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Abstract

The arrival of the Infinium DNA methylation BeadChips for mice and other nonhuman mammalian species has outpaced the
development of the informatics that supports their use for epigenetics study in model organisms. Here, we present informatics
infrastructure and methods to allow easy DNA methylation analysis on multiple species, including domesticated animals and inbred
laboratory mice (in SeSAMe version 1.16.0+). First, we developed a data-driven analysis pipeline covering species inference, genome-
specific data preprocessing and regression modeling. We targeted genomes of 310 species and 37 inbred mouse strains and showed
that genome-specific preprocessing prevents artifacts and yields more accurate measurements than generic pipelines. Second, we
uncovered the dynamics of the epigenome evolution in different genomic territories and tissue types through comparative analysis.
We identified a catalog of inbred mouse strain-specific methylation differences, some of which are linked to the strains’ immune,
metabolic and neurological phenotypes. By streamlining DNA methylation array analysis for undesigned genomes, our methods extend
epigenome research to broad species contexts.

Keywords: DNA methylation, comparative epigenetics, mouse epigenetics

Introduction
DNA methylation, an ancient biochemical innovation traced back
to a viral defense mechanism in bacteria [1], is a classical epi-
genetic mark in higher order eukaryotes [2]. It is extensively
implicated in transcriptional regulation [3], cell differentiation
[4], organismal development [5] and human diseases [6]. The
evolution of genome-wide DNA methylation plays a significant
role in regulating transposable element expansion in the host
genomes [7], shaping the host genome composition [8] and driving
genome evolution [9]. Nonhuman model organisms, e.g. inbred
laboratory mouse, and comparative approaches have played a
significant role in the discovery of methylation biology and the
evolution of epigenetic mechanisms in higher order eukaryotes
[10–14]. Recently, DNA methylation was also linked to traits and
phenotypes in domesticated animals [15, 16] and postulated to
serve biomarkers in livestock improvement programs [17, 18].

The Infinium DNA methylation microarray technologies (e.g.
EPIC and HM450 arrays) are among the most widely used DNA
methylation assay technologies for human DNA [19]. Despite
its success in human epigenetic research, this technology had
limited applications in non-human species until recently. This
lack of adoption is partly attributable to the need to pre-
determine the target CpGs during the array design and the human
array’s limited coverage of the non-human genomes. Several
attempts have been made to co-opt the Infinium array to primate
and mammalian species using probes targeting evolutionarily

conserved sequences [20–26]. Recently, Infinium arrays for non-
human species were developed and have become available, best
represented by the MM285 array, which targets 284 860 CpGs in the
C57BL/6 J mouse genome, and the HorvathMammalMethylChip40
(Mammal40) array, a mammalian array that targets around
37 488 CpGs relatively conserved across mammalian species [27].
These two arrays were designed for multiple mouse strains or
mammalian species. Despite the progress in assay development,
using one array for multiple genomes is met with technical
challenges in analyzing the array data. Notably, one must
accommodate more flexible probe usage depending on the
input DNA. For example, the array signal detection success is
usually determined by comparing the probe signal intensity to
the background. One can derive these background signals from
the built-in control probes [28] and the out-of-band signals of
Infinium-I chemistry [29]. However, both approaches depend on
assumed probe alignment and may not faithfully represent the
actual signal background when those assumptions fail to hold in
arbitrary genomes. Similarly, these probe mapping assumptions
affect background subtraction [30], dye bias correction [29] and
other data normalization techniques that assume the detection
success of most designed probes [31] or correct annotation of the
control probes in every target species [32].

To streamline the use of Infinium arrays in model organisms
and farm animals and their use for comparative epigenetic
studies, we present a suite of informatics solutions to allow
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DNA methylation analysis on multiple species and mouse
strains. These solutions are implemented in our tool SeSAMe
[29] (Version 1.16.0+), which features novel methods and ab initio
characterization of the EPICv2, EPIC, MM285 and Mammal40
array probes in over 300 species. These methods include (1)
inference of the source species based on signal intensities, (2)
determination of the probe utility space, including MM285 array
probes whose methylation readings are potentially influenced by
the presence of inbred mouse strain-specific SNPs, (3) methods
and data infrastructure for Infinium-I color channel specification,
(4) support of replicate probe design and daughter-strand probe
designs, and (5) genome-specific data preprocessing, including
signal background subtraction, dye bias correction and detection
P-value calculation. Applying the new computational pipeline to
query inbred mouse strain-associated methylation differences,
we identified epigenetic links to metabolic and neurological
phenotypes, including differential methylation involved in neuron
and liver tissue-specific transcription factoring binding and
micro-imprinting. We also uncovered principles of epigenetic
regulation at various evolutionary scales in diverse mammalian
species. By providing probe annotation and informatics for
genome-dependent preprocessing, SeSAMe broadens the appli-
cation scope of the Infinium DNA methylation BeadChip to
arbitrary genomes, facilitating comparative epigenome studies
at the population scales.

