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Abstract: In this study, multiple spectroscopic and computational methods were utilized to investigate
the binding mechanism of doxofylline with lysozyme. The in vitro methods were used to obtain the
binding kinetics and thermodynamics. UV–vis spectroscopy indicated the formation of complex
between doxofylline and lysozyme. The Gibb’s free energy and binding constant from UV–vis
data was obtained as −7.20 kcal M−1 and 1.929 × 105 M−1, respectively. Doxofylline successfully
quenched the fluorescence of lysozyme, confirming the formation of complex. The kq and Ksv

values for the quenching of lysozyme’s fluorescence by doxofylline were 5.74 × 1011 M−1 s−1

and 3.32 × 103 M−1, respectively. These values signified a moderate binding affinity between
doxofylline and lysozyme. In synchronous spectroscopy, red shifts were observed for indicating
the changes in microenvironment of lysozyme following the binding of doxofylline. The secondary
structural analysis was determined using circular dichroism (CD) which revealed an increase in %
α-helical as a result of doxofylline interaction. The binding affinity and flexibility of lysozyme upon
complexation have been revealed via molecular docking and molecular dynamic (MD) simulations,
respectively. According to the many parameters of the MD simulation, the lysozyme–doxofylline
complex was stable under physiological conditions. All during the simulation time, hydrogen bonds
were continuously present. The MM-PBSA binding energy for lysozyme and doxofylline binding
was found to be −30.55 kcal mol−1.

Keywords: lysozyme; doxofylline; multi-spectroscopic; molecular docking; molecular simulation;
drug–protein binding

1. Introduction

Lysozyme, an innate immune system component that is also known as muramidase,
N-acetylmuramide glycanhydrolase, or peptidoglycan N-acetylmuramoylhydrolase, is
produced by animals [1]. With a molecular weight of 14.3 kDa and a wide distribution in
cells and vertebrate secretions like sweat and tears [2], it is also found in egg white. In
the pH range, the lysozyme enzyme is quite basic. The glycosidic bond formed between
N-acetyl muramic acid and N-acetyl glucosamine is frequently regarded as a medical
antibiotic because of its bactericidal capabilities, which induce this enzyme to hydrolyse
the bacterial cell wall [3]. Lysozyme has been used for many years as a reference protein to
study protein–ligand interactions due to its naturally high frequency [4]. Another crucial
quality of lysozyme is its capacity to transport compounds that have physiological activity
or therapeutic qualities. Lysozyme is a viable option for the medical and food industries due
to its antibacterial qualities [5,6]. The lysozyme is known to exhibit certain pharmacological
properties including antiviral properties and anti-histaminic properties [7,8]. Nonetheless,
this protein is known to interact reversibly with small ligand molecules such as drugs and
is used as a model protein to understand the mechanisms underlying the interactions of
small molecules with the carrier proteins [9–11]. Considering such importance of lysozyme,
this protein was selected for its interaction studies.
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Doxofylline is a bronchodilator that helps relax the smooth muscles of the airways
in your lungs [12]. Asthma and other obstructive lung diseases are treated with it to
either cure or prevent the problems associated with breathing. It is used to treat lung
problem symptoms such wheezing, tightness in the chest, and shortness of breath [13]. This
medication is available upon a doctor’s prescription in the form of a tablet, suspension,
syrup, and injection. Doxofylline may cause adverse symptoms such as nausea, headaches,
vomiting and stomach distress. Foods in which caffeine is present and beverages like coffee,
tea, and dark chocolate are recommended not to be taken during the treatment period since
they may increase the likelihood that side effects will occur [14].

Many scientists have investigated the interactions of numerous biological and synthetic
compounds with the enzyme lysozyme over the years. Our research indicates that the
precise doxofylline and lysozyme interaction has not yet been investigated. As a result,
in this research, we have used UV-visible absorption and fluorescence spectroscopy to
examine the complex formation. Through steady state fluorescence, the binding affinity and
other aspects of binding were examined. Through 3D-Fluorescence and circular dichroic
spectroscopy, it was possible to determine the microenvironmental and structural changes
that happened in lysozyme following the binding of doxofylline. To further support the
alterations in the microenvironment caused by lysozyme complexed with doxofylline,
synchronous fluorescence was carried out. To verify the binding potential of doxofylline
with lysozyme, in silico analysis techniques like molecular docking and molecular dynamic
modelling were also used.

