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Abstract: Hyperhomocysteinemia (HHcy) is an independent risk factor for cardiovascular and cere-
brovascular diseases where the plasma homocysteine (Hcy) concentration exceeds 15 µmol/L. HHcy
is affected by vitamins B12, B6, and folic acid (fol); however, its relationship with other nutrients
is not fully understood. We investigated the nutritional and genetic factors associated with HHcy
and the possible dose–response relationships or threshold effects in patients in Northeast China.
Genetic polymorphisms and micronutrients were tested with polymerase chain reaction and mass
spectrometry, respectively. This trial was registered under trial number ChiCTR1900025136. The
HHcy group had significantly more males and higher body mass index (BMI), methylenetetrahydro-
folate reductase (MTHFR 677TT) polymorphism proportion, and uric acid, Zn, Fe, P, and vitamin
A levels than the control group. After adjusting for age, sex, BMI, vitamin B12, fol, and MTHFR
C677T, the lowest Zn quartile reduced the odds ratio of HHcy compared with the highest Zn quartile.
The dose–response curves for the association between plasma Zn and HHcy were S-shaped. High
plasma Zn concentrations were significantly correlated with high HHcy odds ratios, and the curve
leveled off or slightly decreased. Most importantly, HHcy risk decreased with decreasing plasma
Zn concentration; the threshold was 83.89 µmol/L. Conclusively, individuals residing in Northeast
China, especially those with the MTHFR 677TT polymorphism, must pay attention to their plasma
Zn and Hcy levels.
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1. Introduction

Homocysteine (Hcy) is a sulfur-containing amino acid and an intermediate metabolite
of methionine and cysteine, mainly through remethylation and sulfuration [1]. In the
physiological state, Hcy levels in the body are maintained at 5–15 µmol/L [2]. Many factors,
such as heredity, medicine use, diseases, and living habits, may lead to increased Hcy
levels (>15 µmol/L), resulting in hyperhomocysteinemia (HHcy) [3]. HHcy is considered
a cytotoxic factor associated with various diseases such as coronary heart disease, stroke,
Alzheimer’s disease, peripheral vascular disease, cancer, diabetes, and osteoporosis [4–6].
Furthermore, numerous epidemiological reports have established HHcy as an independent
risk factor for cardiovascular disease, cerebrovascular disease, dementia-type disorders,
and associated fractures [7–9].

During remethylation, Hcy can be methylated twice via two different pathways.
First, methylenetetrahydrofolate reductase (MTHFR) reduces 5,10-methyltetrahydrofolate
(MTHF) to form 5-MTHF [10]. Then 5-MTHF, assisted by the cofactor vitamin B12, adds
a methyl group to Hcy, which again produces methionine. This requires the key enzyme
methionine synthase reductase (MTRR) [11,12].

More than 40 polymorphism sites are present in MTHFR [13], of which C677T and
A1298C are the most impactful [14]. Compared with the 677CC genotype, the 677TT
genotype shows approximately 34% MTHFR activity, while the heterozygote 677CT shows
approximately 65% MTHFR activity [15]. In MTRR, the most important polymorphism is
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A66G [16], which regulates Hcy levels through DNA hypomethylation [17]. Polymorphisms
differ between distinct geographical areas and ethnic populations [18–20].

Folic acid (fol) is a water-soluble vitamin involved in nucleic acid synthesis, DNA
methylation, repair, cell division, and embryonic development [21–23]. Hcy remethylation
and trans-sulfur pathways require vitamins B12 and B6 as coenzymes, respectively. A
two-month-long, randomized, double-blind study found that vitamin D supplementation
decreased hypertension and reduced Hcy levels [24].

Minerals also greatly influence the occurrence of diseases; for example, Zn [25], Fe [26],
and Mg [27] are related to atherosclerosis and vasospasm [28]. Further, minerals are
involved in the complex physiological reactions in the body, serving as components of
some metabolic enzymes or as auxiliary factors regulating enzyme activity. For example, Zn
regulates the activity of more than 100 enzymes [28,29]. However, there are few studies that
have elucidated whether minerals are relevant factors influencing Hcy metabolic enzymes.
Sadako Matsui’s [30] cross-sectional study showed that Zn was negatively correlated to
log Hcy in men, but not in women. Esfandiar Heidarian [31] conducted a randomized,
double-blind, controlled, crossover study which showed that Zn supplementation reduced
serum Hcy and increased vitamin B12 and fol concentrations in T2DM patients with
microalbuminuria. However, Véronique Ducros [32] showed that Zn supplementation did
not modify Hcy, vitamin B12, or RBC fol values in aging healthy people.