Results
Utility of Infinium BeadChips on vertebrate
genomes
To analyze Infinium BeadChip from arbitrary genome sources,
we developed an informatics infrastructure composed of (1) com-
putational methods for online annotation of probe masking and
color channel (Figure 1A), (2) a database of probe utility space on
candidate genomes (Figure 1B), (3) inference methods of species
and mouse strains from probe signal intensities and (4) adapted
genome-aware background subtraction, dye bias correction and
other data preprocessing methods. Our new data processing work-
flow (openSesame) allows for customizable end-to-end species-
and strain-specific data preprocessing using one line of R code
(Figure 1A). Targeting 310 (305 vertebrate) species and 37 inbred
mouse strains, we defined the probe utility spaces for each can-
didate genome. This space, maximized at the designed species/-
mouse strain, shrinks in distantly related genomes (Figure 1B).
The shrinkage occurs more rapidly in the MM285 and the EPIC
arrays than in the Mammal40 array, which targets more conserved
genomic territory by design (Figure 1B, Figure S1A). Genic region
probes, particularly at the promoter and 3′-end of genes, are more
retained (Figure 1C, Figure S1B), and the retention rate tracks
overall sequence conservation (Figure 1D).

It is established that adjacent SNPs influence the methylation
reading on Infinium BeadChips [33, 34], partially defining probe
utility. A naïve multiple regression of an MM285 data set revealed
that 34.85% of mouse strain-specific methylation reading is under
direct influences of SNPs (Figure S1C, odds ratio = 3.18, P < 2.2e-
16). As a positive control, explicitly designed strain-specific SNP
probes (rs probes) are highly enriched for strain-specific read-
ings (Figure S1D). We classified SNP influences into six groups
(Figure S1E) based on the SNP location, allele information and the
probe design, as illustrated in Figures 1E and S1F. In brief, SNPs
that alter target CpGs or impact probe hybridization/extension
can create artificially high, low or intermediate readings. In part,
such suboptimal hybridization/extension is caused by mutated

probe target sequences (Figure 1E) and the extension base that
flips the measurement color channel (Figure S1G). We reported
63 339 probes whose reading can be influenced by neighboring
genetic variants and 15 002 probes on which the SNPs are present
with no influence. We validated the prediction of all the putative
SNP-influenced probes in a dataset of 191 inbred mouse tissue
samples from 20 strains and 6 tissue types. The beta values for
artificial high and low methylation reading group probes are close
to 1 and 0, respectively. In contrast, the beta values for the probes
in the suboptimal hybridization group approach 0.5 (Figure 1F) as
both the methylated and the unmethylated allele signals approx-
imate signal background. The SNP-influenced probes are most
prevalent in three wild-derived strains—CAST/EiJ, MOLF/EiJ and
PWK/PhJ (Figure S1H), highlighting the critical need to consider
these artifacts in studying these wild mouse strains. We developed
an automated pipeline that annotates SNP influence for other
genomes not included in our collection.

Species inference and genome-specific Infinium
data preprocessing
Towards a fully automated data-driven workflow, we sought to
explore whether the target species could be inferred entirely
from the methylation array data. We reasoned that probes
with mappable sequences are more likely to emit a signal
and be successfully detected. As such, probes with genome-
specific mapping differences may carry the power of genome
discrimination. Indeed, clustering probes by total signal intensity
grouped samples by species origin and to a lesser degree, by tissue
type (Figures 2A and S2A). Based on this intuition, we developed
the SPIRAL (SPecies Inference fRom Alignment) method based
on probe alignment scores and their signal detection P-values
(Figure 2B, see section MATERIALS AND METHODS). These two
metrics both reflect probe hybridization success and are inversely
associated (Figure S2B). In brief, we first selected probes with the
strongest and weakest signal detection as determined by their
detection P-values. These positive and negative probes were then
compared to their alignment scores in the candidate genomes.
The species with the maximum area under the curve (AUC) is
returned as the predicted species (see Figure S2C for an example).
For the designed genome, the number of negative probes can be
lacking, leading to genome discrimination primarily driven by
other thermodynamic properties of probe hybridization rather
than sequence dissimilarity (Figure S2D and E). We empirically
determine that the sample has come from the designed genome
based on the probe success rate (see section MATERIALS AND
METHODS, Figure S2F).