2. Results and Discussion
2.1. UV Absorption Spectroscopy Study

In several experimental settings, including protein–ligand binding, conformational
modification has been evaluated using UV-visible absorption spectroscopy. Importantly,
it offers insight into the induction of structural change and helps in the understanding
of how drug and protein complexes arise [15]. Tyrosine, Tryptophan, and phenylalanine
are the three aromatic amino acids that collectively absorb the most energy, contributing
the most to the absorbance peak at 280 nm. The UV-visible spectra of lysozyme alone
and in presence of doxofylline at increasing concentrations in phosphate buffer (pH 7.4)
are shown in Figure 1A. The lysozyme absorption spectra increased as doxofylline was
gradually introduced. The hyperchromicity of lysozyme’s spectrum indicates formation of
complex with doxofylline along with the alterations in secondary form of the protein [16].
The blue shift that was also noticed may have been brought on by a decrease in polar
environment surrounding the tryptophan and tyrosine residues along with increase in
hydrophobicity. As doxofylline bonded essentially close to a tryptophan site, this indicated
that the protein underwent a conformational change [17]. The alterations in absorbance
spectrum of protein after the interaction of ligands is supposed to be due to the changes in
secondary and tertiary structures [16]. The value of Kd dissociation constant was calculated
using Equation (3):

1
∆A

=
Kd

∆A∞[S]
+

1
∆A∞

(1)

where ∆A = A − A0 is the difference in absorption of lysozyme–doxofylline complex
and free lysozyme; [S] is doxofylline concentration; and ∆A∞ is absorbance difference at
complete saturation of the protein. The plot in shown in Figure 1B, and Kd value is listed
in Table 1. The association constant (Ka) was calculated from Kd [Ka = 1/Kd]. Degree of
cooperativity (h) was calculated using Hill Equation (4):

log
[

∆A
∆A∞ − ∆A

]
= h log[S] + log Ka (2)
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Table 1. Binding parameters for the interaction of doxofylline with lysozyme at 298 K obtained from 
UV–vis spectroscopy. 
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298 K 5.18 × 10−6 M 19.29 × 104 M−1 0.998 −7.20 

Figure 1. (A) UV absorption spectra of lysozyme (10 µM) titrated with different concentrations of 
doxofylline (0–30 µM). (B) plot of 1/(A–A0) vs. 1/[doxofylline]. (C) and Hill plot. 

The values of ΔA∞ and logKa obtained from Equation (1) were used in Equation (2) 
for determination of h. The plot is depicted in Figure 1C, and the calculated Ka value is 
1.929 105 M−1. The non-cooperative form of binding is indicated by the degree of coopera-
tivity that is close to unity (0.98). Equation (5) was used to calculate the change in Gibb’s 
free energy (ΔG°): ΔG = −RT𝑙𝑛𝐾 (3)

where R represents universal gas constant; and T is temperature. The ΔG° was obtained 
as −7.20 kcal M−1. The negative value of ΔG° denotes the spontaneous character of the 
binding. A similar finding has been reported earlier where ΔG° for the interaction of 
kaempferol with hen egg white lysozyme was found to be −6.63 kcal M−1.  

2.2. Steady-State Fluorescence Spectroscopic Analysis 
Proteins are supposed to have inherent fluorescence because they contain amino ac-

ids, notably Trp and Tyr. The lysozyme emission peaks were at 341 nm when excited at 
280 nm [18]. The fluorescence spectra of the lysozyme–doxofylline system are shown in 
Figure 2A, which demonstrates that when the excitation wavelength was 280 nm, the ly-
sozyme fluorescence intensity consistently reduced with doxofylline addition, showing 
the potent binding of doxofylline to lysozyme. Moreover, the fluorescence quenching also 
indicates the alterations in the solvent accessibility of lysozyme in the vicinity of the pro-
tein following the binding of doxofylline [19]. Equation (6) and Equation (7) were used to 
derive the Ksv (Stern–Volmer constant) and kq (molecular quenching constant rate) values 
from Stern–Volmer plot (Figure 2B) in order to explore the nature of quenching [20]: F୭F = 1 + Kୱ୴ ሾDoxofyllineሿ (4)

k୯ = Kୱ୴τ      (5)

where F0 and F are fluorescent signals of lysozyme and lysozyme–doxofylline complex; 
and τ0 is average lifetime of the fluorophore alone (5.78 × 10−9 s) [21]. The nature of quench-
ing of protein’s fluorescence can be static or dynamic. Static quenching is generated by the 
development of ground state complex between quencher and fluorophore, whereas dy-
namic quenching is driven by collisions between the two [22]. However, with the mixed 
kind of quenching, both complex formation and fluorophore–quencher collision take 
place. 

