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Abstract

Background: Fetal growth restriction (FGR) is a risk factor for neurodevelopmental problems,
yet remains poorly understood. We sought to examine the relationship between intrauterine
development and neonatal neurobehavior in pregnancies diagnosed with antenatal FGR.

Methods: We recruited women with singleton pregnancies diagnosed with FGR and measured
placental and fetal brain volumes using MRI. NICU Network Neurobehavioral Scale (NNNS)
assessments were performed at term equivalent age. Associations between intrauterine volumes
and neurobehavioral outcomes were assessed using generalized estimating equation models.

Results: We enrolled 44 women diagnosed with FGR who underwent fetal MRI and 28 infants
underwent NNNS assessments. Placental volumes were associated with increased self-regulation
and decreased excitability; total brain, brainstem, cortical and subcortical gray matter (SCGM)
volumes were positively associated with higher self-regulation; SCGM also was positively
associated with higher quality of movement; increasing cerebellar volumes were positively
associated with attention, decreased lethargy, non-optimal reflexes and need for special handling;
brainstem volumes also were associated with decreased lethargy and non-optimal reflexes;
cerebral and cortical white matter volumes were positively associated with hypotonicity.

Conclusion: Disrupted intrauterine growth in pregnancies complicated by antenatally diagnosed
FGR is associated with altered neonatal neurobehavior. Further work to determine long-term
neurodevelopmental impacts is warranted.

Introduction:

Fetal growth restriction (FGR) increases the risk of perinatal mortality and morbidity, with
subsequent long-term neurodevelopmental deficits 1. Occurring in up to 10% of pregnancies,
FGR is the second leading cause of perinatal mortality, accounts for 30% of stillborn infants
and is the most common cause of premature births and intrapartum asphyxia 2. FGR is

a multifactorial syndrome resulting in the fetus not reaching its intrauterine, biological
growth and developmental potential. This occurs due to divergence from the normal fetal
growth patterns determined through genetic growth potential, along with fetal, placental, and
maternal health factors 1:2. The resulting suboptimal brain development that is associated
with FGR increases the risk of adverse neurodevelopmental outcomes in infancy, which can
subsequently extend into adolescence and adulthood34. The neurological morbidities are
broadly categorized by cognitive impairment, behavioral dysfunction, and motor deficits 1.5,
Recent literature has consistently shown that school aged children diagnosed with FGR in
infancy have diminished memory, academic ability, and overall, a significant reduction in I1Q
compared to appropriate for gestational age (AGA) peers 126, Notable neuropsychological

Pediatr Res. Author manuscript; available in PMC 2023 May 05.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Andescavage et al.

Methods:

Subjects

Page 3

dysfunctions associated with FGR include poor attention, hyperactivity, and altered mood
1.6-9 Additionally, there is a 30-fold greater risk of cerebral palsy in FGR infants, and an
increased incidence of global fine and gross motor delays 0.

Despite the significant mortality and morbidity, the accurate identification of FGR in utero
remains difficult 11-14, Common metrics, such as fetal weight or birth weights falling below
the 10™ centile for gestational age (small for gestational age, or SGA), provide objective
criteria but fail to identify pathologic growth trajectories above the predefined thresholds™®.
It is becoming increasingly recognized that alternate measures of placental dysfunction and
pathologic fetal growth, even for infants with birth weights appropriate for gestational age
(AGA), are associated with adverse pregnancy outcomes16-19,

These studies highlight the need for more sensitive and specific measures of fetal
compromise. We have previously reported the /n vivo association between placenta volume
and fetal brain volume using quantitative MRI 20. These findings point towards a promising
measure for early identification of pathologic growth and an improved understanding of

the immediate intrauterine impact on neurodevelopment. However, the relationship between
specific in utero volumetric brain growth and short-term neurobehavioral outcomes has not
been well established. In this study, we sought to examine the relationship between in utero
fetal brain and placental volumes and neonatal neurobehavior in pregnancies complicated by
FGR.

Subjects were recruited prospectively into a longitudinal, observational study on placental-
fetal development in pregnancies complicated by fetal growth restriction (FGR). MRI was
performed between 18- and 39-weeks’ gestation and neonatal neurobehavioral assessments
were performed before 44 weeks corrected gestation. The study was approved by the
institutional review board of the Children’s National Hospital and written informed consent
was obtained from all subjects.