We applied SPIRAL to 211 public EPIC/HM450 array data
generated on non-human species, including primates and mice.
In all test cases, including 23 samples adapted to query 5-
hydroxymethylation, SPIRAL correctly identified the species’
origin (Figure 2C). We then applied SPIRAL to a combined
Mammal40 dataset of 883 samples from 22 species (Figure 2D)
and an MM285 dataset of 30 human, rat and hamster DNA
samples (Figure S2G). On the mammal40 array dataset, SPIRAL
made accurate predictions in 7 families and only made mistakes
between closely related candidate species (Figure 2D). Notable
mistakes include flying fox (Pteropodidae) samples being
confused for greater horseshoe bats, a species very close to the
large flying fox, in 58 of 235 cases (Figure 2D). Similarly, from the
MM285 dataset, SPIRAL can correctly identify human, rat and
hamster samples (Figure S2G). The SPIRAL algorithm provides
inference of the samples’ origin of species from data, which is key
to genome-specific preprocessing and normalization (below).
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Figure 1. Utility of Infinium BeadChips on vertebrate genomes. (A) SeSAMe workflow of species and strain inference and genome-specific preprocessing.
(B) Annotation of four Infinium BeadChip probes on the number of functional probes across 310 genomes (showing 33 representative species). (C) Genic
view of probe retention of three generations of Infinium BeadChips. (D) Evolutionarily conserved versus non-conserved regions in the cross-species
retention rate of probes on the MM285 array. (E) A schematic illustration of six groups of SNP influences on DNA methylation reading (R = A,G; Y=C,T,U;
D = A,G,T). (F) Validation of strain-specific SNP influence on DNA methylation readings in 191 inbred mouse strain samples. Three wild-derived strains
(CAST_EiJ,PWK_PhJ and MOLF_EiJ) were shown separately due to their higher SNP number.

Previous Infinium array data processing methods are estab-
lished mainly under the assumption that the array has been run
on the designed species. Therefore, the chip’s global performance
should evaluate the success of the whole experiment. In
contrast, when the array is run on an arbitrary genome, one
may expect detection success from a subset of the probes. We
modified existing Infinium BeadChip data processing methods,
e.g. background subtraction, dye bias correction and detection
P-value calculation, to work in a genome-specific manner.
For example, we use genome-specific out-of-band channel
specification to parameterize signal background as is needed
by the noob [30] and the pOOBAH algorithms [29]. Similarly, a
substantial number of probes are expected to fail in a sample
from a non-designed species. Focusing on probes with predicted
utility in the target species effectively removed artifactual
intermediate methylation readings (Figure S2H) associated with

low signal intensity (Figure S2I), and improved the detection
rate estimation (Figure S2J). Our pipeline collectively corrects the
skewed methylation readings in a calibration experiment running
MM285 (Figure 2E and F) on rat DNA of titrated methylation
levels. The pipeline is reduced to the generic processing in
performance on the designed genome (Figure S2H). Most of the
probe replicates targeting the same cytosines or CpGs but with
different designs [35] generate largely concordant DNA methyla-
tion measurements after preprocessing (Figure 2G), suggesting its
robustness.

SeSAMe associates mouse strain-specific
methylations to phenotypes
With proper probe masking and signal normalization, we explored
the DNA methylation diversity among inbred mouse strains. We
analyzed a public data set of 238 liver, spleen, tail and frontal
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Figure 2. Species inference and genome-specific Infinium data preprocessing. (A) Heatmap showing the total probe signal intensity across 1644
Mammal40 datasets clustered both row and column-wise. We selected top 200 probes (ranked by AS) with AS >47 in each species, combined them
to obtain 4569 unique probes. (B) The species inference workflow. (C) Comparison of species prediction accuracy on human (HM450 and EPIC) array
datasets. (D) Heatmap of the species prediction AUC in a Mammal40 dataset comparing reported species (column) and predicted species (row). Rows
and columns color indicates the family of each species. Only candidate species predicted by at least one sample are shown. (E) Methylation titration
comparison on MM285 rat DNA datasets (GSE184410) before and after SeSAMe processing. (F) Scatter plot comparing the mean beta value of each
sample to the titrated fraction with generic, species-specific data preprocess and without data preprocessing on the rat DNA titration data. Generic
processing does not include species inference and SigDF updates but still relies on detection P-value to perform probe masking. (G) Comparison of
correlations between replicate probes and randomly selected probes targeting different loci. We randomly selected 10 000 records from each group for
visualization.
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lobe brain tissue samples from 25 mouse strains. The DNA
methylomes are primarily grouped by tissue types (Figure 3A).
Within each tissue type, the samples are further sub-clustered
by mouse strains (Figure 3A), suggesting the prevalence of
strain-specific methylation variation. By performing a multiple
regression of DNA methylation on tissue, strain and sex, we
identified 18 822 strain-specific differentially methylated CpGs
(SDMCs, Methods). Most SDMCs strongly depend on tissue type
(Figure 3B), with effect sizes highly intertwined (Figure S3A). In
contrast, the SNP probes, which measure variant allele frequen-
cies instead of cytosine methylation levels, were predominantly
tissue independent (Figure S3B). Among the four tissue types we
studied, the spleen has the most SDMCs, followed by the liver,
tail and brain, suggesting that methylation variation may be
linked to immune and metabolic phenotypes among these mouse
strains.

