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Abstract

Speech enhancement aims to improve the listening quality and intelligibility of noisy speech in 

adverse environments. It proves to be challenging to perform speech enhancement in very low 

signal-to-noise ratio (SNR) conditions. Conventional speech enhancement utilizes air-conduction 

(AC) microphones, which are sensitive to background noise but capable of capturing full-band 

signals. On the other hand, bone-conduction (BC) sensors are unaffected by acoustic noise, but 

recorded speech has limited bandwidth. This study proposes an attention-based fusion method 

to combine the strengths of AC and BC signals and perform complex spectral mapping for 

speech enhancement. Experiments on the EMSB dataset demonstrate that the proposed approach 

effectively leverages the advantages of AC and BC sensors, and outperforms a recent time-domain 

baseline in all conditions. We also show that the sensor fusion method is superior to single-sensor 

counterparts, especially in low SNR conditions. As the amount of BC data is very limited, 

we additionally propose a semi-supervised technique to utilize both parallelly and unparallely 

recorded AC and BC speech signals. With additional AC speech from the AISHELL-1 dataset, we 

achieve similar performance to supervised learning with only 50% parallel data.

Index Terms—

speech enhancement; air-conduction; bone-conduction; attention-based fusion; complex spectral 
mapping

I. Introduction

Noise interference degrades the quality and intelligibility of speech signals in real-world 

environments. Speech enhancement aims to remove or reduce the background noise of a 

given speech signal. The recent introduction of deep learning has led to dramatic advances 
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in this field, and deep neural networks (DNNs) effectively suppress background noise for 

untrained speakers and noise types [42], [11], [24]. However, speech enhancement in non-

stationary noises at very low SNRs remains challenging, as noise dominates the acoustic 

signal making it difficult to recover clean speech.

Conventional speech enhancement operates on speech recorded by air-conduction (AC) 

sensors or microphones. AC microphones can capture full-band speech, but are susceptible 

to background noise. Bone-conduction (BC) sensors directly convert articulation-induced 

vibrations on the human skull to electric signals [33]. As a result, BC signals are not subject 

to background interference transmitted in air. On the other hand, BC speech has a limited 

bandwidth as high-frequency components are attenuated or lost due to the nature of bone 

conduction, resulting in muffled sound.

In the speech telecommunication scenario where AC and BC signals are both available 

at the speaker end, how to leverage AC and BC recordings for speech processing before 

transmitting the processed result to the remote listener end becomes a significant research 

issue. In early efforts, BC signals are used to extract auxiliary speech information in noisy 

conditions, e.g., voice activity detection [54], SNR estimation [32] and pitch extraction [27]. 

Later, researchers attempt to extend the bandwidth of BC signals to improve speech quality. 

These methods can be categorized into three groups: equalization, analysis and synthesis, 

and DNN-based. Simulating BC signals by passing AC signals through a low-pass filter, 

Shimamura and Tamiya [31] proposed an equalization method that estimates the inverse 

of such transformation. Specifically, they derive a linear-phase filter by first calculating 

the ratio of long-term discrete Fourier transform of AC and BC speech spectra, and then 

taking the inverse and applying it to BC speech to recover the AC counterpart. Kondo et al. 

[17] improve the equalization method by estimating the filter in a frame-by-frame fashion. 

Although the proposed equalization method improves speech quality, the performance is 

sensitive to filter length and order and expected to degrade for unknown speakers. In 

addition, this approach mainly considers the magnitude ratio, and the phase is kept the 

same as that of the input signal, so perfect speech reconstruction is impossible in the ideal 

case. Analysis and synthesis models assume the excitation signals are the same for both AC 

and BC signals. The task is then to obtain the envelope feature for AC signals. Past work 

uses features like linear predictive coding (LPC) [38], mel-frequency cepstral coefficient 

(MFCC) [34], and linear spectral frequency (LSF) [12] to predict the spectral envelope 

of AC signals, and then perform speech synthesis. This approach has several limitations. 

First, the assumption about the excitation does not always hold in real applications, causing 

distorted speech reconstruction. Second, excitation signals are hard to model as they are 

highly nonstationary. Recently DNN based methods are introduced to perform bandwidth 

extension on BC signals. Shan et al. [30] proposed a speaker-dependent approach to extend 

the bandwidth of BC speech. An encoder-decoder based network is employed to reconstruct 

the magnitude of AC speech, and magnitude-based features of spectral magnitude, MFCC 

and LPC are concatenated as the training input. Given the spectra of BC speech, Zheng et al. 