Women with pregnancies complicated by FGR were recruited from regional Maternal-Fetal
Medicine practices if the following criteria were met: singleton pregnancy with estimated
fetal weight < 10t percentile 2! and either (A) abnormal Doppler sonography of the
umbilical and/or middle cerebral arteries, specifically an umbilical artery pulsatility index
> 95% or cerebroplacental ratio <1 or (B) evidence of impaired somatic growth where
abdominal circumference lagged head circumference > 1week for expected gestational

age (GA) 2223 Exclusion criteria included multiple-gestation pregnancy, known or
suspected congenital infection, dysmorphic features of the fetus, documented chromosomal
abnormalities, uncertain dates or maternal contraindication to MRI. Enrolled subjects found
to have dysmorphic structural abnormalities on fetal MRI or postnatal confirmation of a
genetic syndrome were subsequently excluded from the analysis.
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Demographic and Clinical Data

Fetal MR

GA was calculated based on first-trimester ultrasound measurement or last menstrual
period if unavailable; women with uncertain pregnancy dates were excluded. Clinical

and demographic data were collected for each subject through medical chart review.
Anthropomorphic measures including birth weight, length and head circumference were
corrected for GA using the Fenton growth chart calculations 24. Infants with birth weights
< 10t centile for gestational age were categorized as small for gestational age (SGA), and
those with birth weights 10-90t™ centile were categorized as appropriate for gestational age
(AGA\) using the Fenton growth chart for weight and sex 2°.

All MRI scans were performed on a 1.5T Discovery MR450 scanner (GE Healthcare,
Milwaukee, Wisconsin) using an 8-channel surface receive coil (USAI, Aurora, OH). Single
shot fast spin echo (SSFSE) T2-weighted images were performed as follows: for the fetal
brain, TE 160ms, TR 1100ms, FOV 320 x320 mm, 2mm slice thickness and 40 to 60
consecutive slices for full brain coverage in all 3 orthogonal plans (axial, coronal, sagittal);
for the placenta, fat suppressed with TE 160ms, TR 1100ms, FOV 420 x 420mm, 4mm slice
thickness and 40 to 60 consecutive slices for full placental coverage in the axial plane 20, No
contrast or sedation was used for any of the imaging studies.

Volumetric MRI Analysis

Volumetric analysis of the placenta and fetal brain have been previously described 20:26-28,
In brief, the placenta was manually outlined using ITK-SNAP software 22, while the fetal
brain was reconstructed and segmented using a semi-automated approach to include motion
correction 3031 and each automated segmentation was visually inspected and manually
corrected by a trained expert. Volumes were reported in cm3; cerebral, cerebellar and
brainstem volumes were individually calculated, and total brain volume was defined as the
sum of the previous three volumes. Placental and regional brain volumes, including cortical
gray matter (CGM,) cortical white matter (CWM) and sub-cortical grey matter (SGCM)
were individually calculated.

NICU Network Neurobehavioral Scale (NNNS) Assessments

The NICU Networks Neurobehavioral Scale (NNNS) is a quantitative assessment of infant
neurobehavior, composed of neurologic, behavioral functioning, stress and abstinence
evaluations 3234, The NNNS is a widely used tool that was developed to study both

healthy and high-risk infants, including infants born premature, low-birth weight, exposed
to prenatal stress and substance use, or perinatal injury 32:35-38 The NNNS includes 128
items that can be summarized into 13 domain summary scores: habituation, attention,
arousal, self-regulation, special handling needed from the examiner, quality of movement,
excitability, lethargy, non-optimal reflexes, asymmetric reflexes, hypertonicity, hypotonicity
and stress/abstinence 34. All assessments were completed by a certified, trained examiner,
and summary scores derived for each subject.
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Statistical Analysis

Results:

Data are presented as mean * standard deviation (SD) or frequency and percent. Our
analyses consisted of the following steps. In step one, we assessed the relationship between
each NNNS domain and birthweight. Birthweight was classified into SGA or AGA (outlined
above) and treated as a binary parameter with AGA infants serving as the referent group.