We classified the SDMCs based on whether their methylation
states depend on the tissue types. Tissue-independent hyperme-
thylated SDMCs were enriched in CTCF binding sites, intermedi-
ately methylated CpGs and variably methylated-IAPs (VM-IAPs)
(Figure 3C). VM-IAPs were found to have altered methylation lev-
els across mouse individuals [36] (Figure 3C). Our findings support
a previous study showing that VM-IAPs are found in multiple
tissue types and are frequently adjacent to CTCF binding sites in
the genome [36]. In contrast, tissue-independent hypomethylated
SDMCs are slightly enriched at quiescent regions, and pseudogene
transcription start sites (Figure S3D).

Studying tissue-specific SDMCs, on the other hand, revealed an
enrichment at enhancer regions (e.g. ChromHMM states TssFlnk,
EnhLo, EnhPr, EnhPois and Enh) but depletion at heterochromatic
regions (Het), promoters (Tss) and gene bodies (Tx) (Figure 3D).
Figure 3E shows an example of a hypermethylated brain-specific
SDMC at the Nap1l5 locus in the BTBR mice. Despite being present
in all four tissues studied, this methylation gain spans the most
extended genomic region in the frontal lobe brain tissue. In con-
trast, the hypermethylation occurs at only a few CpGs in the
liver tissue (Figure 3E). Nap1l5 is a paternally expressed, micro-
imprinted gene nested within a non-imprinted host gene Herc3.
Nap1l5 and Herc3 are highly expressed in cortical neurons [37].
The brain-specific, imprinting-associated DMR in BTBR mice may
be implicated in their known loss of corpus callosum neurons and
autism-related phenotypes [38].

Comparing frontal lobe brain tissue in different strains
suggests more hypomethylation in LP/J mice (Figure 3F) with
a lower global methylation average (Figure S3E). Investigating
hypomethylated CpGs in LP/J mice revealed that these SDMCs
are frequently bound by the paired box protein PAX7, NFI gene
complex member NFIB and homeobox transcription factors, e.g.
LHX3 (Figure 3G). Notably, PAX7 is key to lineage specification
of early neural crest development in mammals [39] and non-
mammalian vertebrates [40]. LP/J mice have a reduced number
of neural crest-derived melanocytes in the coat and choroid
layer of the eye. This difference in neural crest development,
likely attributed to the Ednrb gene mutation [41], leads to dark
eyes in the LP/J mice. The impaired neurogenesis may also be
implicated in the increased propensity for audiogenic seizures
in LP/J [42]. Similarly, the LIM factor LHX3 plays a crucial role
in motor neuron differentiation [43], and NFIB cooperates with
NFIA in coordinating fetal mouse forebrain development [44].
Further comparison of LP/J-specific hypomethylated sites with
a mouse cell type-specific methylation atlas [45] suggests that
this hypomethylation pattern might be due to an enrichment
of hippocampus-specific excitatory neurons, e.g. at the dentate

gyrus (DG) and hippocampal subfield CA1–3, as well as adult
neural precursors (ANP) (Figure S3F).

Comparing the liver methylation profiles in different strains
revealed an association with body and fat weight. The three
wild-derived strains, CAST/EiJ, MOLF/EiJ, PWK/PhJ, tend to have
more hypermethylated than hypomethylated CpGs in the liver
(Figure 3H). Most hypermethylations are of small effect sizes
(delta≤0.5). These hypermethylated sites in the liver may be
associated with the smaller body weight and fat composition
in these wild-derived mice [46]. KK/HiJ, a type 2 noninsulin-
dependent diabetes and obesity model, has the most liver
methylation variation only next to the four wild-derived strains
[46], suggesting impaired epigenetic regulation of metabolism.
Methylation change in the liver is disproportionately found at
the binding sites of Polycomb repressive complexes, including
PRC2, PRC1 and other PRC-associated co-factors (Figure 3I). The
Polycomb repressive complex is known to pre-mark unmethylated
DNA that gains methylation during cell proliferation [47–49].
Hence differential hepatic cell proliferation may explain the
strain-specific methylation differences in the liver. Furthermore,
transcription factors that govern hepatic cell differentiation and
function are also differentially methylated (Figure 3I). Notably,
HNF4A, PROX1 and FOXAs are among the TFs most frequently
associated with hypermethylation alongside CTCF/cohesion
complexes (Figure S3G). HNF4A and FOXAs are central canonical
TFs for hepatocyte development and function [50]. PROX1 is an
early marker of the developing mouse liver, controlling hepatocyte
migration during liver morphogenesis [51]. NFIL3 is highly
expressed in the liver and regulates hepatic gluconeogenesis [52].
The binding sites of several metabolic nuclear receptors, such as
NR1D2, NR1H2 (Liver X receptor beta) and PPARA [53], were also
enriched at strain-specific methylation differences. Intriguingly,
the DNA methylation reader MECP2, best known for its role in
neurogenesis and causing Rett syndrome when mutated, also
regulates lipid metabolism in the liver in coordination with
the NCOR1 corepressor complex [54]. NCOR1 and MECP2 are
both bound to differential methylated sites across strains in
the liver (Figure 3I). In contrast, we only identified two liver
hypomethylation-associated TFs: CBX5 and ZFP57. CBX5/HP1A is
a heterochromatin protein [55], consistent with methylation loss
most occurring at heavily methylated heterochromatic regions.

