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The development of a vaccine to prevent congenital human cytomegalovirus (HCMV) disease is a public health priority. We tested
rhesus CMV (RhCMV) prototypes of HCMV vaccine candidates in a seronegative macaque oral challenge model. Immunogens
included a recombinant pentameric complex (PC; gH/gL/pUL128/pUL130/pUL131A), a postfusion gB ectodomain, and a DNA
plasmid that encodes pp65-2. Immunization with QS21-adjuvanted PC alone or with the other immunogens elicited neutralizing
titers comparable to those elicited by RhCMV infection. Similarly, immunization with all 3 immunogens elicited pp65-specific
cytotoxic T-cell responses comparable to those elicited by RhCMV infection. RhCMV readily infected immunized animals and
was detected in saliva, blood, and urine after challenge in quantities similar to those in placebo-immunized animals. If HCMV
evades vaccine-elicited immunity in humans as RhCMV evaded immunity in macaques, a HCMV vaccine must elicit immunity
superior to, or different from, that elicited by the prototype RhCMV vaccine to block horizontal transmission.
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Human cytomegalovirus (HCMV) infection of immune-
competent individuals generally manifests with an acute phase
followed by a life-long latent phase and is often asymptomatic.
However, new infection or reactivation from latentHCMV infec-
tion in immunosuppressed patients, such as transplant recipients
or those with AIDS, can cause serious disease and even death.
Primary HCMV infection of a seronegative pregnant woman re-
sults in transmission to her fetus in approximately 30% of cases
[1, 2]. Approximately 10% of congenitally infected infants will
have symptoms at birth, with approximately 30%–40% of those
exhibiting severe disease, which can include hearing loss, vision
loss, microcephaly, and developmental delay. Nonprimary infec-
tion of a seropositive pregnant woman or reactivation of her la-
tent HCMV also can result in transplacental transmission. The
probability of transmission to the fetus and severe sequelae
may be substantially lower after nonprimary maternal infection,
though studies of the outcomes of nonprimarymaternal infection

are inconsistent [1, 2]. A prophylactic HCMV vaccine is urgently
needed to prevent congenital HCMV disease, as well as HCMV
disease in immunosuppressed patients.
At least 3 viral glycoproteins or glycoprotein complexes me-

diate HCMV entry into cells: glycoprotein B (gB), which is re-
quired for CMV entry into all target cells [3]; the gH/gL/
pUL128/pUL130/pUL131 heteropentamer complex (PC) [3],
which is important for entry into epithelial and endothelial
cells; and gH/gL/gO, which is important for entry into fibro-
blasts [4–7]. The viral fusion glycoprotein, gB, transitions
from a metastable prefusion conformation to a stable postfu-
sion conformation as it fuses membranes during cell entry [8,
9]. Postfusion gB has been isolated in a well-characterized
form stable enough to test its immunogenicity. Postfusion gB
elicits strong nonneutralizing antibody responses, strong
complement-dependent neutralizing responses, and much
weaker complement-independent neutralizing responses [10,
11]. A subunit vaccine candidate containing an adjuvanted, re-
combinant, postfusion CMV gB antigen has demonstrated stat-
istically significant protection from horizontal transmission of
CMV to seronegative new mothers [12], and a trend toward
protection of seronegative adolescent girls [13]. Although the
observed level of protection was insufficient to justify further
development of a postfusion gB-based vaccine, the findings
suggest that mechanisms other than virus neutralization may
have some protective capacity. Prefusion HCMV gB has been
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stabilized for structure determination [14], but there are as yet
no reports of the immunogenicity of a preparation of gB that
has been convincingly demonstrated to be in the prefusion
conformation.