In step two, for each NNNS domain, scores were converted to z-scores using prior work
published by Fink et al. to serve as the referent population 3°. The developers note that
given the directionality of the scales, scores at each extreme are reflective of either an
excessively amplified or diminished response3®. As such, we considered z-scores + 2SD

as abnormal, and z-scores + 1.5SD as at risk, based on common thresholds of referral

for early intervention services3%-41, The prevalence of abnormality between groups was
then compared using Fisher’s Exact test. In step three, we used separate generalized mixed
models to assess the relationship between each NNNS domain and fetal brain/placental
volumes; all models were adjusted for gestational age at time of scan and fetal sex. Lastly,
we adjusted for multiple comparisons using the false discovery rate method based on the
number of outcomes. All analyses were conducted using SAS (ver. 9.4, Cary, NC) with
statistical significance considered for p<0.05, two-tailed.

Characteristics of our cohort

Forty-four (44) women with pregnancies complicated by FGR were enrolled in this study.
Of these, 10 (22%) were lost to follow-up, 6 (13%) died prior to NNNS examination and
therefore, 28 infants were included in this analysis. Infants lost to follow-up, were generally
similar to the cohort presented based on available medical record data; 4 (40%) were born
SGA, 2 (20%) were born preterm, with an overall GA at birth of 38.1+1.7 weeks, mean

BW 2697+478 g (BW percentile of 13.5£10.14%). For the remaining infants included in
this analysis, fetal MRI studies were performed at a median gestational age (GA) of 32.32 £
4.71 weeks (range: 18 to 37 completed weeks). Mean GA at birth was 36.27 + 3.93 weeks
with birth weight (BW) of 2149 + 761 grams. Nearly half of all subjects were born small for
gestational age (SGA, 47%). Additional demographic data are presented in Table 1.

NNNS scores

Mean NNNS summary scores for the cohort are found in Table 2. Twenty-eight infants had
complete NNNS scores; of these only 4 (4%) infants were in the correct state to assess
habituation and 21 (75%) infants were in the correct state to assess attention; similarly
only 9 (32%) infants had asymmetric reflexes noted. Given low rates for habituation

and asymmetric reflexes, these were excluded from subsequent analyses. Summary scores
were similar between SGA and AGA infants, although SGA infants were noted to have
higher arousal scores compared to AGA infants, and also required more special handling to
complete the exam (Table 2).

To characterize the number of infants with abnormal neurobehavior, individual infant
summary scores were then compared to published norms and scored at-risk if they fell
above or below 1.5 SD of the mean and abnormal if they fell above or below 2 SD of the
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mean 39, Of note, published norms are only available for 12 domains, as too few healthy
infants demonstrated signs of hypertonicity in the original report. Therefore, in this work, we
only report at-risk infants if the hypertonicity summary score was > 1 (Table 3). Compared
to published norms, FGR infants demonstrate at risk scores in 9 of the 12 domains and
abnormal scores in 8 of the 12 domains. Nearly half of neonates scored at-risk in quality of
movement and stress-abstinence domains, and a third of neonates were within the abnormal
range for quality of movement. While we did not detect significant differences between SGA
and AGA infants, it is important to note, nearly a third of antenatally diagnosed FGR infants
born AGA also demonstrated abnormal scores for quality of movement, 15% had abnormal
scores for excitability and 8% for abnormal self-regulation.

Relationship between placental and fetal brain volumes with NNNS scores

Placental volume, fetal total brain, brainstem, CGM and SGCM volumes were positively
associated with higher self-regulation scores (placenta: p=0.004, p<0.01; total brain:
=0.013, p=0.035; brainstem: p=0.892, p<0.01; CGM p=0.029, p=0.019; SGCM p=0.183,
p=0.026); of these the association between braistem volume and self-regulation was
maintained after adjusting for multiple comparisons. SGCM was also associated with
improved quality of movement (B=0.105, p=0.043). Increasing fetal cerebellar volumes
were associated with increased attention (B=0.396, p = 0.007), decreased need for handling
(B=—0.065, p = 0.006), less lethargy (B=-0.321, p = 0.031) and less non-optimal

reflexes (B=-0.671, p = 0.001). Greater fetal brainstem volumes also were associated with
decreased lethargy (B=—1.250, p = 0.046, and less non-optimal reflexes (= -1.627, p =
0.044). Cerebral volumes and CWM volumes were positively associated with hypotonicity
(cerebrum: $=0.012, p=0.012; and CWM: p=0.023, p=0.003). Lastly, increasingly placental
volume also was associated with less excitability (3= —0.010, p=0.014) (see Figure 1 and
Tables 4-5).