Figure 1. (A) UV absorption spectra of lysozyme (10 µM) titrated with different concentrations of
doxofylline (0–30 µM). (B) plot of 1/(A − A0) vs. 1/[doxofylline]. And (C) Hill plot.

Table 1. Binding parameters for the interaction of doxofylline with lysozyme at 298 K obtained from
UV–vis spectroscopy.

Temperature Kd (M) Ka (M−1) h ∆G0 (kcal mol−1)

298 K 5.18 × 10−6 M 19.29 × 104 M−1 0.998 −7.20

The values of ∆A∞ and logKa obtained from Equation (1) were used in Equation (2)
for determination of h. The plot is depicted in Figure 1C, and the calculated Ka value
is 1.929 × 105 M−1. The non-cooperative form of binding is indicated by the degree of
cooperativity that is close to unity (0.98). Equation (5) was used to calculate the change in
Gibb’s free energy (∆G0):

∆G0 = −RTlnKa (3)

where R represents universal gas constant; and T is temperature. The ∆G0 was obtained
as −7.20 kcal M−1. The negative value of ∆G0 denotes the spontaneous character of the
binding. A similar finding has been reported earlier where ∆G0 for the interaction of
kaempferol with hen egg white lysozyme was found to be −6.63 kcal M−1.

2.2. Steady-State Fluorescence Spectroscopic Analysis

Proteins are supposed to have inherent fluorescence because they contain amino
acids, notably Trp and Tyr. The lysozyme emission peaks were at 341 nm when excited
at 280 nm [18]. The fluorescence spectra of the lysozyme–doxofylline system are shown
in Figure 2A, which demonstrates that when the excitation wavelength was 280 nm, the
lysozyme fluorescence intensity consistently reduced with doxofylline addition, showing
the potent binding of doxofylline to lysozyme. Moreover, the fluorescence quenching also
indicates the alterations in the solvent accessibility of lysozyme in the vicinity of the protein
following the binding of doxofylline [19]. Equation (6) and Equation (7) were used to derive
the Ksv (Stern–Volmer constant) and kq (molecular quenching constant rate) values from
Stern–Volmer plot (Figure 2B) in order to explore the nature of quenching [20]:

F0

F
= 1 + Ksv[Doxofylline] (4)

kq =
Ksv

τ0
(5)

where F0 and F are fluorescent signals of lysozyme and lysozyme–doxofylline complex;
and τ0 is average lifetime of the fluorophore alone (5.78 × 10−9 s) [21]. The nature of
quenching of protein’s fluorescence can be static or dynamic. Static quenching is generated
by the development of ground state complex between quencher and fluorophore, whereas
dynamic quenching is driven by collisions between the two [22]. However, with the mixed
kind of quenching, both complex formation and fluorophore–quencher collision take place.
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The values of kq and Ksv were obtained as 5.74 × 1011 M−1 s−1 and 3.32 × 103 M−1,
respectively. Additionally, the lysozyme quenching operation commenced by doxofylline
had rate constants kq that were significantly larger compared to maximum scatter colli-
sion quenching constant of several quenchers whose value is typically 2 × 1010 M−1 s−1,
indicating that quenching of lysozyme’s fluorescence by doxofylline was a static event [23].

The values of both i.e., binding constant (Kb) and binding site’s number (n), were
derived from the log plot (Figure 2C) using the Equation (8) [24]:

log
F0 − F

F
= log Kb + n log[Doxofylline] (6)
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action of doxofylline with Lys produced apparent changes in conformation of Lys [28]. 

Figure 2. (A) Steady state fluorescence spectra of lysozyme (10 µM) in the absence and presence
of varying concentrations of doxofylline (0–60 µM). (B) Stern–Volmer plot for the lysozyme and
doxofylline interaction. (C) Double log plot for the lysozyme–doxofylline interaction.

Using the modified Stern–Volmer plot, Kb was obtained as 2.29 × 104 M−1. The value
of n was nearly one, denoting that there is one binding site for doxofylline in lysozyme.

