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Abstract: This article presents a two-step method of iron red synthesis based on waste long-term
deposited iron(II) sulfate. The first step is the purification of waste iron sulfate, and then the pigment is
synthesized by precipitation using a microwave reactor. The newly developed method of purification
allows for quick and thorough purification of iron salt. The use of a microwave reactor in the synthesis
of iron red makes it possible to reduce the temperature of the goethite–hematite phase transition from
500 ◦C to 170 ◦C and skip the calcination process. A temperature reduction in the synthesis decreases
the formation of agglomerates of synthesized materials compared to commercial ones. The results of
the research showed a change in the physicochemical properties of the obtained pigments depending
on the conditions of synthesis. Waste iron(II) sulfate is a promising raw material for the synthesis
of iron red pigments. Laboratory pigments are found to be differ from commercial pigments. The
difference in properties speaks in favor of synthesized materials.

Keywords: iron red; solid waste; hematite; waste iron sulfate; iron pigment

1. Introduction

As far as iron pigment manufacturing is concerned, precipitation and Penniman Zoph
processes are the most commonly used procedures [1]. Using either process, there can be
pigments produced with a wide range of colors that are associated with iron oxides and
oxide–hydroxides. In this way, with minor process modifications, yellow, orange, red, and
black pigments can be synthesized.

The main raw material that is used in both a precipitation and the Penniman–Zoph
process is iron(II) sulfate. It is also relevant to note that the Penniman–Zoph procedure also
takes into account the use of waste sulfate, e.g., from the production of TiO2 or from steel
etching [2]. It is critical for this raw material, however, to be relatively fresh, nonoxidized,
and free of any colored metal add-ons such as chromium or manganese compounds. The
presence of additional colored oxides has a negative effect on the color of the pigment.

A natural development of the existing technologies [1,3] is to use chemical waste and
check whether the obtained products are different from those made from pure raw materials.
Chemical waste that can be used for the synthesis of iron pigments in accordance with the
concept of “waste to materials” is increasingly being sought. The publication [4] uses iron
sand from Dlodo beach in Tulungangung on the island of Java to obtain yellow and red
pigments. The authors of the publication [5] derived coke from bituminous shale for the
synthesis of hybrid red iron pigments. Waste from the production of stainless steel was
repurposed by the authors of the article [6]. They used oily mill scale, which is a byproduct
of hot rolling steel. The authors of [7,8] investigated the hydrochemical conversion of
goethite (FeOOH) to magnetite (Fe3O4) in high-iron Bauxite residue. The iron-rich residues
can be used in the steel industry or as a pigment. In the Chinese patents [9,10], the
method for obtaining iron pigments from waste iron sulfate was developed. However, the
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synthesized pigments were obtained by calcining the resulting suspensions at 600–750 ◦C.
The authors of [11] used cans from condensed milk to obtain iron(II) sulfate and then red
pigments based on hematite. In addition, an interesting developing field is transparent
iron pigments. They can be used for coloring packaging or impregnations for wooden
surfaces—the carrier medium acquires the color of a given pigment while remaining
transparent [12–17].

In the Polish patent [18], the method for obtaining sulfur dioxide from iron(II) sulfate
heptahydrate can be applied instead of the current method of burning elemental sulfur to
obtain sulfur dioxide in the production of sulfuric acid. Another potential use for waste iron
sulfate is in battery technology. There have been a number of methods developed [19–21] for
the production of LiFePO4 which can be used as a cathode material in lithium-ion batteries.
Iron(II) sulfate is also used in water purification [22–24] or chromium(VI) reduction in
cement [25,26]. However, the salt must be stripped of most impurities.

As of now, several technologies have been developed that make use of waste iron
sulfate. However, they rely on green salt, which is relatively fresh salt, not oxidized. The
aim of the research was to investigate the possibility of the synthesis of red iron pigments
based on waste iron(II) sulfate (waste FeSO4) from the production of titanium dioxide using
the sulfate method at Grupa Azoty Zakłady Chemiczne “POLICE” S.A. (GA POLICE),
which was deposited in the years 1976–2012 in a landfill. The waste FeSO4 landfill covers an
area of approximately 43 ha, with over 4 million tons of waste accumulated. Waste FeSO4
is separated at the stage of crystallization in the form of the so-called green salt, which, in
addition to iron ions, also contains ions of other metals such as aluminum, manganese,
chromium, and nickel. Due to a number of pollutants in the collected waste FeSO4, salt
cannot be used and is a large environmental problem. Waste FeSO4 is deposited in an open
area, so it is exposed to the effects of weather conditions, mainly rainfall. Acid leachate
from the landfill can contaminate groundwater and reduce the diversity of flora and fauna
within a few kilometers of the landfill.