The PC is the dominant target for neutralizing antibody
(nAb) responses in natural HCMV infections [9, 15], and
sera from mice and monkeys immunized with recombinant
PC neutralize HCMV infection of epithelial and endothelial
cells and fibroblasts to high titers [16–19]. Directly testing the
protective efficacy of HCMV antigens in animal models is
not feasible because HCMV only infects humans. Infection of
specific-pathogen–free (SPF) rhesus macaques by RhCMV is
a rigorous animal model for CMV pathogenesis and vaccine ef-
ficacy [20]. Vaccination of rhesus macaques with modified vac-
cinia virus Ankara (MVA) vectors expressing soluble or
membrane-associated RhCMV PC did not efficiently prevent
RhCMV infection after subcutaneous challenge, but did reduce
viral loads [21]. The nAb response elicited by MVA-vectored
PC immunization was modest and far below responses
elicited by recombinant HCMV PC immunization of mice or
natural HCMV infection of humans. A nucleoside modified
RNA-based vaccine candidate that encodes the human CMV
PC and postfusion gB is in clinical testing [22].

Here, we report the immunogenicity of RhCMV PC and its
protective efficacy against oral challenge of SPF rhesus ma-
caques with UCD52, a virulent strain of RhCMV that has a
functional PC [23]. In addition, we tested the protective efficacy
of immunization with RhCMV PC together with 2 other
RhCMV immunogens—postfusion gB and DNA that encodes
RhCMV pp65-2, an orthologue of the HCMV pp65 tegument
protein.

METHODS

Vaccine Immunogens

Expression and Purification of Recombinant RhCMV UCD52 PC

The PC was expressed in SF9 insect cells from a single
baculovirus with the RedVax GmbH platform design,
which is based on the Multibac system [24, 25]. The 5
coding sequences (accession numbers: HQ667932-gH;
HQ667933-gL; GU552456-UL128, -UL130, -UL131a) were
synthesized with codon optimization for insect cell expression.
Glycoprotein H is the only protein in the PC with a transmem-
brane domain, and its coding sequence was truncated to ex-
press a soluble ectodomain with a C-terminus at amino acid
695. The recombinant RhCMV strain UCD52 [26] PC was iso-
lated from 12 L of SF9 culture medium using affinity chroma-
tography with Ni Sepharose (GE Healthcare) followed by
cation exchange chromatography with Toyopearl-SP 650M
(Tosoh Bioscience). The final preparation of PC was quantified
by micro-BCA (Invitrogen) and characterized by sodium do-
decyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE).

Production of RhCMV gB674

TheN-terminal 674 residues of UCD52 gB (GenBank accession
ADD92468), named gB674, with a C-terminal 6×His tag were
expressed as a soluble ectodomain in Expi293F cells
(Invitrogen) by transient transfection. Five liters of HEK293
conditioned culture medium was concentrated 14× and 3× di-
afiltered into binding buffer (20 mM NaPO4, 300 mM NaCl,
pH 7.4) by 10 kDa molecular weight cutoff tangential flow fil-
tration. The diafiltrate was applied to a 5-cm× 17-cm Ni
Sepharose 6 FF column (GE Healthcare) and washed with
20 mM NaPO4, 150 mM NaCl, 0.14% Triton X-100, pH 6.8–
7, followed by 20 mMNaPO4, 300 mMNaCl, 100 mM imidaz-
ole, pH 6.8–7. gB674 was eluted in 20 mM NaPO4, 150 mM
NaCl, 500 mM imidazole, pH 6.8–7. The pooled fractions
were concentrated to 45 mL by tangential flow filtration and
applied to a Superdex 200 pg (Cytiva) size-exclusion column
(5 cm× 55 cm) in 20 mM NaPO4, 150 mM NaCl, pH 6.8–7.
The purification yielded 300 mg of pure gB674 protein.

UCD52 pp65-2 DNA

The coding sequence of RhCMVUCD52 pp65-2 (GenBank ac-
cession QQL11309) was codon-optimized for mammalian cell
expression and cloned into an expression cassette pJV7563 as
previously described [27]. The plasmid was expanded in
BD1175 host cells (a noncommercial product of Pfizer, Inc)
and purified by anion exchange chromatography (Fractogel
TMAE [M] resin; EMD Millipore). Isoforms of the purified
plasmid were analyzed by anion exchange high-performance
liquid chromatography using a CIMac pDNA-0.3 analytical
column. The final product contained 89% supercoiled DNA
and was passed through a 0.22-µm filter.