Therefore, in this study, we aimed to investigate the relationship between plasma
Hcy levels and genetic variation in MTHFR and MTRR in patients from Northeast China.
In addition, as several vitamins play key roles in the metabolism of Hcy, we studied the
relationship between vitamin levels and HHcy. Moreover, we explored the nutritional and
genetic factors associated with HHcy and the potential dose–response relationships and
threshold effects.

2. Materials and Methods
2.1. Study Participants

From June 2019 to December 2020, according to the inclusion and exclusion criteria,
203 participants were enrolled at the clinical nutrition department of Shengjing Hospi-
tal, China Medical University (Shenyang, China). Specific study inclusion requirements
were no serious organic disease, independent mobility, clear awareness, and voluntary
participation. Exclusion criteria were severe organ lesions, immobility, and unconscious-
ness. No age or sex restrictions were laid. All participants were tested for HHcy through
the enzyme cycle method and divided into the normal (plasma Hcy 5–15 µmol/L) and
HHcy (plasma Hcy > 15 µmol/L) groups [14]. Then, 135 healthy individuals (control
group) and 68 patients (HHcy group) were included in the study. This study fulfilled the
principles of the Declaration of Helsinki and was approved by the ethics committee at
Shengjing Hospital of China Medical University, China, and registered with a trial number
ChiCTR1900025136. All participants received written informed consent to use their clinical
data for research purposes.

2.2. Experimental Instruments and Reagents

Fasting venous samples (5 mL) were collected from all subjects in the morning, and
plasma was centrifuged after anticoagulant treatment (3000 rpm for 15 min). A nucleic acid
extraction reagent (EE201-01) was purchased from TransGen Biotech (Beijing, China) and a
human MTHFR gene detection kit was purchased from Wuhan Youzhiyou Medical Tech-
nology (Wuhan, China). Polymerase chain reaction (PCR) amplification devices (7500-fast,
ABI, Alameda, CA, USA) were used in this study. Hcy and other nutrients were completed
in the clinical laboratory of Shengjing Hospital according to clinical testing standards.
Plasma Hcy levels were determined through chemiluminescence using a commercial kit
(Jiuqiang Biological Company, Beijing, China) and an automatic chemiluminassay analyzer
(Abbott-i16200, Shanghai, China), following the detection methods reported by Yin [33,34].
Plasma Zn, Cu, Ca, P, Mg, and Pb levels were determined using an atomic absorption
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spectrometer (Jingbohui Biotechnology Company, Beijing, China), following the method
by Komarova [35,36]. Plasma vitamin A, vitamin D, fol, and vitamin B12 levels were
determined using an automatic electrochemiluminescence immune analyzer (Roche, Cobas
e601E-E, Shanghai, China), following the method by Stokes [37–39] and its companion
Detection special kit, in strict accordance with the Electrochemistry Luminescence method,
instrument operating specifications, and detection kit instructions.

2.3. Sample Collection, DNA Preparation, and MTHFR Genotyping

The exfoliated cells were collected with disposable oral swabs and subjected to DNA
extraction using a commercial DNA extraction kit, following the manufacturers’ instruc-
tions. The extracted DNA was stored at −20 ◦C. The PCR amplification conditions were
37 ◦C for 10 min, 95 ◦C for 5 min, 95 ◦C for 15 s (40 cycles), and 60 ◦C for 60 s. The
fluorescence channel settings used were FAM, VIC, and ROX. According to the compari-
son of the two fluorescence signal intensities, the genotype was determined as wild-type,
heterozygous, or homozygous (Figure 1).Nutrients 2023, 15, x FOR PEER REVIEW 4 of 12 

 

 