2.3. Synchronous Fluorescence Examination

Synchronous fluorescence is an important tool to study the changes in microenviron-
ment around amino acids by analysing the shift in emission maxima, and it has certain ad-
vantages such as spectral simplification, sensitivity, and spectral bandwidth reduction [25].
By monitoring any potential shifts in emission maximum, it is possible to analyse the
changes in polarity around the certain residues. Figure 3 shows synchronous fluorescence
of Trp and Tyr residues. There is simultaneous excitation and emission of fluorescence
signals where the difference between excitation wavelength and emission wavelength
(∆λ) is kept constant. The changes in position of λmax is the indicator of the changes in
microenvironment around the chromophore [26]. By keeping the ∆λ at 60 nm, it gives the
changes in in microenvironment of tryptophan residue; while at ∆λ = 15 nm, the changes
around tyrosine residues are examined [23]. There was negligible shift of emission max-
ima at ∆λ = 60 nm, indicating that there were negligible changes in microenvironment of
tryptophan. However, the interaction of doxofylline with Lys altered the emission maxima
peak with a redshift for ∆λ = 15 nm, showing an increase in polarity around tyrosine and
thereby lowering the hydrophobicity of it [27]. It is obvious from the data that interaction
of doxofylline with Lys produced apparent changes in conformation of Lys [28].
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Figure 3. Synchronous fluorescence spectra for the interaction of lysozyme with doxofylline at
(A) ∆λ = 15 nm; (B) ∆λ = 60.

2.4. Three Dimensional (3D)-Fluorescence Spectroscopic Study

Excitation-emission matrix spectroscopy (EEMS) is another name for it [29]. It was
used to show how the microenvironment and conformation of lysozyme changed after it
was bound to doxofylline. Table 2 lists the 3D-fluorescence peak values of lysozyme alone
and lysozyme–doxofylline complexed (1:0 and 1:2) respectively. Peak a whose λex and λem
are 280 nm depicts Rayleigh scattering, while peak b whose λex is 280 nm and λem is 540 nm
is a second order scattering peak. Similarly, peak 1 with λex= 280 nm and λem = 340 nm and
peak 2 with λex = 230 nm and λem = 340 nm are due to the fluorescent nature of aromatic
amino acids of the protein. The aggregation and alteration in the diameter of lysozyme
may be responsible for the changes in scattering peaks, whilst the microenvironment and
conformation in lysozyme are responsible for the changes in fluorescence peaks. The
alteration of scattering peaks is linked to the change in lysozyme diameter modification
in fluorescence peaks and is attributed to the conformational and microenvironmental
perturbations of the proteins [30]. These findings of this experiment are also supplemented
by the fluorescence quenching and synchronous fluorescence observations.

Table 2. Excitation-emission peak values for the interaction of doxofylline with lysozyme obtained
by 3D-fluorescence spectroscopy.

Lysozyme:Doxofylline Peak 1
280/340

Peak 2
230/340

Peak a
280/280

Peak b
280/540

1:0 96,680.4 35,574.9 244,663.4 5036.2
1:2 96,008.5 34,751.4 229,976.1 4752.9

2.5. Circular Dichroism (CD) Measurements

When a protein or enzyme interacts with tiny ligand molecules in an aqueous media,
changes in its secondary structure are seen. These changes are studied using the circular
dichroism (CD) approach. To evaluate changes in secondary structure of lysozyme after
binding of doxofylline, we therefore used the Far-UV CD technique in this investigation. We
looked at the spectral lines of lysozyme and lysozyme–doxofylline between 190 and 260 nm
(Figure 4). Due to the lysozyme’s presence with the α -helical domain, there were two
negative peaks (208 and 222 nm) which is attributed to the π–π* and n–π* transitions. The
amount of α-helix in free lysozyme and lysozyme–doxofylline complex are listed in Table 3.
The interaction of doxofylline with lysozyme slightly increased the α-helical content of
protein. The data also supports that doxofylline stabilizes lysozyme. A contrary result was
obtained for hen egg white lysozyme where the α-helical content decreased from 31.54% to
26.06% after the binding of triprolidine hydrochloride. The authors stated the interaction
of triprolidine hydrochloride with hen egg white lysozyme resulted in destabilization of
the protein’s secondary structure [31].
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Figure 4. Far UV-CD spectra of lysozyme alone (7 µM) and lysozyme–doxofylline complex (7 µM
each) at molar ratio of 1:1.

Table 3. α-helical contents and MRE values of lysozyme in the absence and presence of doxofylline
estimated from the CD data.

Lysozyme
Conc.

Doxofylline
Conc. Lysozyme:Doxofylline MRE208 nm % α-Helix

7 0 1:0 −13,273.95 31.97
7 7 1:1 −14,891.64 37.55

2.6. Molecular Docking Study

In silico molecular docking between lysozyme and doxofylline was performed in
addition to spectroscopic experiments to further examine the binding location, mode,
and energy in lysozyme–doxofylline interaction over course of time [32]. For docking,
AutoDock Vina software was employed. The validation of docking methodology was
performed by extracting the substrate molecule and then redocking it. It is interesting to
note that the lysozyme substrate was docked at the same binding position as it was present
earlier in the complex (Supplementary Figure S1). This validates the docking methodology.
In the original lysozyme–substrate complex, the key residues involved in the binding were
Asn46, Asn60, Tyr63, Trp64, Asp102, Gln104, and Ala108.