SeSAMe analysis reveals principles of the
epigenome evolution
Changes in DNA methylation contribute to the evolution of
transcriptional regulation and phenotypic variation at a level
beyond that of the gene sequence evolution [56]. We applied
SeSAMe to analyze the methylomes of 857 blood samples from 16
species. First, the global blood DNA methylation levels averaged
over different chromatin states are stable from species to species.
Active transcription start sites and gene bodies display the
least methylation variation featuring the lowest and the highest
average methylation levels across ChromHMM states, respectively
(Figure 4A). This genic stability (Figure S4A) is consistent with the
evolutionary conservation of gene expression patterns across
different mammalian species [57]. In contrast, enhancers are
more variably methylated than promoters across species, in
agreement with these elements having evolved more rapidly
[58] and contributed to the gene expression robustness, possibly
through partial redundancy [59]. Blood samples of the same
species share more significant similarities in the DNA methylome
than those of different species (Figure S4B). Within each species
group, samples are further segregated by sex (Figure S4B, right

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac617#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac617#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac617#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac617#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac617#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac617#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac617#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac617#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac617#supplementary-data


6 | Ding et al.

Figure 3. SeSAMe associates mouse strain-specific methylations to phenotypes. (A) t-SNE embedding of methylomes of tissue samples from 25 different
strains. SNP-influenced probes are masked. (B) An UpSet plot of strain-specific differential methylated CpGs (SDMCs) showing strong dependence
on tissue types. (C) Enrichment of SDMCs shared across tissues in CTCF binding sites (red), consistent intermediate methylation (IM, green) and
variably methylated regions (VMR, blue). (D) Enrichment of tissue-specific SDMCs in enhancer regions among different chromatin states (from ENCODE
ChromHMM). SDMCs from all strains are merged to perform enrichment test. (E) Example differentially methylated regions at the Nap1l5/Herc3 locus,
specific to the BTBR strain. (F) The number of frontal lobe brain SDMCs in different strains. Only strains with both sexes represented are shown. Frontal
lobe brain SDMCs with LP/J showed the most methylation loss. (G) Transcription factor binding site (TFBS) enrichment of LP/J-specific hypomethylation.
nQ, nD and nO represent the size of query, database and overlap CpGs set. (H) The number of liver SDMCs in different strains. Liver SDMCs with
wild-derived strains showed more hyper- than hypomethylation. (I) Enrichment of liver-specific SDMCs at Polycomb repressive complex targets and
hepatocyte-associated transcription factors.
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Figure 4. SeSAMe analysis reveals principles of the epigenome evolution. (A) Comparison of chromatin state methylation average across 857 blood
methylomes from 16 species. (B) Principal component analysis of 188 methylomes profiled from the mouse and rat DNA. (C) Tissue-specific hyper- and
hypomethylation signatures comparing mouse and rat tissues. (D) The effect sizes of tissue- and species-specific methylation in multiple regression
modeling of 703 naked mole-rat and cetaceans Mammal40 datasets. (E) Overlap of species-, tissue- and sex-specific methylation in the 703-sample
analysis in 4D. (F) Strictly tissue- and species-specific methylation in the 703-sample analysis in 4E. (G) ChromHMM state enrichment of strict species-
and tissue-specific methylation. (H) Comparison of two species groups (naked mole-rat and cetaceans) and two tissue types (blood and skin) on the
methylations of 158 X-linked CpGs.

panel). Further investigation of a data set of diverse mouse and
rat tissue types revealed a joint DNA methylation determination
by tissue and species, spanning the two leading principal compo-
nents of the methylome data (Figure 4B). The tissue-type orders
along the tissue-type axis were mainly conserved between mouse
and rat samples, pointing to the relative stability of tissue biology
across rodents (Figure 4B, right panel). To further evaluate the
conservation of tissue-specific methylation, we identified tissue-
specific hypo and hypermethylation of eight different tissue types
(cecum, colon, esophagus, frontal lobe brain, hindbrain, small
intestine, spleen and stomach) in mice. We studied matched
tissues in the rat (Figure 4C). Focusing on the MM285 probes
compatible with the rat and the mouse genome, we uncovered the
conservation of these tissue-specific methylations, with brain-
specific methylations most conserved, followed by the spleen.
This methylome conservation may implicate transcriptional
conservation. For example, the preservation of brain tissue
methylation is consistent with a slower transcriptional change
in brain tissue across mammals [57,60]. Compared to the brain-
specific methylations, the tissue-specific methylation pattern is
less conserved in the gastrointestinal (GI) tract, suggesting more
rapid evolution of GI-specific methylation signature in the rodent
clade.