This study developed a new purification method for waste FeSO4, and then a method
for synthesizing red iron pigments using purified FeSO4. The optimal synthesis conditions
for red iron pigments were explored in preliminary research [27,28]. By managing the
landfill through the use of waste FeSO4, iron pigments can be produced, thereby restoring
the environmental diversity of the area and making a significant contribution to the Sus-
tainable Development Goals (Goals 9 and 12) [29], improving the environmental image of
the company and meeting the growing demand for iron pigments.

2. Materials and Methods
2.1. Materials

Waste FeSO4 from GA POLICE was used to obtain iron oxides subjected to the purifi-
cation process. Reagent-purity substances were also used: 10 wt% sulfuric acid (Chempur,
Piekary Śląskie, Poland), 25 wt% ammonia water (Chempur, Piekary Śląskie, Poland), and
30 wt% hydrogen peroxide (Chempur, Piekary Śląskie, Poland). To compare the properties
of the materials obtained, commercial pigments from four different manufacturers were
also tested (Boruta Zachem, Bydgoszcz, Poland; Chempro, Białystok, Poland; Precheza,
Přerov, Czech Republic; Edan, Kraków, Poland).

2.2. Purification of Waste FeSO4

The preparation of iron pigments from waste FeSO4 requires prior purification of
insoluble components and doped metal ions. The work uses a developed method of
purifying waste FeSO4 by recrystallization [30].

For purification, a saturated waste FeSO4 solution in 10% sulfuric acid was prepared.
A total of 130 g of waste FeSO4 was weighed and dissolved in 400 mL of 10% sulfuric acid
in room temperature. The solution was centrifuged (1500 rpm, 15 min) (MPW-352, MPW
MED. INSTRUMENTS, Warsaw, Poland), separating the solids from the filtrate. The filtrate
was concentrated at 70 ◦C to about half the original volume. The thus-concentrated solution
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was crystallized by cooling (5 ◦C), and the crystals of purified FeSO4 were separated from
the filtrate. The performed process is illustrated in the schematic diagram in Figure 1.
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Figure 1. Scheme of the waste FeSO4 purification process.

2.3. Preparation of Iron Pigments

The effect of the concentration of starting solutions on the synthesis of iron pigments
was investigated. For this purpose, salt solutions with concentrations of 10, 14, 21, and
28 wt% of purified FeSO4 were prepared. Accordingly, the names of the synthesized
pigment samples were introduced: CZ 10%, CZ 14%, CZ 21%, and CZ 28%.

First, the assumed amounts of purified FeSO4·7H2O (7.5 g; 10 g; 15 g; 20 g) were
stirred at room temperature until they formed a transparent solution in aqua (~15 mL). For
the oxidation, stoichiometric amounts of hydrogen peroxide (30 wt%) were used (1).

2FeSO4 + H2O2 + H2SO4 → Fe2(SO4)3 + 2H2O (1)

Then, to precipitate the iron hydroxide, 25 wt% ammonia water was added in stoichio-
metric amounts (2).

Fe2(SO4)3 + 6NH3·H2O→ 2Fe(OH)3 ↓ +3(NH4)2SO4 (2)

Suspension was then transferred into a Teflon container, filled with water to a volume
of 70 mL (Teflon container volume 100 mL), and placed in the microwave reactor (Ertec
Magnum II) where the reaction was carried out for one hour at a pressure range of 17–20 bar
and a temperature of 170 ◦C. At the end of the period, the resulting suspensions were
washed with water and dried at 105 ◦C for 4 h.

2.4. Analytical Methods

The chemical composition of waste and purified FeSO4 was determined by quantita-
tive analysis with the ICP-OES method (Perkin Elmer Avio 500, Waltham, MA, USA). The
content of Fe(II) and Fe(III) was quantified by manganometric titration [31]. The amount of
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waste for testing was secured according to PN-EN 1482-1:2008 and PN-EN 1482-3:2016-09.
XRD patterns were collected with an X-ray diffractometer (Empyrean, Malvern Panalytical,
Malvern, UK) equipped with a Cu–Kα radiation source (Nickel filter; λ = 0.15418 nm, 40 kV,
35 mA). Scans were taken at room temperature in scattering 2θ range of 10–100◦ with a
step interval of about 0.026◦. Phase composition was determined using Panalytical X’Pert
HighScore Plus v3.0 software with the ICDD PDF4+ database. Fourier transform infrared
spectroscopy (FTIR) spectra of the sample were measured in a range of 4000–400 cm−1