RhCMV Strain and Monkey Cells

RhCMV strain UCD52, primary monkey kidney epithelial cells
(MKE) and telomerized rhesus fibroblast cells (Telo-RF) were
prepared as described [28–30]. UCD52 viral stock for animal
challenge was passaged 4 times on MKE cells and expanded
once on Telo-RF cells. Virus stocks were titrated on MKE or
Telo-RF cells using a single-round entry assay in which
virus-infected cells were enumerated by immunostaining for
immediate-early-1 (IE1) 48 hours after virus inoculation.

Vaccination and Challenge Studies in SPF Rhesus Macaques

SPF rhesus macaques (Macaca mulatta) were bred and main-
tained at the California National Primate Research Center as
reported [31]. All animal protocols were approved in advance
by the Institutional Animal Care and Use Committees of the
University of California, Davis (UC Davis) and Pfizer. UC
Davis is fully accredited by the Association for Assessment
and Accreditation of Laboratory Animal Care. All animals
were seronegative for RhCMV prior to immunization or inoc-
ulation. The animals were 12–24 months of age. About half
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were male, and half were female. The protein antigens and
pp65-2 DNA used for vaccination tested negative for adventi-
tious agents and had endotoxin levels below the maximum
permissible.

Groups of 6 rhesus macaques were injected intramuscularly
(IM) with the protein immunogens adjuvanted with QS-21 3
times at 4-week intervals. One group was immunized with
pp65-2 DNA by electroporation in 1 limb and with the protein
immunogens in the contralateral limb. For DNA vaccination,
2 mg of plasmid was formulated in 0.5 mL phosphate-buffered
saline and delivered into the quadriceps muscle using the
TriGrid Delivery System by Ichor Medical Systems following
the manufacturer’s protocol (Ichor Medical Systems). A group
of 6 animals wasmock vaccinated by electroporation as control.

Two weeks after the third vaccination, the vaccine- or
placebo-immunized animals were challenged by 5 weekly inoc-
ulations of 8× 105 plaque-forming units (pfu) of RhCMV
UCD52 (GenBank accession MT157339) into the buccal pouch,
as previously reported [32]. Samples of blood (EDTA-treated
plasma and peripheral blood mononuclear cells [PBMCs]), sal-
iva (oral swab), and urine (cystocentesis complemented by pan
catch when needed) were collected by conventional methods
and used for serological and virological testing using previously
described methods with some modifications [26, 33–36].

RESULTS

Expression and Characterization of Recombinant UCD52 PC

The PC was purified by affinity chromatography from recom-
binant baculovirus-infected insect cells by nickel affinity chro-
matography using the C-terminal histidine tag appended to gH,
followed by cation exchange chromatography. SDS-PAGE un-
der reducing and nonreducing conditions produced a pattern
of bands similar to that of the HCMV PC published by others
(Figure 1) [37]. We confirmed the identities of the major re-
solved bands to be gH, gL, pUL128, pUL130, and pUL131A
by liquid chromatography with tandem mass spectrometry
(LC-MS/MS; Supplementary Table 1).

Expression and Characterization of Recombinant, Postfusion gB674

Guided by X-ray crystal structures of HCMV postfusion gB [8,
9], we truncated RhCMV gB (GenBank Accession GU552457)
at residue 674 to produce a soluble, recombinant, trimeric ecto-
domain. The resulting construct, gB674, includes the signal pep-
tide, mutation of the furin recognition motif (from 429RRKR432

to ATKA), 3 mutations (F128G, I129H, andW213A) in the 2 fu-
sion loops to prevent aggregation, and a GSG linker to a
C-terminal 6×His purification tag (Figure 2A). After expression
in mammalian cells and purification, reducing SDS-PAGE anal-
ysis of gB674 produced a single, uniform monomer band with a
migration around 100–130 kDa, which is higher than the ap-
proximately 76 kDa of the predicted molecular weight of the

polypeptide, possibly due to glycosylation (Figure 2B). By non-
reducing SDS-PAGE, more slowly migrating species were
seen, consistent with trimer formation and a higher-order asso-
ciation. By size exclusion chromatography in the presence of
1 mMEDTA, a single, homogeneous peak with an apparentmo-
lecular weight of 313 kDa was observed, consistent with a gB674
trimer (Figure 2C). The gB674 preparation had a purity of.98%
by SDS-PAGE. Transmission electronmicroscopy after negative
staining revealed monodispersed gB674 trimers with rod-like
shapes approximately 17 nm in length and with 3 globular den-
sities, consistent with postfusion HCMV gB crystal structures
(Figure 2D) [8].