Discussion:

Summary of Findings

In this exploratory analysis, we relate /n-utero fetal brain and placental development with
neonatal neurobehavior in a cohort of pregnancies complicated by FGR. First, we note
that significant number of subjects identified as FGR were born AGA, highlighting the
challenges in the accurate diagnosis of pathologic fetal growth. Second, a significant
proportion of infants had altered neonatal neurobehavior across multiple domains of the
NNNS assessment, and this was true for antenatally diagnosed FGR infants born both
SGA and AGA. Lastly, we found several associations of intrauterine growth with neonatal
behavior. Specifically, we found that increasing intrauterine volumes of the placenta and
both global and regional brain volumes were associated with increased self-regulation,
attention and quality of movement along with decreased excitability, lethargy, non-optimal
reflexes and need for special handling in neonates. Previously, we have shown that
intrauterine placental volumes were positively associated with total brain, cerebral and
cerebellar volumes?%; as improved placental growth supports improved brain growth,

the current data suggest improved brain growth is associated with improved neonatal
neurobehavior. We also noted an association between fetal cerebral and CWM volumes

Pediatr Res. Author manuscript; available in PMC 2023 May 05.
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and hypotonicity; however the significance of this finding is limited, given that overall
hypotonicity scores remained low, and all hypotonicity scores fell within normal reference
ranges.

NNNS in High-Risk Infants

The NNNS assessment is a standardized and validated tool for the prediction of motor,
cognitive and behavioral outcomes for high-risk infants that can be performed in infants
between 32-48 weeks corrected gestational age 3242, In addition, there are well-established
normative data that can serve as reference data from over 300 healthy, term neonates 3°.
The NNNS assessment has also been applied widely to identify and describe a range

of neurobehavioral abnormalities across multiple conditions in both high- and low-risk
populations 4344, Despite the need to relate intrauterine growth and exposures with long-
term outcomes, there is an increasing body of literature that shows the NNNS assessment
can be predictive of long-term medical and developmental outcomes*347, and thus serves
as a useful neonatal biomarker of later development. Specifically, Liu et al demonstrated
that infants with low self-regulation, attention and quality of movement along with high
exctibiltiy, hypertonicity and more special handling in the neonatal period were more likely
to exhibit low performance on the Bayley Scales of Infant Development, decreased school
readiness with lower child I1Q and more behavior problems from infancy through age four
44 These are key domains that we show are directly associated with fetal brain volumes.

By identifying deviations of typical brain growth patterns /n utero, we can better explore the
onset and duration of placental insufficiency and subsequent FGR, and the relationship with
regional vulnerability of the developing brain.

Challenges in the Accurate Identification of Fetal Growth Restriction

By definition, FGR is a pathologic condition in which the inability to achieve target

growth disrupts normal development 11; however, the clinical identification and diagnosis
of FGR remains difficult. Clinically, FGR is often defined when fetal size falls below

a predefined threshold, typically the 10t centile for growth for a given gestational age

(GA) %8. As a result, both FGR and small for gestational age (SGA) infants are risk

factors for adverse neurobehavioral outcomes 549-51, Despite the practical application of
using growth cutoffs to identify FGR, this approach remains limited in that it may (a)
misclassify SGA fetuses that are constitutionally small but healthy or (b) fail to identify
infants above the 10™ centile but still below their target growth potential. Relatedly,

fetuses that may drop below the percentile criterion and then recover, may still suffer
neurodevelopmental consequences from transient nutrient restriction, while limitations in
fetal weight estimates may mis-identify SGA fetuses that in fact are developing above the
10t centile. In this cohort, a significant number of infants identified antenatally as FGR
were born AGA, and may reflect the known limitation in the accurate measures of fetal
growth®2:53, However, current tools remain insufficient to distinguish between limitations in
accurate measures of fetal growth and pathologic growth. The significant rates of abnormal
neurobehavior detected in the subgroup of AGA infants presented here suggest more precise
biomarkers of neurodevelopment are needed that will be more sensitive and specific to
identify pathologic fetal growth. In this work, AGA infants diagnosed with antenatal FGR
demonstrated abnormal scores for quality of movement and excitability, domains associated
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with intrauterine volumes of SCGM and the placenta, respectively, as well as self-regulation,
which was associated with fetal total brain, cerebral, brainstem, CGM and SCGM volumes.