In lysozyme–doxofylline docking, the structure with lowest energy was chosen for
analysis in order to determine the binding characteristics. Doxofylline binds to lysozyme
with a binding free energy of −6.5 kcal mol−1. It is interesting to note that doxofylline was
docked at the binding site of its substrate (Figure 5A). Doxofylline formed two hydrogen
bonds with Trp64 and Gln104 of lysozyme with bind length as 2.02 and 2.73 Å, respectively.
Other residues such as Glu35, Asp53, Ile59, Asn60, and Val99 were involved in van der
Waals forces (Figure 5B). Tyr63 and Ala108 interacted with doxofylline by hydrophobic
interactions. It is obvious that the interaction involves both the residues of charged/polar
and hydrophobic amino acids. Overall, the complex formation was also influenced by
hydrogen bonds, van der Waals forces and hydrophobic interactions. Additionally, the
complex’s stabilization also depends on the pi (π) interactions [33]. Certain residues
including Asn46, Ile59, Asn60, Arg62, Tyr63, Trp64, Val99, Arg107, Ala108, Trp109, and
Val110 are responsible for the binding of substrate to human lysozyme and catalyze the
reaction. It is anticipated that the binding of doxofylline at the substrate binding site may
lead to the inhibition in the enzymatic activity of this protein.
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2.7. Molecular Dynamic Simulation

The MD simulation was carried out in presence of physiological concentration of
salt at 310 K to mimic the physiological conditions. The PBC corrections were done to
the trajectories before their analysis. At first, analysis of the stability of trajectories was
performed by calculating the RMSD (Figure 6A). The data shows that all systems were
well equilibrated and trajectories did not show much deviations, showing that the systems
were well stable [34]. The average RMSD of lysozyme alone, lysozyme–substrate complex,
and lysozyme–doxofylline complex was 0.132, 0.161, and 0.104 nm, respectively. RMSF of
Cα-atoms of the systems were also calculated and data are shown in Figure 6B. The RMSF
of most of residues were below 0.1 nm, which further confirms their stable nature [35]. The
RMSF of residues from 100 to 110 in lysozyme–doxofylline complex remarkably reduced,
which is due to the interaction of doxofylline that stabilized this region. The reduction
in RMSF of this region was also observed in lysozyme–substrate complex. However, the
fluctuations in residues of lysozyme were reduced to a greater extent in the presence of
doxofylline compared to that of substrate alone. RMSF of each atom of doxofylline and
substrate was also calculated (Supplementary Figure S2). The RMSF of both the ligands
showed some variations, which is due to the motion of ligand at binding site. The atoms
of substrate showed more fluctuations than the doxofylline, which may be due to more
rotatable bonds present in the substrate [36].