To validate the interplay of tissue type and species in more
remotely related species, we compared two Mammal40 datasets
of blood and skin tissues of mole rats and cetaceans (whales
and dolphins) (see section MATERIALS AND METHODS). We
performed a multiple regression analysis to model the roles
of tissue type, species group and sex in governing the DNA
methylome dynamics. Again, we found highly intertwined tissue-
specific and species-specific methylation (Figure 4D). About, 38%
of the methylation variation depends on both tissue and species
(Methods), while 32%, 28% and 2% of the methylations vary by
tissue, species and sex alone (Figure 4E). Despite the extensive
statistical interaction between tissue and species, we identified
403 strictly species-specific and 250 strictly tissue-specific probes
with an effect size of the corresponding predictor greater than
0.3 but the effect sizes of other predictors smaller than 0.1
(Figure 4F). Querying the genomic distribution of species- and
tissue-specific methylation revealed that strictly tissue-specific
methylation is slightly enriched in enhancer regions (ChromHMM
code Enh, TssAFlnk). In contrast, species-specific methylation
differences are strongly enriched in gene bodies (ChromHMM code
Tx, TxWk, Figure 4G, see section MATERIALS AND METHODS).
This enrichment reflects the role of enhancer regions in lineage
specification and its evolutionary conservation across species.
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On the other hand, species-specific methylation at gene bodies
reflects more the difference in gene expression states.

Finally, from the regression, we identified 180 sex-specific
methylations from the above Mammal40 datasets, and these
CpG sites are all X-linked on the human genome. X-linked
gene promoters can be mono-allelically methylated in the
female somatic cells (Figure 4H). The monoallelic methylation
is associated with the X chromosome inactivation and is largely
transcriptionally silenced. Comparing cetaceans and naked mole
rats, we found that the inactive X-associated DNA methylation is
mainly conserved, with most X-linked promoter probes displaying
an intermediate methylation level (Figure 4H). Some CpGs lose
intermediate methylation patterns in either of the two species
groups and become fully methylated (black boxes in Figure 4H),
likely due to gene silencing on both the active and inactive X
chromosomes. Some tissue dependencies have also been noted,
including CpGs that lost intermediate methylation only in blood
but not skin tissue (red boxes in Figure 4H). Further study of these
X-linked probes in a more extensive data set of 2141 samples
from 44 species revealed that bats have more intermediate
methylation loss than cetaceans (Figure S4C). Collectively, we
observed preservation of the sex dimorphism associated with
X chromosome inactivation, while most male samples are
consistently unmethylated at these sites.

Discussion
The Infinium DNA Methylation BeadChip has been one of the
most used assay technologies to profile human genome-wide
DNA methylation. We presented genome inference methods
and adapted genome-specific data preprocessing techniques to
streamline the study of DNA methylation from arbitrary genomes
using a single platform. Notably, we compared the methylomes of
different inbred mouse strains to reveal extensive and intricate
strain-specific methylation differences, highly intertwined with
sex, tissue type and organismal age as shown previously [35].
We demonstrated that some of these differences might be linked
to the corresponding mouse phenotype differences in a related
tissue context. For example, we showed that LP/J mice, known
to have impaired neural crest development, carry differential
methylation in the binding sites of transcription factors involved
in neurogenesis. BTBR strain, an autism disease model with
documented loss of corpus callosum neurons, possesses unique
methylation patterns in genes specifically expressed in neurons.
Despite these associations, it is possible that many methylation
differences merely reflect the genetic distance without simple
phenotypic manifestation. This would be supported by a higher
number of SDMCs in wild-derived strains. Schilling compared
C57BL/6 J and BALB/cJ and found that most allele-specific DNA
methylation is mainly determined by cis-acting sequences [61],
highlighting a complex interplay of the genotype, phenotype and
DNA methylation in mammalian cells. To enhance the sensitivity
of detecting such association and its interaction with other
covariates such as age and tissue, one could investigate more
diverse mouse populations, such as the collaborative cross and
the diverse outbred populations. Our strain-specific methylation
catalog represents the epigenetic heterogeneity of the founder
strains in these more diverse mouse cohorts.

The evolution of whole genome DNA methylation, which first
emerged in early vertebrates [13] and prevailed in most human
tissues, is not fully understood. We studied DNA methylation in
different species contexts across a diverse group of mammalian
species. By studying chromatin-aggregated methylation, we had

not observed global methylation increase from other mammals,
such as sheep, whales and horses, to humans, indicating that
the human-like DNA methylome has appeared before the mam-
malian evolution and likely appeared more abruptly than progres-
sively, possibly aligned with the evolution of DNA methyltrans-
ferases [62].

Our analysis sheds light on the principles of future genera-
tions of multi-species array design. We showed that most probes
from species-specific arrays, such as the human EPIC and mouse
MM285 array, are restricted to a small phylogenetic clade. The
number of usable probes decays fast as the target species move
away from the designed species, posing challenges to both inter-
species comparison and inter-array normalization. The Mam-
mal40 array retains a high fraction of probe utility within the
mammalian species, meeting its design objective [27]. However,
the Mammal40 array only optimally covers the human genome,
and the number of usable probes still decreases as the target
genome becomes less closely related to the designed genome. In
the Mammal40 array, the support for different alleles was partly
achieved by the wobble base design [27], which may expand the
species scope of these platforms without increasing the probe
number. Multiple versions of the same probe may be included to
account for this bias in coverage and allow a fair comparison of
DNA methylation on a dinucleotide resolution.