 
Figure 1. MTHFR genotyping. The wild−type genotypes include MTHFR 677CC, MTHFR 1298AA, 
and MTRR 66AA; the heterozygous genotypes include MTHFR 677CT, MTHFR 1298AC, and MTRR 
66AG; and the homozygous genotypes include MTHFR 677TT, MTHFR 1298CC, and MTRR 66GG; 

Figure 1. MTHFR genotyping. The wild−type genotypes include MTHFR 677CC, MTHFR 1298AA,
and MTRR 66AA; the heterozygous genotypes include MTHFR 677CT, MTHFR 1298AC, and MTRR
66AG; and the homozygous genotypes include MTHFR 677TT, MTHFR 1298CC, and MTRR 66GG;
t represents the FAM fluorescence channel, c represents the VIC fluorescence channel, and ROX
represents internal reference.
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2.4. Statistical Analysis

The statistical software SPSS 20 (IBM Corp., Armonk, NY, USA) was used for data
processing and statistical analyses. Results with p < 0.05 were considered significant. The
chi-square or Fisher’s exact tests were used for categorical variables, and a one-way analysis
of variance was used for continuous variables. Odds ratios (ORs) with 95% confidence
intervals were estimated using logistic regression analysis. We also used restricted cubic
splines (RCSs) to test for linearity and explore the shape of the dose–response effect between
plasma Zn concentration and HHcy.

3. Results
3.1. Participant Characteristics

The characteristics of the 203 participants are listed in Table 1. According to the
criteria of plasma Hcy concentration >15 µmol/L, 68 patients had HHcy (HHcy group).
Additionally, 135 healthy individuals (control group) were included. The average plasma
Hcy concentration was 35.89 and 9.26 µmol/L in the HHcy and control groups, respectively.
The HHcy group had more male and overweight/obese participants and showed higher
alkaline phosphatase (ALKP) and uric acid (UA) levels than the control group. The MTHFR
C677T mutation distribution was significantly different between the groups (p < 0.001). The
HHcy group had more proportion of participants with MTHFR 677TT type than the control
group (51.50 vs. 22.20%). There was no significant difference in MTHFR 1298 and MTRR 66
mutations between the groups (p = 0.083 and p = 0.853, respectively).

Table 1. Characteristics of the control and HHcy group participants.

Index Control (n = 135) HHcy Group (n = 68) p-Value

Sex 0.000
Male, n (%) 62 (45.9%) 51 (75.0%)

Female, n (%) 73 (54.1%) 17 (25.0%)
Age, years (± SD) 24.72 ± 18.05 27.22 ± 14.84 0.057
Height, cm (± SD) 153.71 ± 19.32 164.64 ± 30.45 0.631
Weight, kg (±SD) 53.00 ± 21.89 69.20 ± 26.28 0.138

BMI ± SD 21.40 ± 5.58 24.56 ± 7.16 0.001
BMI Group 0.021

BMI < 18.5, n (%) 44 (32.60%) 13 (19.10%)
18.5 ≤ BMI ≤ 23.9, n (%) 50 (37.00%) 28 (41.20%)

24 ≤ BMI ≤ 28, n (%) 22 (16.30%) 7 (10.30%)
BMI > 28, n (%) 19 (14.10%) 20 (29.40%)

ALKP, U/L (± SD) 159.61 ± 85.03 131.89 ± 74.16 0.023
UA, mmol/L (±SD) 410.61 ± 72.17 475.43 ± 116.52 <0.001
Hcy, µmol/L (± SD) 9.26 ± 2.74 35.89 ± 20.11 <0.001

MTHFR 677 <0.001
CC, n (%) 28 (20.70%) 5 (7.40%)
CT, n (%) 77 (57.00%) 28 (41.20%)
TT, n (%) 30 (22.20%) 35 (51.50%)

MTHFR 1269 0.083
AA, n (%) 94 (69.63%) 57 (83.80%)
AC, n (%) 36 (26.67%) 10 (14.70%)
CC, n (%) 5 (3.70%) 1 (1.50%)
MTRR 66 0.853
AA, n (%) 70 (51.85%) 35 (51.50%)
AG, n (%) 56 (41.48%) 27 (39.70%)
GG, n (%) 9 (6.70%) 6 (8.80%)

BMI, body mass index; ALKP, alkaline phosphatase; UA, uric acid; Hcy, homocysteine; HHcy, hyperhomocysteine-
mia; MTHFR, methylenetetrahydrofolate reductase; MTRR, methionine synthase reductase; SD, standard deviation.