on a Nicolet 380 spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) and the
sample was mixed with KBr at a ratio of 1:100 and then compressed into tablets. The
surface composition of pigments was analyzed with X-ray photoelectron spectroscopy
(XPS). The photoelectron measurements were conducted with Mg Ka (hν = 1253.6 eV)
radiation in a Prevac system equipped with Scienta SES 2002 electron energy analyzer
operating at constant transmission energy (Ep = 50 eV). The pressure in the analysis cham-
ber was kept under 1·10−9 mbar. The specific surface area of pigments was determined
by the Brunauer–Emmett–Teller (BET) method using the Quadrasorb Evo Quantachrome
Instruments nitrogen adsorption apparatus. A sample was degassed at 100 ◦C under a
high vacuum for 16 h. Dynamic light scattering measurements (DLS) were carried out on
the Horiba LA 950 Laser Diffraction Particle Size Analyzer. A sample was dispersed in
50 mL of 0.1% sodium pyrophosphate solution. Then, the solution was sonicated in an
ultrasonic cleaner for 2 min. The prepared dispersion was loaded into the analyzer. In
the measurements, a reflectance coefficient of 2.90 was used, and sonication was turned
on. The surface morphology of samples was observed with an emission scanning electron
microscope VEGA 3 (TESCAN, Brno, Czech Republic). A sample was dispersed in iso-
propyl alcohol, and 2 µL were placed on silicon wafers and evaporated. Oil absorption was
determined according to the PN-EN ISO 787-5:1999 standard.

3. Results and Discussion

Table 1 presents the chemical composition of the salt, determined by the ICP-OES
method. The content of iron ions was determined by manganometric titration. Besides
iron(II) and(III) ions, the waste FeSO4 contained admixtures of other metals in the form of
ions such as titanium, magnesium, calcium, potassium, sodium, manganese, and others.

Table 1. Content of elements in waste and purified FeSO4.

Fe2+ ∑Fe Mg Ti Ca K Mn Zn Ni Cr

(wt%) (ppm)

Waste FeSO4 9.2 (a) 17.9 (a) 5.97 11,544 1322 718 513 404 392 <dl (b)

Purified FeSO4 14.2 (a) 16.2 (a) 0.68 20 347 64 189 205 38 <dl (b)

(a) The content of iron ions was determined by manganometric titration; (b) detection limit.

The content of a significant part of Fe3+ ions (8.7 + −0.2 wt%) proves that the Fe2+

ions contained in the waste FeSO4, as a result of long-term storage, were oxidized by
atmospheric air. In addition, high levels of magnesium and titanium indicate residues of
undecomposed titanium ore. The purification process allowed for a decrease in the content
of elements such as Mg, Ca, Na, Zn, and Ti. Recrystallization also increased the content of
Fe2+ ions in a sample, which is also a positive effect of this process. During the removal of
impurities, iron ions are also removed to a small extent. The iron losses are insignificant
considering how low the contaminants level achieved after purification is.

Figure 2 shows the diffractograms of (a) waste FeSO4 and (b) purified FeSO4. Two phases
of iron(II) sulfate heptahydrate (ICDD No.: 04-010-4265) and iron(III) hydroxide sulfate pen-
tahydrate (ICDD No.: 00-016-0935) were identified in the waste material, which is marked
in the diffraction pattern. As a result of the recrystallization process, a salt was obtained
in which one crystalline phase was identified, derived from iron(II) sulfate heptahydrate
(ICDD No.: 04-010-4265).
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So far, attempts have been made to develop a method for treating waste long-deposited
iron(II) sulfate. However, these methods either use fresh salt with low amounts of impuri-
ties and Fe3+ [32] or rely on complex chemical reactions, taking into account redox reactions
or impurity precipitation [33,34]. These methods are much more complicated compared to
the method described in the article.

3.1. Iron Pigment Characterization
3.1.1. XRD

Figure 3 shows X-ray powder diffraction (XRPD) diffractograms of the laboratory pigments.
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Figure 3. XRPD pattern of laboratory pigment samples: (a) CZ 10%, (b) CZ 21%, (c) CZ 28%, (d) CZ
14%. Red lines mark the remnants of geothite.

As can be seen, the samples consist of hematite (ICDD No.: 00-024-0072). Samples
contain, in addition to partially crystallized compounds, a significant amount of the amor-
phous phase. The broad bases of the reflection (110) suggest that hematite was formed by
dehydration of goethite [35]. Red lines indicate places where goethite remnants can be seen
in the diffraction pattern (ICDD No.: 01-073-8431).