Materials and methods
Species inference
Probes sequences were mapped to the 310 candidate genomes
with BISCUIT (https://github.com/zhou-lab/biscuit), and the
alignment score of Infinium-I probes were calculated by taking
the maximum of the alignment scores of the two alleles. The
probe success rate is the number of probes with a detected P-
value <0.05 over the total number of probes. The probe detection
P-value was calculated with the pOOBAH method as implemented
in the SeSAMe package [29]. The extreme probes were projected
into positive (detected P-value <0.01) and negative group (P-value
>0.1) to reflect whether the probe hybridization was successful.

fc
(
bk

) =
{

1 if P-value of probe k ≤ 0.01,
0 if P-value of probe k ≥ 0.1

where b is a Boolean vector. We then calculate the area under the
curve (AUC) for each candidate species, comparing the alignment
scores of the positive and negative probes:

fauc (si) =
(∑

k
Rk

i × bk − n1 × (n1 + 1) /2
)

/ (n1 × n2)

where Rk
i is the rank of alignment score for each probe k in

candidate species i. n is the length of b, n1 = ∑n
i=1 bi is the number

of positive probes and n2 = n−n1 is the number of negative probes.
The candidate species with the maximum AUC was assigned as
the predicted species to the given sample (Figure 2A). If the whole-
array success rate is over 0.95 or 0.8 and the maximum AUC is
under 0.5, we directly assign the designed reference genome as
the prediction for human and mouse arrays respectively. To keep
the same number of positive and negative probes, we balanced
the number of positive and negative probes when calculating
AUC. Species taxonomy was downloaded from the NCBI taxonomy
database [63].

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac617#supplementary-data
https://github.com/zhou-lab/biscuit
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Species- and strain-specific preprocessing
We adapted three preprocessing components, i.e. dye bias cor-
rection, detection P-value masking and background subtraction,
chained in the openSesame function in the SeSAMe package (Ver-
sion 1.16.0+). The adaptation includes (1) the out-of-band sig-
nals were combined with the internal negative control probes
to parameterize the signal background. (2) The SPIRAL species
inference was employed before other signal preprocessing com-
ponents. All the preprocessing uses an updated, genome-specific
color channel in the SigDF object. (3) The order of normalization
steps defaults to channel inference, dye bias correction, detec-
tion P-value masking and background subtraction but can be
customized to suit the user’s preference. (4) Infinium-I probes
that were non-uniquely mapped were excluded from the out-of-
band signal pool. (5) Masked probes are excluded in functions
that explicitly equalize the beta value distributions of probes of
different design types, such as BMIQ [31]. (6) A color channel
inference component was added to supplement alignment-based
designation to detect residual color channel switches from data.
(7) Quality control-based masking is used before all the other
processing components. (8) Detection P-value calculation is done
before background subtraction, which will modify the signal and
may affect the out-of-band signal assumption used on pOOBAH.
Raw detection rate is computed by the number of probes with
significant detection P-values divided by the total number of
probes. The species-specific detection rate is computed by the
number of functional probes with a significant signal divided by
the species’ total number of putative functional probes.

Predicting the influence of strain-specific
variants
The genetic variants of inbred mouse strains were downloaded
from Mouse Genomes Project (ftp://ftp-mouse.sanger.ac.uk/) [64].
We used BEDTools [65] to find strain-specific variants (SNP and
Indel) located within 5 bp from the 3′-end of each probe’s exten-
sion base. To get reliable variants, we used the following condi-
tions to filter variants: (1) FILTER = PASS, (2) Genotype (GT) was
homozygous (1/1, 2/2, 3/3, 4/4 or 5/5), (3) GQ > 20 and (4) DP > 8
[66]. Groups were assigned to each probe based on the SNP posi-
tion, the SNP type, the probe type, the probe directionality and
the strand of bisulfite conversion (Figure S1E). The effect of SNP
on probe methylation reading was classified into the following
six groups: (1) no effect, (2) artificial low methylation reading, (3)
artificial high methylation reading, (4) suboptimal hybridization,
(5) G-R (green-to-red channel switch) and (5) R-G (red-to-green
channel switch). To illustrate the color channel switch caused by
SNP, only CpGs grouped to G-R or R-G were selected, and the U
and M intensity for the green and red channels were calculated
by SeSAMe readIDATpair function using the mouse array MM285
array dataset.