[51] introduce attention-based bidirectional long short-term memory (LSTM) to reconstruct 

the magnitude spectrogram of the corresponding AC speech. A structural similarity metric 

and a spectral distance metric are employed to guide optimization. Nguyen and Unoki 

[22] also employ bidirectional LSTM to recover AC speech. It predicts the LSFs of 
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the corresponding full-band speech given the LSFs of BC speech, and then performs 

inverse filtering with the filter derived from the predicted LSFs to restore AC speech. 

Zheng et al. [52] use the vocoder WaveNet [23] to perform bandwidth extension for BC 

spectrograms, and attempt to reconstruct the full-band waveform from the bandwidth-limited 

BC magnitude spectrogram. Hussain et al. [14] proposed a hierarchical extreme learning 

machine to extend the bandwidth of BC spectrogram, which improves the automatic speech 

recognition accuracy with a limited amount of training data. Despite DNN-based methods 

showing improved performance, it remains challenging to recover high-resolution speech 

from BC speech alone. One reason is that the bandwidth of BC speech is usually limited 

to 1–2 kHz depending on sensor position [21], [4], [15], which makes it very difficult to 

perform bandwidth extension to 8 kHz or 16 kHz with high quality. As the majority of 

a spectrogram is missing, the extended spectrogram suffers from the oversmoothing issue 

[29]. The other reason is that low-intensity, wide-band sounds such as /f/ and /s/ are poorly 

captured by BC sensors as they induce weak, narrowband vibrations [26], making them 

especially hard to reconstruct via bandwidth extension.

Earbud devices like Apple Airpods have become popular consumer electronics, and they 

include both AC and BC sensors. For a typical bone-conduction earbud, the BC sensor is 

placed on the pinna and the AC sensor serves as a close-talk microphone, making it easier 

to obtain parallelly recorded AC and BC speech. A recent study by Yu et al. [47] proposed a 

DNN-based method that regards BC sensors as another modality. They investigate ensemble 

learning methods to integrate the two types of signal and employ a fully convolutional 

network (FCN) to perform time-domain speech enhancement, demonstrating the efficacy of 

combining AC and BC signals in speech enhancement.

In a preliminary study [44], we proposed to leverage AC-BC signals by performing attention 

based fusion and employing a convolutional recurrent network (CRN) [36] and to perform 

speech enhancement in the complex domain. The attention mechanism is first introduced 

in [41] and has produced superior performance for sequence-to-sequence modeling. Since 

then, it has been widely employed in tasks like automatic speech recognition [25], natural 

language processing [5] and computer vision [9]. The core idea of attention is to generate a 

context vector that “attends to” subsets of a sequence through weights that highlight salient 

features and suppress irrelevant information. This also allows the network to model the 

long-term dependencies. Recent speech enhancement studies [8], [24] also report significant 

performance gain by incorporating attention modules. Experiments show that the proposed 

attention based AC-BC fusion offers an advantage over conventional speech enhancement. 

In this study, we extend the preliminary work in two main aspects. First, we improve the 

design of attention-based fusion by concatenating the original feature maps and attention-

mapped features. Second, considering the limited availability of parallel AC and BC speech 

data, we propose a novel semi-supervised framework that trains with both parallel and 

unparallel AC and BC speech. Our semi-supervised method outperforms its full-supervised 

counterpart.

The rest of the paper is organized as follows. In Section II, we formulate AC-BC fused 

speech enhancement. Section III describes our proposed network and pipeline. We describe 
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the semi-supervised AC-BC enhancement framework in Section IV. Section V presents 

datasets and experimental results. Finally, Section V-B concludes the paper.

II. Problem Formulation

We propose to utilize both AC and BC sensors to perform speech enhancement. It is 

assumed that we simultaneously collect a noise-insensitive signal yBC from the BC sensor 

and a noisy speech signal y from the AC sensor, which is composed of background noise n 
and clean speech s,

y[k] = s[k] + n[k], (1)

where k denotes the sample index of a waveform signal. Applying short-time Fourier 

transform (STFT) to the signals we have,

Y [t, f] = S[t, f] + N[t, f], (2)

where Y, S and N are the corresponding STFTs of y, s and n. Symbols t, f index time frame 

and frequency bin, respectively.The STFTs can be written in terms of real and imaginary 

parts,

Y r[t, f] + iY i[t, f] = Sr[t, f] + Nr[t, f] + i Si[t, f] + Ni[t, f] . (3)

The subscripts r and i denote real and imaginary numbers, respectively, and i the imaginary 

unit. Using the proposed complex-domain enhancement model g, whose parameters are 

denoted as θ, our goal is to recover the clean speech S using the signals collected from both 

Y and YBC. The task is defined as,

S[t, f] = g θ, Y [t, f], Y BC[t, f] , (4)

where S[t, f] is the enhanced speech in the complex domain.