Figure 4 shows the diffraction patterns of commercial pigments and the pigment
CZ 14%.
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The diffraction patterns of commercial pigments show reflections characteristic of
the hematite phase (ICDD No.: 00-024-0072). In addition to hematite, the reflections
characteristic of silica (green lines) (ICDD No.: 01-080-2148) are visible in the Commercial
pigment C diffraction pattern.

3.1.2. FT-IR

On the obtained FT-IR spectra (Figure 5) can be observed a band of vibrations typical of
iron oxides from the Fe–O bond A [11,36–38] at positions of about 480 cm−1 and 560 cm−1.
The next characteristic bands appear at positions 800 cm−1, 900–990 cm−1, and 1450 cm−1

and they correspond to the vibrations typical of the O–H bond B [11,36]. The band C is
characteristic of the bending vibrations of the O–H groups [11,37]. The last, wide band with
a maximum at the position of about 3400 cm−1 is representative of the water absorbed on
the sample surface, and more specifically for the stretching vibrations of the O–H groups
D [11,37–39]. According to the literature, the higher the crystallization of the materials, the
greater the shift of the characteristic bands that is observed [36].
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In commercial pigments, apart from the characteristic bands described earlier, in
one sample there are also other compounds. Thus, for the sample of Commercial pigment C,
at the values of about 750 cm−1 and 1100 cm−1, there is a band characteristic of the Si–O
bond E [40]. Then, at the value of about 1530 cm−1, vibrations originating from the Ca–O
bond F [41] occur, and at about 2500 cm−1, a low-intensity band G [42,43], originating from
CO2, appears. This indicates the presence, in addition to silica, of calcite (CaCO3), which is
a fairly popular surface treatment agent.

3.1.3. XPS

The surface of CZ 14% pigment as well as those of Commercial pigments C and D were
analyzed by X-ray photoelectron spectroscopy (Figure 6). These tests showed that the
surfaces of all three materials contain predominantly oxygen atoms and iron atoms from
iron oxides, the main component of pigments. The only contamination on the surface of
the CZ 14% pigment is “adventitious carbon”, usually occurring on the surface of materials
prepared by wet synthesis. Analysis of the surface of Commercial pigment C confirms the
conclusions of diffractometric methods and FTIR analysis, i.e., traces of silicon and calcium
atoms, presumably from oxides of these metals, is observed on the surface. Traces of
chlorine were identified on the surface of Commercial pigment D.
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A detailed analysis of the chemical state of iron in the three mentioned pigments was
also performed. The XPS spectrum of Fe 2p is shown in Figure 7. This analysis shows that
the chemical state of iron in all the analyzed pigments is identical, indicating the presence
of the same iron compounds. XPS analysis of complex iron–oxygen compounds often does
not allow a conclusive distinction of the chemical states of iron present in the material
under study. This is particularly difficult in the case of the presence of a mixture of iron
oxides. In the present study, by comparing the shape of the Fe 2p line envelope, it was
determined that the material most likely contains Fe3+ iron ions [44].
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3.1.4. Determination of the Specific Surface by the BET Method

Figure 8 shows nitrogen adsorption and desorption isotherms for laboratory and
commercial pigments.
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pigments; (b) nitrogen adsorption isotherm of commercial pigments.

Laboratory pigments have an isothermal shape that corresponds to type V according
to the IUPAC classification [45,46]. This is a typical characteristic of mesoporous materials.
The hysteresis shape corresponds to the E type, i.e., spherically elongated or bottle-shaped
pores with open ends. The shape of the adsorption isotherms for commercial pigments
also corresponds to isotherms for mesoporous materials, but with a much lower adsorp-
tion capacity.

Synthesized pigments have up to 20 times greater specific surface area than com-
mercial pigments (Figure 9). The differences in results can be explained by the method
of sample synthesis—commercial pigments obtain their proper structure at the stage of
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high-temperature calcination [1,11,47]. The temperature of the goethite–hematite transfor-
mation is 450 ◦C, while during calcination the temperature is much higher and reaches over
600 ◦C. That difference promotes the sintering of the pigment and the disappearance of
the developed specific surface. In the literature [48,49], hematite obtained at a temperature
of 450 ◦C has a specific surface area in the range of 25–40 m2/g, which is 3–4 times larger
than the characterized commercial iron pigments. In the case of synthesized pigments, it is
visible that the higher the amorphous phase content in the samples, the higher the specific
surface area of the material. Sample CZ 14%, containing well-crystallized hematite, shows
a value of the specific surface area close to the value in the literature [48,49].
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Figure 9. BET surface area of laboratory and commercial pigments.