The analysis of MD simulation data was further performed in which SASA (solvent
accessible surface area, Rg (radius of gyration), and the energies were calculated. Rg is the
mass-weighted RMS distance of the atoms from their common centre of mass. Analysing
the changes in Rg over the course of simulation is considered an important indicator of
the stability of proteins [37]. The Rg data is presented in Figure 7A. The Rg of all the
systems were nearly identical throughout the simulation period, indicating their stability
in aqueous environment, which also shows that the systems were stable and did not
undergo any noticeable conformational changes during the simulation [38]. The average
Rg of lysozyme alone, lysozyme–substrate complex, and lysozyme–doxofylline complex
were obtained as 1.394, 1.380, and 1.3796 nm, respectively. A small decrease in the Rg of
both complexes compared to lysozyme alone indicated that the protein got slightly more
compacted following the complexation [39]. A similar data outcome was found for the
SASA (Figure 7A). SASA is another critical indicator to examine the protein’s stability in
MD simulation studies [40]. There were negligible changes in SASA of all three systems
over time. Average SASA of lysozyme alone, lysozyme–substrate complex, and lysozyme–
doxofylline complex were found to be 71.512, 70.586, and 71.426 nm2, respectively. The
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analysis of both Rg and SASA further confirmed the stable nature of lysozyme–doxofylline
complex under physiological conditions [40]. Moreover, the energies of the trajectories
were also calculated to further verify the stable nature of the systems (Figure 7B). Both
the energies (total and potential) of all systems remained uniform throughout simulation,
further confirming the stable nature of the systems.
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The impact of doxofylline’s binding on structure of lysozyme was examined by com-
puting their secondary structures (Figure 8A). Average percentage of coils, β-sheets, β-
bridges, bends, turns, α-helices, 5′-helices, and 3′-helices in lysozyme alone were found
to be 14.99, 7.75, 3.71, 11.39, 25.45, 26.82, 0.01, and 9.84, respectively. The amount of α-
helices and 7% β-sheets in huma lysozyme is consistent with the literature [41]. Likewise,
average % of coils, β-sheets, β-bridges, bends, turns, α-helices, 5′-helices, and 3′-helices
in lysozyme–doxofylline complex was 14.99, 7.75, 3.71, 11.39, 25.45, 26.82, 0.01, and 9.84,
respectively. Similarly, average % of coils, β-sheets, β-bridges, bends, turns, α-helices,
5′-helices, and 3′-helices in lysozyme–substrate complex was 15.90, 8.01, 3.41, 10.20, 24.42,
28.73, 0.00, and 9.29, respectively. The negligible change in secondary structure of lysozyme
in presence of doxofylline confirms the structural stability of complex in physiological
conditions. The interaction of doxofylline with lysozyme was examined by analyzing
the hydrogen bonds. Number of hydrogen bonds formed by substrate/doxofylline with
lysozyme as a function of time is shown in Figure 8B. Average number of hydrogen bonds
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formed between doxofylline and lysozyme was 1.48. However, substrate formed greater
number of average hydrogen bonds with lysozyme, which was 3.63. The hydrogen bond
profile of the trajectory of complex was also examined which showed the continuous
occurrence of hydrogen bonds in both the complexes throughout the simulation time.
The highest percentage of hydrogen bond occupancy was shared by Trp64 and Asn60
in lysozyme–doxofylline complex. Similarly, these two residues (Trp64 and Asn60) also
exhibited highest hydrogen bond occupancy for the complexation of substate to lysozyme.
The data shows that doxofylline occupied the same binding site than that of the substrate.
The competition of doxofylline for the same binding site may result in the inhibition of
lysozyme’s enzymatic acidity.
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Principal component analysis (PCA) is a statistical method to examine a large set
of data by reducing the dimensionality of data set without losing important information,
which is called eigenvectors [42]. The analysis was done for studying flexibility in lysozyme
both in uncomplexed and complexed form. The projection of eigenvectors is shown in
Figure 9A. The 2D projection data shows that lysozyme–doxofylline complex and lysozyme
alone occupies nearly the same conformational space. However, the conformational space
occupied by lysozyme–substrate complex was slightly more than that of lysozyme alone.
This shows that lysozyme–substrate complex was slightly more flexible in aqueous system
compared to free lysozyme. The free energy landscapes were also calculated form the 2D
projection data and the landscape is presented in Figure 9B–D. All systems reached the
respective energy minima in their landscapes. In lysozyme alone and lysozyme–substrate
complex, only one energy minima was found. However, in lysozyme–doxofylline complex,
three energy minima points were found in the trajectory. The structures corresponding
to the lowest energy were taken out for further examination using Ramachandran plots
(Supplementary Figure S3). No residue was found to lie in the disallowed region of
quadrant, further confirming the structural stability of lysozyme–doxofylline complex.

The role of various binding energies involved in binding of substrate and doxofylline
with lysozyme was investigated using MM-PBSA analysis. One hundred frames were
extracted from each trajectory at uniform intervals for MM-PBSA calculations. In typical
protein–ligand interactions, non-covalent forces are the prominent one. These forces include
van der Waals forces, hydrogen bonds, hydrophobic forces, and electrostatic forces. The
forces either contribute positively or negatively to overall binding [17]. Various energies
involved in binding of lysozyme with doxofylline are listed in Table 4. Overall binding
energy for substrate and doxofylline were found to be −23.11 and −30.55 kcal mol−1,
respectively. It is interesting to note that doxofylline exhibited higher biding energy than
substrate. Their higher affinity of doxofylline towards binding site than substrate may be
responsible for the inhibition of lysozyme. The energy contribution of each residue can
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also be calculated from the MM-PBSA data. The list of major energy contributors with
their energy contribution is presented in Supplementary Table S1. In doxofylline–lysozyme
interaction, Asn46, Asp49, Ile59, Asn60, Arg62, Tyr63, Trp64, Asp67, Val99, Arg107, Ala108,
Trp109, and Val110 exhibited maximum energy contribution. Similarly, Asn46, Ile59, Asn60,
Arg62, Tyr63, Trp64, Val99, Arg107, Ala108, Trp109, and Val110 were the key energy
contributors in the substrate binding. Moreover, the key energy contributors were the same,
further confirming the same binding site of substrate and doxofylline.
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analysis.