III. Attention-based Sensor Fusion For Complex Speech Enhancement

We propose an attention-based method to fuse AC and BC signals and perform complex 

spectral mapping for speech enhancement. The proposed strategy is illustrated in Fig. 1(c). 

Two other fusion strategies, namely early-fusion and late-fusion as depicted in Figs. 1(a) 

and 1(b), are also investigated for comparison. In the following subsections, we describe the 

components of the proposed system and present fusion strategies and the training objective.

A. Densely Connected Block

Motivated by the success of the densely connected (DC) network [13], [50], [37], we 

incorporate densely connected blocks into our network to replace standard convolution 

layers, as illustrated in Fig. 2. These studies suggest a DC network outperforms the same 

architecture without dense connections. In a DC block, one convolutional operation is 

split into multiple convolution layers, each with fewer channels, and all layers have direct 

connections to subsequent layers. This design encourages the reusage of feature maps 

while also addressing the gradient vanishing issue. We use DC blocks to replace standard 
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convolutions in our network. Specifically, a DC block consists of five convolutional layers, 

and the first four are 2-D convolutions with the number of output channels set to 8. Each 

convolution is followed by a batch normalization and a parametric rectified linear unit 

(PReLU) activation [10]. The final layer accepts outputs from all preceding layers and 

performs a gated convolution [36]. The gated convolution is employed to facilitate the 

feature fusion across convolution channels. The kernel size for each convolution layer is (1, 

4) along the time and frequency axis, respectively. The dense block with gated convolutions 

can be formulated as,

xcat = Concat x1, x2, x3, x4 (5)

x = conv1 xcat ⊙ σ conv2 xcat , (6)

where xl denotes the output at convolution layer l (l = 1,2,3,4), and x is the dense block 

output. Symbol ⊙ represents element-wise multiplication, and σ denotes the sigmoidal 

activation function. Concate() is the concatenation operation of the feature vectors, and 

we use two distinct convolutions conv1 and conv2 to perform gated convolutions on the 

concatenated feature xcat.

B. DC-CRN

We use the densely connected CRN (DC-CRN) as the primary component to perform 

complex spectral mapping based speech enhancement, and illustrate its details in Fig. 3. The 

network architecture is based on CRN [36], [37], which builds on the convolutional encoder-

decoder structure and a recurrent neural network (RNN) bottleneck to model temporal 

dependencies. Such an architecture effectively captures the local and global contexts of 

a given input. We concatenate the real and imaginary parts of the complex spectrogram 

and feed the DC-CRN with 3-D feature maps. The CRN encoder is a convolutional 

neural network (CNN) downsampler that uses standard convolutions to reduce the feature 

dimension along the frequency axis, and the decoder mirrors the encoder architecture to 

restore the feature dimension with transposed convolutions. In DC-CRN, each convolutional 

layer within the CRN encoder and decoder is replaced by a DC block as described in Section 

III-A. The encoder comprises 7 DC blocks, and the number of output convolutional channels 

is set to be 16, 32, 64, 128, 256, respectively. These blocks and channels are mirrored 

for the decoder. The major difference with [37] is that we employ pointwise convolutions 

as skip connections to connect the encoder to the decoder in order to make our DC-CRN 

model lightweight and memory efficient. Table I lists the efficiency gain by adopting these 

modifications. For memory consumption, we measure the GPU memory usage by passing a 

batch of 8 utterances. For the bottleneck RNN, we employ a two-layer grouped bidirectional 

long short-term memory (BLSTM) module [6], [36], which reduces the computational 

complexity while maintaining enhancement performance. Specifically, to reduce inter-layer 

calculations, we divide the feature maps into four disjoint groups. To model the intra-group 

relationship, we perform a representation rearrangement and a layer normalization after 

each LSTM layer. Finally, the output of the CNN decoder is halved and then reshaped 

into one-dimensional features. Each half passes through a linear layer to produce real and 
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imaginary spectrogram estimates (see Fig. 3). One thing worth noting is that we can easily 

convert our model to the causal version by switching BLSTM to uni-directional LSTM.