3.2. Comparison of Hcy Concentration among Different Genotypes

Table 2 shows an overall comparison of Hcy concentrations for different genotypes
and a comparison of Hcy concentrations in gender subgroups. The results of all Hardy–
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Weinberg tests were p > 0.05. Hcy levels were significantly higher in the MTHFR 677TT
group than in the MTHFR 677CC or MTHFR 677CT groups. This difference was significant
in the total and male groups (p < 0.001), but not statistically significant in the female group
(p = 0.095). However, there were no significant differences in the Hcy levels in the wild-type,
heterozygous, and homozygous MTHFR A1298C and MTRR A66G groups, indicating that
Hcy levels were affected by the MTHFR C677T polymorphism, instead of MTHFR A1298C
or MTRR A66G.

Table 2. Comparison of Hcy concentrations among different genotypes in sex subgroups.

Genotype n
Hcy Concentrations (µmol/L)

p-Value 1 p-Value 2 p-Value 3

Total Male Female

MTHFR 677 CC 33 11.40 ± 7.39 11.97 ± 6.33 10.86 ± 8.45
<0.001 <0.001 0.095MTHFR 677 CT 105 14.22 ± 11.39 15.56 ± 10.30 12.63 ± 8.49

MTHFR 677 TT 65 28.01 ± 23.54 33.38 ± 14.39 19.41 ± 9.64
MTHFR 1298 AA 151 19.46 ± 18.17 23.53 ± 8.11 14.52 ± 7.97

0.196 0.107 0.911MTHFR 1298 AC 46 14.54 ± 14.47 14.91 ± 8.96 14.07 ± 7.53
MTHFR 1298 CC 6 13.74 ± 6.38 16.64 ± 7.97 10.84 ± 3.31

MTRR 66 AA 105 17.00 ± 14.56 20.81 ± 6.79 12.49 ± 9.12
0.526 0.695 0.408MTRR 66 AG 83 19.03 ± 20.36 20.99 ± 7.09 16.71 ± 9.46

MTRR 66 GG 15 21.64 ± 16.42 26.19 ± 8.10 12.55 ± 7.16
1 Comparison of Hcy concentrations in different subtypes of the same gene. 2 Comparison of Hcy concentrations
in different subtypes of the same gene in male. 3 Comparison of Hcy concentrations in different subtypes of the
same gene in female.

3.3. Nutrient Differences among Participants

Table 3 shows the nutrient differences between the control and HHcy groups. The
HHcy group had significantly higher plasma Zn, Fe, and vitamin A levels than the control
group. In addition, the HHcy group had significantly lower plasma fol, vitamin B12, and P
levels than the control group. There were no significant differences in plasma vitamin D,
Pb, Cu, Ca, and Mg levels between the two groups.

Table 3. Nutrient differences between the control and HHcy groups.

Characteristics Control (n = 135) HHcy Group (n = 68) p-Value

Vitamin D, ng/mL (±SD) 22.55 ± 10.04 20.56 ± 8.61 0.160
Zn, µmol/L (±SD) 83.57 ± 12.79 90.54 ± 11.71 <0.001

Vitamin B12, pg/mL (±SD) 478.19 ± 241.07 266.62 ± 146.63 <0.001
fol, ng/mL (±SD) 9.76 ± 5.04 6.38 ± 3.29 <0.001
Fe, µmol/L (±SD) 15.65 ± 5.30 17.45 ± 5.03 0.020

Pb, ug/L (±SD) 24.16 ± 6.55 24.13 ± 6.42 0.970
Cu, µmol/L (±SD) 14.93 ± 3.09 14.38 ± 2.10 0.190
Ca, mmol/L (±SD) 2.34 ± 0.09 2.33 ± 0.08 0.350
Mg, µmol/L (±SD) 1.06 ± 1.50 0.93 ± 0.06 0.490

Vitamin A, pg/mL (±SD) 496.18 ± 54.47 536.08 ± 111.54 0.001
P, mmol/L (±SD) 1.39 ± 0.25 1.32 ± 0.22 0.040

Zn, zinc; fol, folic acid; Fe, iron; Pb, plumbum; Cu, copper; Ca, calcium; Mg, magnesium; P, phosphorus.