Molecules 2023, 28, 3462 11 of 15

Table 4. Binding free energy of substrate and doxofylline with lysozyme calculated by the MM-PBSA
method for 100 snapshots of MD simulation.

Energy Type
Ligand

Substrate Doxofylline

∆EvdW −51.99 ± 0.33 −42.22 ± 0.37
∆Eele −38.60 ± 0.28 −61.84 ± 1.23
∆EPSE 72.70 ± 0.48 78.62 ± 1.24

∆ESSASA −5.25 ± 0.01 −5.12 ± 0.01
∆EBE −23.11 ± 0.47 −30.55 ± 0.56

∆EvdW: van der Waal energy, ∆Eele: Electrostatic energy, ∆EPSE: Polar solvation energy, ∆ESASA: Solvent accessible
surface area energy, ∆EBE: Binding energy.

3. Experimental Materials and Methods
3.1. Materials

Human lysozyme and doxofylline were acquired from Sigma Aldrich, Bangalore,
India. The remaining chemicals and solvents utilized throughout the entire study were of
an analytical grade.

3.2. Sample Preparation

Doxofylline (2 mM) was dissolved in distilled water to make the stock solution. The
sodium phosphate buffer (pH 7.4 and 10 mM) was used to prepare lysozyme stock solution
of 0.5 mM. Doxofylline had a storage temperature of 4 ◦C, while lysozyme had a storage
temperature of −20 ◦C. According to the needs, fresh working solutions were made using
the dilution procedure.

3.3. Methods
3.3.1. UV Absorption Spectroscopy Study

Lysozyme (10 µM) was used to titrate different concentrations of doxofylline (0–30 µM),
and UV absorption spectra were captured between 200 and 325 nm. The base line was cor-
rected using the same buffer that was used to prepare the protein solution. First, the UV-vis
absorption spectra (Shimadzu UV-1800, Kyoto, Japan) of lysozyme alone was recorded
and then with the increasing concentrations of doxofylline. The data were used for the
calculation of binding and thermodynamic parameters.

3.3.2. Fluorescence Quenching Experiment

The protein samples were excited at 280 for fluorescence quenching experiments.
The protein’s fluorescent signal was recorded from 290 to 450 nm and the excitation and
emission slit lengths were set to 5 nm each. The lysozyme concentration was fixed at 10 µM
and concentration of doxofylline was varied from 0 to 60 µM. The highest fluorescence
intensity points were used to calculate the quenching constant and Stern–Volmer constant.

3.3.3. Synchronous Fluorescence Examination

In synchronous fluorescence studies, the concentration of lysozyme was kept at 10 µM
and doxofylline was varied from 0 to 60 µM. To examine the changes in microenvironment
of tyrosine, ∆λ was set to 15 nm in which excitation of emission wavelengths was at 240 nm
and 255 nm. Similarly, for tryptophan residues (∆λ = 60 nm), the excitation and emission
wavelengths were fixed at 240 nm and 300 nm.

3.3.4. 3D (Three Dimensional) Fluorescence Emission Spectroscopic Study

Using Shimadzu RF-6000 (Kyoto, Japan) spectrofluorophotometer in 3D mode, the
3D-fluorescence emission spectrum of 10 µM lysozyme was recorded. The 3D fluorescence
was also recorded in presence of varying ratios of doxofylline at 10 and 20 µM. The range
of excitation wavelength was 200 nm to 400 nm. The emission wavelength range was from
200 nm to 550 nm. The scans were recorded at 6000 nm/min.
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3.3.5. Circular Dichroism (CD) Measurements

The CD spectra of lysozyme (7 µM) and lysozyme–doxofylline complex (1:1) were
seen in the far-UV part of the spectrum between 190 and 260 nm. The speed of scan was
200 nm/min with data interval of 1 nm. The baseline spectrum of buffer alone (sodium
phosphate buffer) was used to correct the obtained spectra of lysozyme and the complex.
All CD measurements were performed at room temperature. The data presented is average
of three replicates. The spectral data was used to calculate MRE (mean residue ellipticity)
using Equation (1) [23]:

MRE =
Observed CD (mdeg)

Cp nl× 10
(7)

where n is number of residues in lysozyme; l is cell’s path length; and Cp is lysozyme
concentration. The % α-helix in lysozyme alone and in complex with doxofylline was
calculated using Equation (2) [43]:

%α− helical content =
(−MRE 208 − 4000)

33, 000− 4000
× 100 (8)

where MRE208 is MRE at 208 nm; 4000 is MRE of random coil and β-form at 208 nm; and
33,000 is MRE of pure α-helix at 208 nm.