C. Attention-based Fusion

Different from the attention based methods that focus on a single modality, we regard AC 

and BC complex spectrograms as different modalities, and employ attention-based modality 

fusion techniques similar to [3], [49] to fully exploit cross-modal and single-modal features. 

The attention-based fusion of AC and BC feature maps is illustrated in Fig. 4. First, we 

implement a channel attention module in multiple scales. To make attention calculations 

efficient, we only consider local and global contexts. The local context is calculated 

by applying a two-layer pointwise convolution followed by a batch normalization and a 

PReLU activation. The global context is acquired similarly, except that we employ a global 

average pooling before the convolution operation. We aggregate context information and 

then calculate the attention score M using a sigmoidal activation. Note during the attention 

calculation, the global context vector has a smaller shape compared with the local context 

vector, so we expand the vector such that they have the compatible shape before summation. 

Then, we perform element-wise addition on two input features and assign weights M and 

1 − M to each feature map to produce an attention-fused feature (AFF). Finally, as shown 

in Fig. 1(c), we concatenate the AC and BC complex spectrograms with the attention-fused 

feature as the input to the DC-CRN model. That is,

Y AFF[t, f] = MY [t, f] + (1 − M)Y BC[t, f] (7)

Y feat[t, f] = Concat Y [t, f], Y BC[t, f], Y AFF[t, f] . (8)

We investigate two other fusion strategies, early-fusion (EF) and late-fusion (LF) [18], 

which are depicted in Fig. 1(a) and 1(b). Early-fusion concatenates AC and BC signals 

before feeding them to the DC-CRN. For the late-fusion strategy, AC and BC signals are fed 

to separate DC-CRN models, and we merge the outputs of the two models using a linear 

layer.

D. Training Objective

We define the training objective in the complex domain. Recent studies [45], [46], [48] have 

demonstrated that including a magnitude loss in complex spectral mapping is beneficial, 

reflecting the relative importance of magnitude over phase. Based on this observation, we 

construct the loss function by calculating the mean absolute error (MAE) for the real and 

imaginary parts, plus the MAE of magnitudes. With the total number of time frames and 

frequency bins denoted as T and F respectively, the loss is defined as,

LRI − Mag(S, S) = LRI + LMag (9)
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LRI = 1
TF ∑

t = 1

T
∑

f = 1

F
Sr[t, f] − Sr[t, f]

+ Si[t, f] − Si[t, f]
(10)

LMag = 1
TF ∑

t = 1

T
∑

f = 1

F
S[t, f] − S[t, f] . (11)

IV. Semi-supervised Learning For AC-BC Fusion

The vast majority of existing speech corpora are recorded with AC microphones. The 

availability of BC speech is limited, and parallelly recorded AC and BC data is even 

scarcer. This brings difficulties to the application of our sensor fusion method for speech 

enhancement. To address this issue, we propose a semi-supervised method for AC-BC 

fusion. Semi-supervised learning is a kind of weakly-supervised learning where both paired 

and unpaired data are utilized to facilitate training [1], [39]. In this study, we regard parallel 

AC and BC speech as paired data, and AC speech provides the ‘label’ of its corresponding 

BC signal. For unpaired data, the ‘label’ of a given BC speech signal is unavailable. 

Our proposed framework is based on the Cycle-consistent Generative Adversarial Network 

(CycleGAN) [53], which is shown to be effective for tasks with unpaired data, like image-to-

image translation [53], image segmentation [20], and voice conversion [7]. This framework 

enables us to train with unpaired speech data, and improves the enhancement performance 

when paired data is limited.

A. CycleGAN

CycleGAN [53] is a GAN architecture extension and it is typically applied when there 

is a lack of paired training data. There are four modules in CycleGAN, two conditional 

generators and two discriminators. The generators are employed to learn a bidirectional 

mapping between two domains. The first generator takes input from the first domain, and 

produces output to the second domain. Meanwhile, the second generator learns the reverse 

mapping. By applying two generators sequentially, we map the input to its original domain, 

i.e., recover the original input. The discriminators are designed to determine whether the 

generated output is real or fake. Adversarial training is performed such that generators and 

discriminators compete with each other, and generators aim to produce outputs realistic 

enough to trick discriminators. This model is capable of generating plausible predictions 

even if there is limited paired data.