3.4. Associations between Zn and HHcy ORs

Table 4 shows the associations between Zn and HHcy ORs. Plasma Zn levels were
divided into four quartiles. Model 1 was an unadjusted model; Model 2 was adjusted for
age, sex, and body mass index (BMI); and Model 3 was further adjusted for vitamin B12,
fol, and MTHFR C677T. All three models indicated that Q1 had a significantly lower HHcy
risk than Q4.
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Table 4. Associations between Zn and the HHcy odds ratio.

Quartiles of Plasma Zn (µmol/L)

Model
Q1 Q2 Q3 Q4

p-Value
(<78.06) (78.06–83.89) (83.89–93.06) (≥93.06)

Control/HHcy 44/7 35/16 30/21 26/24 0.419
Model 1 0.172 (0.065, 0.455) 0.495 (0.220, 1.114) 0.758 (0.345, 1.665) 1 (ref.) 0.003
Model 2 0.273 (0.092, 0.813) 0.631 (0.258, 1.54) 1.131 (0.468, 2.733) 1 (ref.) <0.001
Model 3 0.148 (0.034, 0.646) 1.159 (0.376, 3.571) 1.137 (0.386, 3.354) 1 (ref.) <0.001

Model 1, unadjusted; Model 2, adjusted for age, sex, and body mass index; Model 3, further adjusted for vitamin
B12, folic acid, and MTHFR C677T.

3.5. Dose–Response Association between Plasma Zn Level and HHcy Risk

The spline regression model showed that the HHcy OR increased significantly when
plasma Zn concentration was >83.89 µmol/L. Correspondingly, when plasma Zn was
<83.89 µmol/L, the HHcy OR decreased significantly (Figure 2).
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MTHFR C677T were adjusted.

4. Discussion

The incidence of hypertension and cardiovascular diseases in Shenyang is higher than
that in other cities in China [40]. HHcy is an independent risk factor for cardiovascular and
cerebrovascular diseases, but studies on its relationship with nutrients are scarce. Therefore,
using clinical data from a large tertiary care hospital, we investigated the genetic and
nutritional factors associated with HHcy.

We observed that more males were in the HHcy group than in the control group, as in
the study by Yating Yang [41]. They enrolled 330 Han Chinese patients with schizophrenia
(SZ) and 190 healthy controls and found that male sex and older age were independent risk
factors for HHcy in patients with SZ. This sex-related difference may have been caused by
genetic factors or hormone levels. Similarly, our study showed the HHcy group to be older
than the control group, but not significantly.

In addition to sex and age, the HHcy group showed a higher BMI. Kittisak Thaw-
nashom [42] included 149 Thai overweight/obese and 113 control participants to analyze
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the association between the MTHFR C677T polymorphism and plasma Hcy, fol, and vitamin
B12 concentrations. They found that the overweight/obese group had higher Hcy levels
than the control group. Furthermore, Gallistl [43] enrolled 84 children and adolescents to
assess the association among plasma Mg concentration, the MTHFR C677T mutation, and
metabolic risk factors for coronary heart disease (CHD). Their results also showed that after
adjusting for age and sex, Hcy levels were significantly correlated with BMI.

The prevalence of MTHFR C677T mutation was significantly higher and that of
MTHFR A1298C was lower in our study than in Boyi Yang’s [44] study. Additionally,
there was little difference in the prevalence of MTRR A66G between the two studies. It
should be noted that the Hcy levels in MTHFR 1298CC homozygous mutants were sig-
nificantly lower than that in the wild-type 1298AA. Similar to the results from Oliveira’s
study [45], the Hcy concentration in the MTHFR 1298 CC group decreased by 10% in males
and by 5% in females, compared to that in the 1298AA group. In addition, we obtained
the same result as Zappacosta [46]: the Hcy value was higher in the wild-type (1298 AA)
group than in the homozygote mutation (1298 CC) group. In our study, although the
MTHFR TT polymorphism significantly contributed to an increase in Hcy concentration,
there were still many individuals with MTHFR TT in the group with normal Hcy, which
should be reflected in the real value of gene detection and the interaction between gene and
environment. Individuals with gene mutations should pay special attention to their daily
diet and even take supplements to obtain healthy levels of vitamin B, especially at a young
age. This way, they could avoid having high blood Hcy levels for several years without
knowing, which can eventually lead to the occurrence of disease. Therefore, to reduce
the incidence of HHcy-related diseases, nutritional and lifestyle improvements should be
implemented in young children with genetic mutations.