Design of a DNA Immunogen Encoding UCD52 pp65-2

HCMV pp65 is a tegument phosphoprotein and a major target
for cytotoxic T-cell responses during natural infection [38, 39].
RhCMV encodes 2 homologues of HCMV pp65: pp65-1 and
pp65-2, the latter being the more important cytotoxic T-cell
target in chronically RhCMV-infected monkeys [40]. In tran-
siently transfected COS-7 cells, a plasmid encoding the
UCD52 RhCMV pp65-2 open reading frame under control of
the CMV promoter directed high-level expression of pp65-2,
as detected by immunostaining of nuclei with an antibody
that recognized the 6×His tag appended to the pp65-2
C-terminus (Figure 3).

Immunogenicity of PC, gB674, and pp65 in Rhesus Macaques

We immunized 4 groups of 6 SPF rhesus macaques at weeks 0,
4, and 8: (1) buffer only (20 mM Tris, 150 mM NaCl, 6 mM

Figure 1. Expression and characterization of recombinant UCD52 PC. The pres-
ence of the 5 components of the PC (gH, gL, pUL128, pUL130, and pUL131A) wa-
s confirmed by SDS-PAGE analysis using 4%–12% bis-tris polyacrylamide gel.
The PC samples were analyzed at nonreducing (NR) and reducing (R) conditions.
Protein bands were visualized with Coomassie blue staining, and the proteins cor-
responding to individual bands were identified by LC-MS/MS (see Supplementary
Table 1). Abbreviations: LC-MS/MS, liquid chromatography with tandem mass s-
pectrometry; PC, pentameric complex; SDS-PAGE, sodium dodecyl sulfate poly-
acrylamide gel electrophoresis.
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EDTA, 0.1% PS80, pH 7.7); (2) PC; (3) PC and gB674; or (4)
PC, gB674, and pp65-2 DNA. QS-21 adjuvant (50 µg/0.5 mL)
was included in all groups. Protein antigens were delivered
by IM injection in 1 arm, and the pp65-encoding DNA was de-
livered to the contralateral arm by electroporation (Figure 4).
Prior to immunization, all animals were confirmed to be sero-
negative for RhCMV gB-binding IgG. We collected plasma,
PMBCs, saliva, and urine at the indicated timepoints (Figure 4).

Plasma neutralizing titers against UCD52 were measured
without complement on Telo-RF (fibroblast) andMKE (epithe-
lial) target cells (Figure 5A and 5B). Neutralizing titers in ani-
mals immunized with PC alone or with PC and gB674 were
undetectable 4 weeks after the first dose, and were modestly
higher than the geometric mean of the neutralizing titers
from 20 naturally infected adult rhesus macaques 2 weeks after
the second and third doses, respectively, when the animals were
challenged with RhCMV. Neutralizing titers were similar 2
weeks following the second and third doses, as were neutraliz-
ing titers measured on fibroblasts or on epithelial cells. Notably,
none of the 6 control animals had detectable RhCMV

neutralizing titers. All 6 animals immunized with PC and
gB674 developed antibodies that bound a tagless version of
the gB antigen, detectable in week 10 (2 weeks after dose 3)
plasma diluted 1:100 000 (Figure 5C). The control animals re-
mained negative for gB-binding antibodies prior to virus
challenge.
By week 6 (2 weeks after dose 2), PBMCs from all 6 animals

immunized with PC, gB674, and pp65-encoding DNA re-
sponded to stimulation with a pp65 peptide pool by
ELISPOT, with approximately 1000 cells secreting
interferon-γ (IFN-γ) per 1× 106 PBMC (Figure 5D). This level
of response is similar to that of PBMCs from naturally infected
rhesus macaques (data not shown). In the placebo group, ap-
proximately 2 or fewer cells per 1× 106 PBMC obtained before
RhCMV challenge secreted IFN-γ after stimulation with the
peptides (Figure 5D).