B. Model Description

Our semi-supervised AC-BC fusion speech enhancement model is illustrated in Fig. 5, and 

it contains two CNN-based discriminators and two generators that build on the proposed 

DC-CRN model. During training, we adopt the attention based fusion DC-CRN model as 

Generator A, which takes as input both noisy speech and BC speech and predicts clean 

speech. Generator B is the DC-CRN that converts clean speech to its BC counterpart. 
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Discriminator A determines whether a given input is an authentic clean signal, and 

Discriminator B is trained to discriminate whether a given signal belongs to BC speech 

or not. Unlike image data, speech signals are of variable lengths, so we construct a 7-layer 

CNN with adaptive pooling as our discriminator, which converts variable-sized features into 

vectors of fixed dimension. Each CNN layer in the discriminator is followed by a batch 

normalization and a PReLU activation. The number of convolution channels in each layer is 

set to 32, 64, 128, 256, 512, 256, 1, sequentially. During interference, we feed Generator A 
with BC speech and noisy speech to produce a clean speech estimate.

C. Training Objective

The training objective for the semi-supervised framework is composed of two parts, 

supervised loss and semi-supervised loss. Both paired and unpaired data are involved in 

the loss calculation. We denote the paired data with the superscript P and the unpaired data 

with the superscript U. For instance, the clean speech that has no parallel BC counterpart is 

denoted as SU, and the corresponding noisy speech as Y U.

For supervised speech enhancement loss Lsup, we employ the complex-domain loss function 

defined in Sec. III-D to measure the complex spectrogram difference of the generated speech 

and its corresponding ground truth. It consists of Lsup
A  and Lsup

B , which optimizes Generator A 

and B respectively. The supervised enhancement loss is defined as,

Lsup = Lsup
A + Lsup

B
(12)

Lsup 
A = LRI − Mag GA Y P , Y BC

P , SP (13)

Lsup 
B = LRI − Mag GB SP , Y BC

P . (14)

The semi-supervised loss consists of three components, an adversarial loss, a cycle 

consistency loss and an identity loss. Instead of the cross-entropy loss in regular GANs, 

we employ the least square loss [19] as the adversarial loss to stabilize adversarial training. 

It has been shown that this loss minimizes the Pearson χ2 divergence. We define the 

adversarial loss as,

LD = LD
A + LD

B
(15)

LD
A = 1

2ES pS DA(S) − 1 2

+ 1
2EY , YBC pY , YBC DA GA Y , Y BC

2 (16)

LD
B = 1

2EYBC pYBC DB Y BC − 1 2

+ 1
2ES pS DB GB(S) 2
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LG = 1
2EY , YBC pY , YBC DA GA Y , Y BC − 1 2

+ 1
2ES pS DB GB(S) − 1 2 ,

(18)

where X~pX represents a random variable X drawn from the probability distribution pS, 

and X,Y ~pX,Y random variables X and Y from the joint probability distribution pX,Y. E is 

the expectation operator. Superscripts A and B indicate discriminator A and B, respectively. 

The discriminators seek to classify real speech as 1 and generated speech as 0, whereas the 

generators intend to deceive the discriminators and identify the label of generated speech 

to be 1. Note that superscripts U and P are absent in the above equation, as this loss term 

applies to both paired and unpaired data.

To exploit unparallel speech data, we use a cycle consistency loss. Applying two generators 

sequentially, we obtain a reconstructed complex spectrogram that corresponds to the original 

input. Again, we measure the complex spectrogram difference using LRI−Mag,

Lcycle = LRI − Mag GB GA Y P , Y BC
P , Y BC

P + LRI − Mag GA Y U, GB SU , SU . (19)

An identity loss is added to regularize adversarial training for which, if given a target speech 

signal, the generator should output the same speech [53], i.e.,

Lidentity = ES, Y pS, Y GA(S, Y ) − S +EYBC pYBC GB Y BC − Y BC . (20)

The purpose of this loss term is to preserve the feature correlations between the input 

and output [53]. Without the identity loss, the generators produce complex spectrograms 

reasonable enough to deceive the discriminators, but might deviate from the ground truth, as 

both mappings are equally valid under the adversarial loss and the cycle consistency loss.

Finally, the total loss of our training objective combines all loss terms,

Ltotal = LD + LG + αLcycle + βLidentity + γLsup, (21)

where α, β, γ control the relative importance of their respective loss terms, and we set α = 

5.0, β = 2.0, γ = 5.0 based on the performance on a validation set.