DNA methylation BeadChip data
Raw IDAT files for the Infinium array data were downloaded from
Gene Expression Omnibus using the following accessions. Mam-
mal40 data were downloaded from GSE169218 [67], GSE164127
[68], GSE147004 [69] and GSE173330 [70]. MM285 data were down-
loaded from GSE184410. One hundred and thirteen chimpanzee
data were retrieved from GSE136296; 11 mouse data were down-
loaded from GSE110600; 61 HM450 samples were downloaded
from GSE49177 (including bonobo, chimpanzee, human, mouse
and rhesus samples); 23 samples interrogate 5hmCs using TET-
mediated cytosine oxidation (GSE49177) and 20 baboon samples

were downloaded from GSE101733. IDAT files were preprocessed
to the total intensity and the DNA methylation beta value matri-
ces using the openSesame workflow implemented in the SeSAMe
package with default options [29].

Strain-specific differential methylation analysis
Raw IDAT files for 238 mouse samples were retrieved from
our prior study (GSE184410) before being processed using the
openSesame pipeline with the default parameters. In total, 3000
most variable CpGs were selected before using the Rtsne package
(https://github.com/jkrijthe/Rtsne) to create a 2D embedding.
We performed a multiple regression of strain and sex for each
tissue type to identify the strain-specific differential methylated
CpGs (SDMCs). The median DNA methylation level across all
strains was used as the reference level. Sex-specific probes (with
modeled beta difference ≥ 0.01 between the two sexes) were
excluded. Probes with an absolute value of slope coefficient ≥ 0.2
are considered SDMCs. Excluding all probes with variants, we
calculated the effect sizes of strain and tissue-specific methy-
lation differences (between the maximum and the minimum
coefficient). For each strain, we define tissue independent SDMCs
as CpGs whose methylation slope coefficients ≥0.2 in at least
three of the four tissue types. Tissue-dependent hypermethylated
SDMCs are defined as CpG probes that are hypermethylated in
only one of the four tissue types. We visualized the Herc3/Nap1l5
region (from 10 kb upstream to 80 kb downstream of the Herc3
gene) using the visualizeGene function in the SeSAMe package. The
global methylation average calculated for different strains was
compared to C57BL/6 J. Male and female samples were separated.

Single-cell brain whole-genome bisulfite
sequencing data
The processed methylation level data from a published dataset
[45] was downloaded from GEO with accession ID GSE132489. The
methylation beta value in each CpG site was merged with biscuit
mergecg (https://github.com/huishenlab/biscuit), and the average
beta values were calculated for each cell type. We plotted 2966
probes with LP/J methylation levels lower than C57BL/6 J than
0.35.

Species-specific differential methylation analysis
ChromHMM averages were calculated using the dbStat function in
the SeSAMe package. Mammal40 ChromHMM state overlap was
calculated using the consensus human chromatin state as a sur-
rogate [71]. Metagene plot was calculated using the KYCG_plotMeta
function in the SeSAMe package. For clarity, we randomly sampled
three samples from each combination of tissue type and species
group, leading to 204 datasets. Horse sexes were missing and
inferred from the fraction of intermediate X-linked CpGs (beta
value average between 0.3 and 0.7) with a cutoff of 0.35. The
principal component analysis was performed using the prcomp
function in the R stats package. To select tissue methylation
signatures, we performed a nonparametric test comparing beta
values of the target tissue with those of the non-target tissues.
We only kept CpGs whose methylation can fully separate the two
mouse sample groups. We further require the delta beta value of
the two sample groups to be greater than 0.3 and the fraction of
the missing beta value to be under 30%. The top 50 CpGs with the
greatest absolute value of delta beta were kept for visualization.
We performed multiple regression modeling tissue, species, sex
and tissue–species interaction. Probes with an effect size ≥0.2 and
F-test P-value ≤0.05 are considered as significantly methylated
CpG specific to that variable. Tissue-specific probes are defined

ftp://ftp-mouse.sanger.ac.uk/
https://github.com/jkrijthe/Rtsne
https://github.com/huishenlab/biscuit
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as ones with tissue effect size ≥0.3 and species effect size ≤0.1.
Species-specific probes are defined as ones with species effect size
≥0.3 and tissue effect size ≤0.1. We excluded probes with more
than 20 samples showing NA in the methylation reading.

CpG enrichment analysis
The enrichment test for strain, tissue, species-specific methylated
CpGs were performed using the testEnrichment function in the
SeSAMe package. In brief, we manually curated our database
sets using diverse sources of publicly available data. To engineer
genomic features, we used BEDTools to intersect the Infinium
BeadChip manifest with genomic coordinates from ChromHMM
[72], GENCODE [73], ReMap [74], and various other genomic and
epigenomic annotations [34]. We used Fisher’s exact test to eval-
uate the statistical significance of set overlaps and report the
Benjamini–Hochberg adjusted P-value each curated CpGs set.

Key Points

• This study introduced novel computational methods
to process the methylation BeadChip data on arbitrary
genomes.

• Meta-analysis of strain-specific DNA methylome atlas
across 25 inbred mouse strains.

• Mouse strain-specific DNA methylome profiles are asso-
ciated with immune, metabolic and neurological disease
phenotypes.
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