In addition to the gene mutations mentioned above, micronutrients and vitamins
play a basic role in regulating the metabolism of Hcy as enzyme cofactors. Our results
showed that Zn, which is essential for the activity of many enzymes as an intracellular
ion, was present in higher levels in the HHcy group than in the control group. Methio-
nine synthase (MTR) and BHMT are Zn-dependent methyltransferases that participate
in the remethylation of Hcy [47]. The high Zn content in the HHcy group in this study
may be because the diet of the patients was mainly composed of meat containing high
levels of purine and Zn. In their mother–infant pair-based study, Dilli Det [48] enrolled
108 newborns with CHD and 103 healthy newborns. They found that high levels of Hcy
and Zn with low levels of vitamin D might be involved in the pathogenesis of CHD. Hector
Vázquez-Lorente [49] recruited 51 healthy postmenopausal woman volunteers to take a
50 mg/day Zn supplement or placebo for eight weeks to assess the effect of Zn on plasma
Hcy concentration. They confirmed that Zn supplementation enhanced plasma fol and
Hcy levels.

There are relatively few studies on Zn and HHcy and examining the dose–response
relationship or threshold effect between them. Regardless, the problem of excess Zn has
been studied extensively in recent years. Abigail-Podany [50] used neonatal mice to test the
effects of excess dietary Zn on intestinal function and host—microbe interactions during
early life. The authors found that excess Zn in the diet causes oxidative stress, increases the
number of cupped cells and mucus production, and is associated with increased intestinal
permeability and systemic inflammation. Panpan-He [51] used data from 16,257 partici-
pants from the China Health and Nutrition Survey (CHNS). These individuals were free
of diabetes, but during follow-up (median duration of 9.0 years), 1097 participants devel-
oped new-onset diabetes. The authors later analyzed the dietary Zn intake and the risk
of diabetes onset and found a U-shaped relationship between dietary Zn and diabetes
incidence in Chinese adults, with a breakpoint of approximately 9.1 mg/day. As dietary Zn
is the main source of Zn in the body, the results of our study also support the idea that Zn
intake is manageable and that excessive Zn intake can cause disease. Moreover, Wolfgang
Maret [52] showed that high intakes of Zn can cause Cu deficiency and that the current
assumed range between safe and unsafe Zn intake is relatively narrow.



Nutrients 2023, 15, 1895 8 of 10

This study has several strengths. First, the samples were randomly selected from a
representative clinical hospital in Northeast China with a complete quality control system
in the clinical laboratory, which could ensure the comparability and stability of the detection
of various nutrients. Second, the interaction between genes and nutrients and HHcy is
relatively little-studied in China, which is of great significance for disease prevention.
Third, we comprehensively analyzed the relationship between plasma Zn concentration
and HHcy and their dose-effect and threshold-effect relationships. In the logistic regression
and RCS models, we considered several covariates, including gene polymorphisms, to
obtain accurate and robust results.

Nevertheless, our study has several limitations. As we considered multiple factors in
the study, a larger sample size is needed to validate our findings. In addition, we could
not establish a generalized causal relationship between nutrients and HHcy risk among
the Chinese population, justifying a more randomized controlled trial studying plasma Zn
concentration and HHcy.

5. Conclusions

In summary, the HHcy group had more males and a higher MTHFR 677TT proportion,
higher BMI, and higher UA, Zn, Fe, vitamin A, and P levels. We also found a positive
association between plasma Zn levels and HHcy in patients in Northeast China. The risk
of HHcy was reduced with decreasing plasma Zn concentration, and the threshold value
was 83.89 µmol/L. Our results highlight that individuals residing in Northeast China,
especially those with the MTHFR 677TT polymorphism, should monitor their plasma Zn
and Hcy levels.
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