Protection from RhCMV Challenge

The macaques were orally challenged with 8× 105 pfu of
RhCMV UCD52 weekly for 5 weeks (weeks 10–14) starting

Figure 2. Expression and characterization of recombinant gB674 from UCD52 RhCMV. A, Design of gB674 [23, 24]. B, Coomassie-stained SDS-PAGE of purified
gB674 separated under reducing (R) or nonreducing (NR) conditions. C, Size exclusion chromatography analysis of gB674. D, Electron microscopy of negatively stained
gB674 at a magnification of 1:50 000. The white bar represents 20 nm, and the inset shows a subset of the particles. Abbreviations: 6×His, 6-histidine affinity tag; FL, fusion
loop; gB, glycoprotein B; RhCMV, rhesus cytomegalovirus; SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis; SS, signal sequence.
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2 weeks after the third vaccine dose (Figure 4). Infection was de-
tected by seroconversion to UCD52 viral interleukin 10 (vIL-10;
a RhCMV antigen not used for immunization) and by detection
of UCD52 DNA by quantitative polymerase chain reaction
(qPCR). Following oral UCD52 challenge, 5 of 6 animals in
the control-immunized group and in each of the 3 vaccinated
groups developed vIL-10–binding antibody responses and had
detectable viral DNA in plasma, saliva, or urine (Figure 6 and
Figure 7). We did not observe significant differences in the
gB-binding IgG levels and neutralization titers between the non-
seroconverted and seroconverted animals within the same
group.Detection of viral DNAwas intermittent in some animals.
Overall, similar quantities of viral DNAwere detected after chal-
lenge in animals immunized with the RhCMV antigens and in
those immunized with the control preparation.

DISCUSSION

Immunization of women and adolescent girls with an adju-

vanted postfusion gB subunit vaccine provides partial, transient

protection from horizontal transmission of HCMV, despite the

modest neutralizing titers elicited by this immunogen [12, 13].

Because the PC elicits much higher neutralizing titers than does

postfusion gB, and pp65 elicits cytotoxic T cells, it is possible

that adding a PC antigen (and potentially a pp65 antigen) to

a gB-containing vaccine could provide a much greater level

and duration of protection. On the other hand, the ability of

HCMV to cause repeated infections—even in those who are al-

ready chronically infected and have both neutralizing antibod-

ies and T cells that recognize HCMV [1]—raises questions

about whether such immunization can prevent HCMV disease.

Figure 3. Fluorescence microscopy of RhCMV UCD52 pp65-2 expressed from a transfected DNA vaccine vector. An anti-6×His antibody conjugated with FITC (green) was
used to assay the presence of histidine-tagged UCD52 pp65-2 in mock transfected (right upper panel) or DNA vaccine vector transfected (right lower panel) COS-7 cells.
Nuclei of the same cells were stained with DAPI (blue in the left panels). Scale bar = 100 µm. Abbreviations: DAPI, 4′,6-diamidino-2-phenylindole; FITC, fluorescein iso-
thiocyanate; RhCMV, rhesus cytomegalovirus.

Figure 4. Vaccination, challenge, and sample collection timeline. Vaccinations denoted with solid black arrows, oral virus challenges denoted with hollow black arrows,
the indicated sample collections denoted with colored boxes. Abbreviations: PBMC, peripheral blood mononuclear cell; Vax, vaccination.
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Therefore, we sought a preclinical proof-of-concept before ad-
vancing an HCMV vaccine to clinical testing.