As per the definition proposed by the European Commission [50], all obtained
laboratory materials that have a surface area of more than 60 m2/cm3 can be consid-
ered “nanomaterials”.

3.1.5. DLS

Figure 10 shows the particle size distribution for laboratory and commercial pigments.
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(b) commercial materials.

Most of the commercial pigments presented here have a wide particle size distribution.
In Commercial pigment A and Commercial pigment C samples, the majority of the particles
are in the range of 0–500 nm with a small proportion (<10%) of larger particles. The rest
of the commercial pigments show primarily particles in the 2–9 µm range, with a small
proportion (<10%) of particles smaller than 2 µm or larger than 9 µm. Due to the sonication
of the suspension during the measurements, particle sedimentation can be excluded [11,51].
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In the case of laboratory pigments, the obtained materials were mostly characterized
by a particle distribution in the range of 0.1–1 µm. The CZ 14% and CZ 10% samples had
the highest proportion of particles in the 100–500 nm range; the proportion of particles of
this size in these samples was circa 90%.

3.1.6. Pigment Observation on SEM

Figure 11 shows SEM photos.
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(c) Commercial pigment A.

Laboratory pigments do not show such strong agglomeration. In the case of the CZ
14% sample, the photos show individual plates about 300 nm in size, which is consistent
with the results of the DLS analysis. Several aggregates of particles are also observed. In
the case of the CZ 28% sample, the pigment structure is not as distinguishable as in the case
of the CZ 14% sample. The photos show agglomerates of particles. Blue particles are single
particles up to 500 nm in size. Agglomerates of particles > 500 nm with single particles
highlighted are green. Orange granules are individual particles forming agglomerates with
a size of 100–600 nm. Pink particles are aggregates of particles < 2µm with indistinguishable
single particles. Particles are irregular with spherical shape [11].

3.1.7. Oil Absorption

According to the technical sheets that were obtained regarding the product, each of
the commercial pigments should have an oil absorption of a maximum of 35 g/100 g (rl)
based on the product technical sheets. All of the values for the commercial pigments exceed
10 to 30 percent of the reference values (Figure 12). For laboratory materials, pigments
synthesized at low concentrations are characterized by lower values of the oil absorption
than pigments synthesized at a concentration > 20 wt%.
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4. Conclusions

This study developed a purification method for waste FeSO4, and then a method for
synthesizing red iron pigments using purified FeSO4. Results of the study indicate that
recrystallization is an effective method of purifying waste long-term storage iron(II) sulfate,
allowing the iron(II) content to increase while reducing the impurities—especially coloring
compounds, which affect the pigment color (Mn compounds). In addition, the developed
purification method does not require complicated equipment or many chemical reagents.

XRD measurements of the pigment samples from different concentrations confirm
that the prepared nanoparticles consist mostly of hematite phase, also supported by FTIR
results. Results showed that the pigment synthesized from a solution of 14% iron salt had
the most crystallized hematite when compared to other pigments. This may be related
to the suspension:total reactor volume ratio and the fact that the growth of hematite
crystals is controlled only by kinetic factors. In the coprecipitation process, two stages are
involved: a short burst of nucleation occurs when the concentration of the species reaches
critical supersaturation, and then there is a slow growth of crystals [52,53]. The optimal
concentration of iron sulfate based on research can be 10–20% (49–92 mM) with an optimum
of 14 wt% (66 mM).

In addition, synthesis using the microwave reactor is reproducible. Laboratory pig-
ments do not show strong agglomeration. The CZ 14% sample shows individual plates
about 300 nm in size, while the CZ 28% sample shows agglomerates of particles. The SEM
study found that laboratory pigment particles aggregate less than commercial pigments. In
addition, synthesized pigments have some irregular spherical shapes. High surface area
(>60 m2/g) of the nanoparticles synthesized with mesoporous structure was performed by
BET. In addition, the XRD and XPS analyses revealed the purity of the hematite nanoparti-
cles. The oil absorption of most pigments synthesized in the laboratory was in the range of
23–39 g/100 g of pigment and was in the range declared for commercial pigments (max.
35 g/100 g).

Based on the obtained findings, it can be concluded that waste long-term storage
iron(II) sulfate is a potential raw material for the production of iron pigments. On this
basis, pigments are obtained with physicochemical properties comparable to commercially
available pigments, and their suggested use is in the dyeing industry.
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