V. Experiments

A. Datasets and Evaluation Metrics

We perform supervised experiments on the Elevoc Simultaneously-recorded Microphone/

Bone-sensor (ESMB) speech corpus1, which is a Chinese corpus consisting of 128 hours 

of speech uttered by 131 male and 156 female speakers. Speech is recorded using a pair of 

Elevoc Clear earbuds, and each earbud contains a ST25ba BC sensor near the entry of the 

ear canal to gather skull vibrations during articulation and an AC sensor outside the ear that 

1available at https://github.com/elevoctech/ESMB-corpus
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acts as a close-talk microphone. During the recording, every speaker reads Chinese prompts 

for around 20 minutes, producing 16 kHz stereo speech data, for which each channel 

corresponds to one earbud. We use the same noise set for training and validation, which 

is generated by randomly selecting 20000 files from the DNS challenge dataset2. For each 

utterance, we generate a noisy speech signal by mixing an AC signal with a noise segment 

cut to the same length from the noise set at an SNR level uniformly sampled from the range 

{−5, −4, −3, −2, −1, 0} dB. We set aside two male and two female speakers for validation 

and evaluate on two male and two female speakers that are not included in training and 

validation sets. The remainder of the corpus constitutes the training set. For evaluation, we 

select four challenging noises: babble and cafeteria from an Auditec CD3, and factory and 

engine from the NOISEX92 dataset [40]. Each test utterance is mixed with these four noises 

at three SNR levels −5, 0 and 5 dB.

For semi-supervised experiments, paired AC and BC speech are extracted from the 

ESMB corpus, and we employ the AISHELL-1 dataset [2] as the source for unpaired 

data. AISHELL-1 is a Chinese Mandarin speech corpus that consists of around 120000 

utterances with a total duration of about 178 hours. Four hundred speakers participated in 

the recording, which was conducted in a quiet indoor environment using a high-fidelity 

microphone and then downsampled to 16 kHz. The validation and test settings are the same 

as in supervised experiments. A similar procedure to supervised experiments is used to 

generate noisy mixtures for both AISHELL and ESMB.

We use two standard metrics to assess enhancement performance, short-time objective 

intelligibility (STOI) [35] and perceptual evaluation of speech quality (PESQ) [28]. STOI 

has a typical value range from 0 to 1, which can be typically interpreted as percent correct. 

PESQ ranges from −0.5 to 4.5. Higher values indicate better performance for both metrics.

B. Experimental Setup

For all experiments, we resample recordings to the sampling rate of 8 kHz. During 

training and validation, we discard for each recording silent portions whose energy is 

60 dB below the peak power reference. A window length of 32 ms with 50% overlap 

between adjacent frames is used in calculating STFTs, which correspond to 129-dimensional 

spectra. We apply meanvariance normalization (MVN) to each noisy utterance, and the 

corresponding clean utterance is scaled accordingly. Each BC utterance passes through an 

eighth-order Butterworth low-pass filter, and is then normalized using MVN. This low-pass 

filtering serves two purposes. First, there is still residual energy in the upperband of BC 

spectrograms, which is not helpful for speech enhancement. We find that removing the 

upperband energy slightly improves enhancement performance. Second, it enforces the same 

cutoff frequency of all BC utterances, which improves the generalization of the trained 

model to devices with different cutoff frequencies.

For the fully-supervised model, we use the Adam optimizer [16] and train with the batch 

size of 16 utterances for 30 epochs. The initial learning rate is set to 0.0006, and is halved if 

2available at https://github.com/microsoft/DNS-Challenge
3available at http://www.auditec.com
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the validation loss has not improved for three consecutive epochs. We also employ a gradient 

clipping with a maximum value of 5.0 to avoid gradient explosion.

For the semi-supervised model, both generators and discriminators are optimized using 

the Adam optimizer. The learning rate for the generators is set to 4e-4, and for the 

discriminators to 2e-4. We train the CycleGAN in an alternating fashion, i.e., when the 

generators are optimized, the parameters of the discriminators are fixed, and vice versa. To 

balance the adversarial training, we optimize the discriminators less frequently, and update 

their parameters every 5 iterations. Furthermore, we set the batch size to 8 utterances and 

train for 120000 iterations. For the first 10% of the iterations, we only train with paired data 

using Lsup to initialize, and the learning rate is fixed to 0.0004. For the rest of the training, 

we use Ltotal and the learning rate is linearly decayed from 0.0004 to 0.0001.