3.3.6. Molecular Docking

First, the validation of docking procedure was performed. For the validation, the
lysozyme complex containing its substrate (NAM-NAG) was taken. The substrate molecule
was extracted and then redocked to check whether it binds to the same binding site. The
substrate occupied the same binding site as it was present earlier, validating the docking
procedure.

For molecular docking, the coordinate of lysozyme (PDB ID: 1LZ1) was downloaded
from RCSB PDB. The doxofylline structure was taken from PubChem (CID: 50942). The
energy of protein structure was minimized using Swiss PDB viewer. The lysozyme structure
was prepared in AutoDock Tools 1.5.6. The molecular docking was performed using
AutoDock Vina [44]. For the preparation of receptor, the protein molecule was cleaned
by removing the crystal water molecules and other molecules/atoms. Then, the polar
hydrogen atoms were added, then Kollman charges were added. The receptor file was
saved in pdbqt format. The size of grid box was 38 × 46 × 34 Å with the grid spacing of
1.00 Å. The center of the grid was x = 03.692, y = 19.019, z = 32.001. The structure of ligand
(doxofylline) was also prepared in AutoDock Tools 1.5.6. The doxofylline molecule was
made flexible by detecting the rotatable bonds to obtain the most energetically favorable
conformation. The ligand file was also saved into pdbqt format. After docking, the
confirmations were analyzed using PyMOL [45] and Discovery Studio [46].

3.3.7. Molecular Dynamic Simulation

The docked complex was further taken for molecular dynamics (MD) simulation
studies. Three simulations were run separately for lysozyme alone, lysozyme–substrate
complex, and lysozyme–doxofylline complex. The lysozyme alone served as control.
The MD simulation was performed using amber99sb-ILDN force field with the gromacs-
2018.1 package [47,48]. The doxofylline and substrate topologies were generated using
Antechamber packages of AmberTools21 [49]. All systems were solvated with TIP3P
water model. The systems were then neutralized using the counter ions followed by
their energy minimization to get rid of weak Van der Waals forces using steepest descent
minimization. The minimized systems were first taken for NVT equilibration for 1 ns
using the V-rescale thermostat [22]. Next, equilibration was done for NPT using the
Parrinello–Rahman barostat at 1.0 bar for another 1 ns [50]. Both equilibrations were done
at 310 K. The equilibrated systems were then used for one hundred nanoseconds MD
simulation in which 10,000 frames of each trajectory were saved. All analyses were done
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using standard Gromacs-2018.1 utilities. The MM-PBSA calculations were done to calculate
various binding energies and find out the major energy contributors [51].

4. Conclusions

The mechanism of doxofylline binding to lysozyme was elucidated in the current work
using multiple spectroscopic and molecular docking techniques. Steady-state fluorescence
and UV-absorption data verified the formation of complex. The binding constant for the
interaction of doxofylline with lysozyme was in the range of 104 to 105 M−1. The fluores-
cence quenching was the result of a static process. The microenvironmental and structural
changes in lysozyme on interaction with doxofylline were corroborated by 3D-fluorescence,
circular dichroism, and synchronous fluorescence results. The values of binding energy pro-
vided by molecular docking techniques demonstrated that the binding interaction between
lysozyme and doxofylline was in fact spontaneous and energetically favorable. Van der
Waals interaction and hydrogen bonding were the principal forces at play. The doxofylline
formed stable complex with lysozyme under physiological conditions. Our conclusions
were further supported by in silico molecular dynamic simulation. Future research on the
protein–drug interaction and the development of protein-specific therapeutics may benefit
from the findings of this study.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28083462/s1, Figure S1: Overlap of the docked molecule
of lysozyme substrate with the original complex. The substrate occupied same binding site with
approximately similar orientation validating the docking procedure. The original substate is shown
as blue sticks, the docked substrate is shown as magenta sticks, protein is shown as coloured surface
view. Figure S2: Average RMSF of each atom of substrate and doxofylline. The RMSF is average of
all frames of each trajectory. Figure S3: (A) Ramachandran plot of energy minima structure of free
lysozyme alone. (B) Ramachandran plot of energy minima structure of lysozyme-substrate complex.
(C) Ramachandran plot of energy minima structure of lysozyme-doxofylline complex. Table S1: Total
binding energies (Etotal is total energy) (kcal mol−1) of major energy contributors for the interaction
of substrate and doxofylline with lysozyme calculated from MM-PBSA.
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