers and only moderate IFN-γ production. The
remaining cases of COVID-19 were mild, regardless of the DMT they received.

We found no association between anti-spike SARS-CoV-2 titers or IFN-γ levels and
subsequent COVID-19, but all cases occurred more than 3 months after the second vaccine
dose, when humoral and cellular immune responses tend to be lower.

4. Discussion

We analyzed the humoral and cellular immune responses to SARS-CoV-2 vaccination
and the long-term persistence of the immune responses in MS patients who received differ-
ent DMTs from the available therapeutic arsenal. In addition, we studied the protective
role of these vaccine-induced immune responses against subsequent COVID-19 during a
one-year observation period.
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Although neutralizing antibodies are associated with protective immunity against
subsequent COVID-19, vaccine-induced T-cell responses are believed to play an essential
role in the prevention of following SARS-CoV-2 infections [16]. Since the availability
of COVID-19 vaccination, there have been studies that reported increasing evidence of
specific anti-SARS-CoV-2 antibody responses in MS patients receiving different DMTs [6–8].
However, they have some limitations, as they mainly studied a few DMTs. In addition,
there are differences or contradictory results related to the sensitivity of the assays used to
detect the specific anti-SARS-CoV-2 antibodies and the units used to express antibody titers.
Furthermore, only a few studies reported the effects of some DMTs on cellular immune
responses upon vaccination [10,17–19]. Finally, the persistence of the immune response
and its protective role in the prevention of COVID-19 remains to be clearly established.

This study demonstrated normal humoral and T-cell responses to COVID-19 vacci-
nation in patients treated with FLT, natalizumab, cladribine, and alemtuzumab. In fact,
these groups of patients showed anti-SARS-CoV-2 IgG titers and IFN-γ levels similar to
those reported in the literature for healthy individuals [10,20]. In contrast, as previously
described, we found lower anti-spike IgG SARS-CoV-2 titers in patients who received
fingolimod, rituximab, and ocrelizumab, compared to patients treated with the other DMTs
and non-treated patients. However, robust antigen-specific T-cell responses were detected
in all patients except those treated with fingolimod. This effect was independent of the time
from the last treatment administration in the case of anti-CD20 therapies, cladribine and
alemtuzumab, and was also independent of the absolute lymphocyte count at the moment
of vaccination.

Previous SARS-CoV-2 infection has been reported to positively influence vaccine-
induced antibody responses in the general population [21–23]. Our study demonstrated
that this humoral immune response exhibits similar dynamics in MS patients, showing
that COVID-19-recovered vaccinees had significantly higher antibody titers than SARS-
CoV-2-naïve vaccinees. Response against N-peptide was higher in previously infected
than in uninfected vaccinated patients, but pre-vaccination IFN-γ levels decreased in post-
vaccination samples, implying that infection-acquired immune responses are lost over time.
However, consistent with previous reports in healthcare workers [23], no differences in
vaccine-induced S-reactive T-cell responses were observed between previously infected and
uninfected vaccinated patients, confirming that vaccines are capable of mounting strong
and long-lasting T-cell immune responses in both groups. Indeed, since S protein is the
target of the mRNA and adenovirus-based vaccines used in our study, analysis of S-reactive
T-cell responses allows monitoring of vaccine-induced immunity but does not distinguish
between immune responses triggered by vaccination and those induced by infection. In
contrast, N-reactive T-cell responses can be observed in COVID-19-recovered vaccinees
but not in SARS-CoV-2-naïve vaccinees, thus allowing differentiation between vaccinated
individuals with or without prior COVID-19.

It is widely believed that antibodies can be a useful surrogate marker of CD4+ T-cell
responses after most vaccinations. It is difficult to measure virus-specific T cells on a massive
scale, so correlations between antibodies and T cells are of great interest [16]. However,
in the specific case of COVID-19 patients, a recent study found that anti-SARS-CoV-2 IgG
titers were not a surrogate indicator of the magnitude of memory T cells [24], suggesting
that simple antibody diagnostic tests are not a robust indicator of protective immunity in
people previously infected with SARS-CoV-2. Our study also found no correlation between
anti-SARS-CoV-2 IgG titers and IFN-γ levels. This is important in patients treated with
antiCD20 antibodies, which had been considered to have a defective response to the virus
based on antibody data [6,17] but have a good cellular response as validated here.

We also analyzed the persistence of the immune response to SARS-CoV-2 vaccines in
patients with MS. This is important since new waves of the infection arise periodically, and
although this could be attributed to the new variants, a decrease in the effector immune
response could also contribute to this periodic rebound in new cases. Our study revealed a
decrease in vaccine-induced anti-SARS-CoV-2 IgG antibodies at mid-term follow-up in all
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subgroups of DMTs, but most patients who received induction DMTs or natalizumab and
non-treated patients remained protected. A decreasing immune response several months
after the second dose of BNT162b2 has been described in a longitudinal observational study
in healthy employees at a German hospital [20] and a retrospective study of COVID-19-
confirmed convalescent patients with MS [25].

Interestingly, we showed that cell-mediated immunity is maintained above protective
levels in all DMT subgroups except fingolimod. This could account for the low proportion
of MS patients (14 out of 102) suffering a subsequent COVID-19 and the mild disease course
observed in most cases. In our study, the only patient who required hospitalization was on
fingolimod treatment and had not developed humoral or cellular protective responses after
SARS-CoV-2 vaccination. Moreover, 3 months after the second vaccination (when antibody
and cellular immune responses were high), no patients suffered COVID-19.

No association between SARS-CoV-2 titers or IFN-γ levels and subsequent COVID-19
was demonstrated in our study. This may be because most of our patients with post-
vaccination COVID-19 were infected with the Omicron variant, given their symptoms and
the timing of their presentation. Results from a recently published study [26] show that
vaccine efficacy against symptomatic disease is lower for Omicron, so more vaccinated
individuals are likely to develop COVID-19 due to Omicron [27]. However, this could
also be due to the time at which we monitored the immune response, in the period of
1 and 3 months after the second vaccine dose in most patients. This could indicate that
humoral and cellular immune response assessed in the first trimester after vaccination do
not give an idea of later protection against COVID-19 infection. This should be considered
for patients at higher risk (SPMS or older age). However, the maintenance of protective
cellular response could account for the benign course of new COVID-19 infections, except
in cases of patients treated with fingolimod.

Our study has some limitations. First, the small size of the different cohorts of DMTs
restricts the comparison of vaccine-induced immune responses between groups. Second,
the timing of sample collection after vaccination was not homogeneous among patients.
Despite these limitations, we believe that our findings are relevant to expanding knowledge
about immune responses to COVID-19 vaccination and subsequent protection against
SARS-CoV-2 infection.
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