VI. Results and Analyses

A. Supervised Experiments

Fig. 6 plots the enhancement performance of AC-BC sensor fusion approaches on the 

ESMB dataset. We present the results of our proposed method and the baseline FCN [47], 

and compare different fusion strategies. Subscripts AF, EF and LF denote the proposed 

attention-based fusion, early-fusion and late-fusion strategies, respectively. We also provide 

a causal version of the proposed DC-CRN for a fairer comparison with FCN. For the 

causal implementation, we use unidirectional LSTM instead of BLSTM, and only keep 

the local context computation in the attention module to avoid global average pooling. As 

shown in the figure, our complex-domain DC-CRN outperforms the time-domain baseline 

FCN [47] in all conditions. Especially at −5 dB SNR, our attention-based fusion achieves 

21.1% higher STOI, and PESQ is improved by 0.83 compared with the best FCN fusion. 

In terms of fusion strategies, the proposed attention-based fusion shows a consistent 

improvement over early fusion and late fusion. For instance, at the SNR of −5 dB, on 

average the attention-based fusion has 1.0% STOI and 0.08 PESQ advantage over the late 

fusion. Furthermore, for both FCN and DC-CRN, late-fusion performs slightly better than 

early fusion (see also [47]). However, requiring separate DNNs for two types of sensor 

signal, late-fusion tends to be computationally heavier and may not be preferable in real 

applications.

Additionally, we compare sensor fusion with single-sensor counterparts in Fig. 7. 

Specifically, we feed DNNs with only AC or BC signals, and compare them with the AC-BC 

fusion. From the figure, we observe that the networks that employ AC-BC fusion always 

outperform conventional speech enhancement that only utilizes AC signals. Especially 

at −5 dB SNR, sensor fusion substantially boosts the enhancement performance. For 

example, STOI is improved by 11.6% and PESQ by 0.65 for the proposed DC-CRN. 

Incorporating BC signals becomes less beneficial as SNR rises. This is to be expected, as 

noise interference is not that severe in these conditions, and the noise insensitivity of BC 

signals is less useful. At 5 dB SNR, STOI is merely 1.7% higher, and PESQ is improved by 

0.10 for DC-CRN.
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We also provide the results of employing BC signals only, which essentially amounts to 

bandwidth extension. An advanced bandwidth extension baseline (AECNN_BC) [43] for 

comparison. Due to the nature of BC signals, it performs the same in all noisy conditions. 

Compared to sensor fusion, the enhancement performance is worse, but the gap is relatively 

small in lower SNR conditions. It is worth noting that, at −5 dB SNR, speech enhancement 

with only BC signals yields on average better results than with only AC signals.

B. Semi-supervised Experiments

Table II reports the results of training with different portions of paired data of the ESMB 

corpus for supervised and semi-supervised learning, where we present average evaluation 

results of four test noises at −5 dB SNR. We train both the fully-supervised model and 

the CycleGAN model using 1%, 2%, 5%, 10%, 20%, 50% and 100% paired data, and the 

semi-supervised model additionally exploits unpaired AC data from the AISHELL corpus.

Compared to fully-supervised baselines, semi-supervised learning has a clear advantage 

on different paired portions, suggesting we have effectively benefited from unpaired data. 

Especially when training with only 1% of paired data, the semi-supervised approach 

considerably boosts the enhancement performance, improving STOI by 8.6% and PESQ 

by 0.38. As the paired portions rise, the improvement becomes smaller as expected. Using 

50% paired data, we are able to match the performance of the full-supervised baseline using 

the complete ESMB corpus. This shows that the proposed semi-supervised technique can 

improve the enhancement performance when paired data is limited.

C. Ablation Study

An ablation study is conducted to investigate the effects of different components within 

the proposed model, and the results are given in Table III. We use the attention-based 

fusion of our DC-CRN as the baseline and compare several variants at −5 dB SNR: (i) 

replacing DC blocks with standard convolutions; (ii) replacing the gated convolutions within 

DC blocks with standard convolutions; (iii) replacing pointwise convolution-based skip 

connections with concatenation-based skip connections. (iv) employing addition instead 

of concatenation when performing attention-based fusion. As shown in the table, these 

variants all underperform the proposed design. Among these factors, dense connectivity 

plays a significant role in enhancement performance, as removing DC blocks degrades STOI 

by 5.3% and PESQ by 0.29. Gated convolutions are beneficial for merging cross-channel 

features, and removing them from DC blocks results in 2.2% and 0.19 drop in STOI and 

PESQ, respectively. Furthermore, pointwise skip connections are an efficient way to boost 

feature fusion compared to simple concatenations, as it improves the performance without 

introducing many extra parameters. Lastly, performing attention-based fusion using addition 

leads to a significant performance drop. This is expected as using concatenation can leverage 

both cross-modal and single-modal features, whereas addition only utilizes cross-modal 

features.
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VII. Conclusion

In this study, we have proposed a novel attention-based approach for fusing AC and 