We tested whether a prototype vaccine containing RhCMV
postfusion gB and PC with QS-21 adjuvant and pp65-encoding
DNA could protect rhesus macaques from oral challenge with
RhCMV. QS-21 is a potent vaccine adjuvant that enhances both

antibody and cell-mediated responses and is in the formulation
of a widely used licensed vaccine [41]. We delivered the
RhCMV challenge orally rather than by injection because mu-
cosal exposure is arguably a more relevant model for the hori-
zontal transmission of HCMV in human populations [23]. We
chose UCD52 as the challenge strain because, unlike the related

Figure 5. Immune responses elicited by immunization of rhesus macaques with QS-21 and placebo, PC, gB674, and pp65-encoding DNA. A and B, RhCMV neutralizing
responses in plasma samples drawn at the indicated time points as measure on Telo-RF (A) and MKE (B). Geometric mean of NT50 from 20 naturally RhCMV-infected rhesus
macaques are indicated by the dotted lines. C, RhCMV gB-binding IgG responses in immunized rhesus macaques measured by ELISA (OD 405 nm; inset, AUC). D, IFN-γ
ELISPOT responses to pp65-2 DNA vaccination in PBMCs obtained at the indicated times points. Frequency of RhCMV pp65-2–specific IFN-γ–responding cells was enumer-
ated to IFN-γ+ cells per 1× 106 PBMCs. Each symbol represents the mean of technical triplicates from individual animals. Each animal is represented by its ID number.
Abbreviations: AUC, area under the curve; ELISA, enzyme-linked immunosorbent assay; ELISPOT, enzyme-linked immunospot; gB, glycoprotein B; IFN-γ, interferon-γ; IgG,
immunoglobulin G; MKE, primary monkey kidney epithelial cell; NT50, mean neutralizing titer; OD, optical density; PBMCs, peripheral blood mononuclear cells; RhCMV, rhesus
cytomegalovirus; Telo-RF, transformed fibroblast.

Figure 6. RhCMV vIL-10–binding IgG antibody in immunized and RhCMV strain UCD52-challenged rhesus macaques. A–D, ELISA results from the groups of animals im-
munized with PC, PC+gB, PC+gB+pp65 and placebo at various time points. Oral inoculations with RhCMV are indicated by hollow black arrows. The presence of anti–vIL-10
antibody was determined by ELISA. Because RhCMV vIL-10 is not in the vaccine preparations, acquisition of vIL-10–binding antibody is a biomarker of virus acquisition.
Absorbance values .0.3 at OD 405 nm indicate seroconversion. Each animal is represented by its ID number. Abbreviations: ELISA, enzyme-linked immunosorbent assay;
gB, glycoprotein B; IgG, immunoglobulin G; OD, optical density; PC, pentameric complex; RhCMV, rhesus cytomegalovirus; vIL-10, viral interleukin 10.
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strain UCD59, UCD52 contains a functional PC [29, 42].
Immunization of the animals 3 times with preparations that con-
tained PC elicited neutralizing titers as high, or higher than,
those elicited by natural RhCMV infection. Moreover, adding
postfusion gB elicited strong gB-binding antibodies, and adding
electroporated DNA encoding RhCMV pp65 elicited strong
T-cell responses that recognized RhCMV pp65 peptides.
However, these immune responses did not prevent RhCMV in-
fection after oral inoculation, did not prevent spread to the

kidney or the genitourinary tract (as evidenced by viral DNA
in the urine), and did not consistently reduce the amount or du-
ration of viral shedding. This failure of protection is reproduc-
ible, as we had obtained similar results in a previous study in
the same UCD52 challenge model after immunization with a
heterologous UCD59 PC antigen, which elicited similar
RhCMV neutralizing titers to those observed in the current
study (Supplementary Figures 1 and 2). These findings demon-
strate the ability of RhCMV to evade vaccine-elicited immunity.