BC sensor signals for complex-domain speech enhancement. To restore clean speech in 

adverse environments, we take advantage of the full bandwidth of AC microphones and 

the noise insensitivity of BC sensors. Systematic evaluations show that our approach 

substantially boosts the enhancement performance compared with conventional monaural 

speech enhancement that only utilizes AC microphones, especially in very low SNR 

conditions. Furthermore, our DC-CRN model significantly outperforms a recent time-

domain baseline in all conditions. Additionally, as the availability of parallelly recorded AC 

and BC speech is limited, we have proposed a semi-supervised CycleGAN-based framework 

to utilize AC and BC speech data in unrelated recordings. We have demonstrated that this 

framework achieves similar performance with only 50% paired data compared to the fully 

supervised counterpart. For future work, we plan to reduce the DC-CRN model complexity 

and improve inference efficiency so that the proposed algorithm can be deployed on mobile 

devices.
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Fig. 1. 
Diagrams showing different fusion strategies, where both BC and noisy AC spectra are 

utilized to produce an enhanced AC complex spectrogram. (a). Early-fusion, (b). Late-

fusion, and (c). Attention-based fusion.
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Fig. 2. 
Diagram of a DC block. The first four layers are standard 2D convolutions, and the last one 

utilizes gated convolutions.
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Fig. 3. 
Diagram of the DC-CRN that performs complex spectral mapping for speech enhancement.

Wang et al. Page 19

IEEE/ACM Trans Audio Speech Lang Process. Author manuscript; available in PMC 2023 September 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Illustration of attention-based feature fusion. (a) process of calculating the attention score M, 

and (b) process of using M to perform soft selection and feature concatenation. Symbol ⊗ 
represents element-wise multiplication, and ⊕ summation.
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Fig. 5. 
Schematic of the CycleGAN-based semi-supervised framework. The proposed model 

contains two generators and two discriminators, which are trained in a competitive manner. 

The solid arrow denotes the training process, and the dashed arrow represents the pipeline of 

inference. Pred stands for predicted, and the subscript sup denotes supervised.
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Fig. 6. 
Enhancement performance of the FCN baseline and the proposed method using different 

fusion strategies in terms of STOI and PESQ on the ESMB corpus at different SNRs.
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Fig. 7. 
Enhancement performance of single-sensor versus sensor-fusion methods.

Wang et al. Page 23

IEEE/ACM Trans Audio Speech Lang Process. Author manuscript; available in PMC 2023 September 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wang et al. Page 24

TABLE I

Efficiency Gain of the Modified DC-CRN. M denotes millions and G represents gigabytes.

# of parameters GPU memory used

Original DC-CRN 6.43 M 4.97 G

Modified DC-CRN 5.84 M 4.53 G
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TABLE II

Enhancement performance of fully-supervised and semi-supervised learning models using different 

proportions of paired data at −5 dB SNR

Fully-supervised Semi-supervised

paired portion STOI (%) PESQ STOI (%) PESQ

1% 57.6 2.27 66.2 2.65

2% 61.2 2.40 69.1 2.74

5% 64.2 2.55 70.7 2.79

10% 67.6 2.71 72.6 2.86

20% 70.0 2.83 73.9 2.99

50% 73.0 2.96 74.8 3.02

100% 74.8 3.01 74.9 3.03
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TABLE III

Ablation Study of the proposed network at −5 dB SNR

STOI (%) PESQ

Proposed_AF 74.8 3.01

- DC blocks (i) 69.5 2.72

- gated convolution (ii) 72.6 2.82

- pointwise convolution skip connections (iii) 74.1 2.94

attention-based fusion with addition (iv) 68.4 2.73

IEEE/ACM Trans Audio Speech Lang Process. Author manuscript; available in PMC 2023 September 26.


	Abstract
	Introduction
	Problem Formulation
	Attention-based Sensor Fusion For Complex Speech Enhancement
	Densely Connected Block
	DC-CRN
	Attention-based Fusion
	Training Objective

	Semi-supervised Learning For AC-BC Fusion
	CycleGAN
	Model Description
	Training Objective

	Experiments
	Datasets and Evaluation Metrics
	Experimental Setup

	Results and Analyses
	Supervised Experiments
	Semi-supervised Experiments
	Ablation Study

	Conclusion
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	Fig. 7.
	TABLE I
	TABLE II
	TABLE III