Figure 7. RhCMV DNA detection by qPCR in plasma, saliva, and urine samples from immunized and RhCMV-challenged rhesus macaques. RhCMV was inoculated weekly
during weeks 10–14. Each animal is represented by its ID number. Abbreviations: gB, glycoprotein B; LLQ, lower limit of quantification; PC, pentameric complex; qPCR, quan-
titative polymerase chain reaction; RhCMV, rhesus cytomegalovirus.
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CMV has several immune evasion mechanisms, and infec-
tion at mucosal surfaces is difficult to prevent. Once CMV in-
fects at a mucosal surface, it may spread cell to cell and be
carried in the bloodstream inside infected cells [43]. More
than 40 gene products of the HCMV genome are believed to
have immune evasion functions [44]. To protect against
CMV, it may be necessary not only to elicit high titers of neu-
tralizing antibodies and strong CD8+ T-cell responses, but also
to elicit immune responses that can counter viral immune eva-
sion and augment mucosal immunity. In addition, analysis of
binding of cell surface and soluble gB by poorly neutralizing se-
rum IgG from participants in human trials suggests that bind-
ing to prefusion gB is potentially associated with protection
from horizontal transmission [45]. We recently determined
the structure of prefusion gB [14] and are working to produce
conformationally homogenous prefusion and postfusion prep-
arations of CMV gB to study the properties of each conformer
as antigen and immunogen. Another consideration is that the
basis for protection against vertical transmission could be dif-
ferent, with different vaccination outcomes, as suggested by
passive transfer experiments to prevent vertical transmission
in CD4+ T-cell–depleted pregnant rhesus macaques [46].

One limitation of this study is the small number of immu-
nized macaques. Protection against experimental horizontal
transmission was not observed with 6 seronegative macaques re-
ceiving each vaccine or placebo preparation. In a human trial of
protection against natural horizontal transmission in which 234
seronegative women were immunized with MF59-adjuvanted
postfusion gB and 230 received placebo, 50% protection was ob-
served (P= .02) [12]; in a second trial in which 195 seronegative
adolescent girls received the same vaccine and 207 received place-
bo, the level of protection did not reach statistical significance
[13]. Thus, if the experimental RhCMV vaccine preparations pre-
vented horizontal transmission in macaques at the modest level
observed in human trials of a MF59-adjuvanted postfusion gB
subunit vaccine candidate, the number of macaques would be in-
sufficient to detect statistically significant protection.

Another limitation of this study is the need to challenge the
rhesus macaques with a homologue of HCMV rather than with
HCMV itself. It is possible that rhesus macaques are less ame-
nable to vaccine-induced protection against RhCMV than hu-
mans are against HCMV. The UCD52 challenge virus contains
genetic changes in UL128 and RL13 [29, 42]. Loss of the gene
encoding RL13 has been associated with increased HCMV rep-
lication in cell culture in the presence of neutralizing antise-
rum, as well as with viral resistance to antibody-mediated
cytotoxic cells [47, 48]. Although it is possible that our viral
challenge regimen of 5 doses of 8× 105 pfu per oral inoculum
is greater than typical human exposures, the challenge dose
does not seem excessive, with only 4 of 5 placebo-immunized
macaques showing signs of RhCMV infection after challenge
in this study. We previously reported that, after a single oral

inoculum of 8× 105 pfu of RhCMV strain UCD52, 3 of 4 unim-
munized macaques were infected; with 8× 104 pfu, 1 of 4 was
infected; and with 8× 103 pfu, zero of 4 were infected [23].
Moreover, 8× 105 pfu is comparable to the range of RhCMV
genome copies (103–106/mL by qPCR) persistently shed in
the saliva of animals naturally exposed to endemic strains of
RhCMV circulating in group-housed macaques [49]. Human
children also shed large quantities of CMV in saliva [50], and
multiple daily household exposures of caregivers are possible.
Because transmission of HCMV to the fetus during the first

trimester is more likely to cause severe congenital disease than
transmission later in pregnancy, in many cases it may be too
late to start immunization with a future CMV vaccine by the
time pregnancy is recognized and prenatal care is begun.
Therefore, for maximal public health impact, it may be neces-
sary to immunize before the childbearing years and achieve a
duration of robust prevention lasting through the childbearing
years. For these reasons, there is great value in a stringent ani-
mal model of protection from CMV infection. Partial, transient
protection from CMV is unlikely to be sufficient to prevent
congenital disease with real-world use. A prototype vaccine
that robustly protects rhesus macaques from RhCMV challenge
would provide a strong guide to the composition of a human
CMV vaccine that merits clinical testing. Future studies may
include further refinement of the RhCMV challenge model,
and may include additional CMV vaccine antigens, such as an-
tigens that could elicit immunity that can block HCMV im-
mune evasion.
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