Fetal Brain Structure and Neurodevelopment

Several studies have reported on abnormal brain structure in infant survivors of FGR

and SGA, including the particular vulnerability of the cerebellum 20:54-60_ However,

less is known about fetal brain structure and neonatal neurobehavioral outcomes. One

study of SGA fetuses evaluated with MRI at 37 weeks’ gestation underwent neonatal
neurobehavior assessment with the Neonatal Behavioral Assessment Scale (NBAS) 61, The
authors reported that cerebellar volume was greater in SGA infants compared to AGA
matched controls, and cerebellar volume was associated with neonatal motor scores 1.
While this study noted increased cerebellar volume, most fetal studies of brain volume

have noted smaller volumes of the cerebellum both by neuro-sonography and MR 20.60:
these differences may reflect differences in the populations studied, the onset and timing of
growth restriction, as well as the window studied (37 weeks compared to wider gestational
windows). We also found that cerebellar volume was associated with four key NNNS
domains, more than any other measured region of the brain. Specifically, we found that
fetal cerebellar volume was associated with increased attention, decreased need for special
handling (indicating that less input is needed from the examiner to elicit visual and auditory
responses from the infant,) decreased lethargy and non-optimal reflexes. This is consistent
with emerging work that the developing cerebellum plays a key role in movement, cognition
and socio-behavioral function 2. Egana-Ugrinovic et al also reported decreased insular
morphometry in SGA fetuses, which in turn was associated with infant state organization/
regulation, autonomic nervous system function, attention and social-interactive functions 63
and decreased corpus callosal area that was associated with abnormal NBAS clusters 4.
We note that several fetal brain structures, including the cerebrum, and specifically CGM
and SCGM, as well as overall brain and brainstem volumes were positively associated with
neonatal self-regulation. This work further explored fetal brain volumes across a much wider
window of assessment, which will be needed to identify the onset and timing of growth
failure in relation to early neurodevelopment.

Placental Development and Neurodevelopment

While placental insufficiency is a leading cause of fetal growth restriction, there remain
significant gaps in understanding the pathophysiology of placental failure and its effect

on early brain development 5. Placental disease can result in nutrient restriction, chronic
hypoxia, hypoperfusion and inflammation, disrupted neuroendocrine functions, as well

as epigenetic placental changes, which in turn, can adversely influence early brain
development 51.66-68  Animal models of uteroplacental insufficiency have demonstrated
both structural changes in brain development as well as neurodevelopmental outcomes

69 while molecular studies have identified several key neurotrophins and neurosteroids
that can influence placental development and neurodevelopmental outcomes 773, /n vivo
studies rely primarily on Doppler sonography to detect placental pathology. Clinical studies
suggest that the primary advantage of these evaluations is in the reduction of perinatal
death, with limited data on the specificity and sensitivity of these measures in predicting
neurodevelopmental outcomes 74. Within very low birth weight preterm infants, abnormal
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fetal Doppler studies consistent with placental insufficiency were associated with adverse
neurocognition, mediated in large part by decreased brain volumes 7°. We have previously
shown that /n vivo placental volume was positively associated with fetal cerebral and
cerebellar volumes 20. A recent study on placental allopregnanolone found that decreased
levels of this neurosteroid led to cerebellar microstructural abnormalities and autistic like
behavioral abnormalities in mice, further linking placental changes with brain development
and behavior 73, In this work, we demonstrate that placental volume was positively
associated with self-regulation, presumably through improved overall growth of several
brain regions. Increasing placental weight was also associated with lower excitability, or
lower levels of motor, state and physiologic reactivity 44. In a cohort of high-risk infants in
the NICU, lower excitability was also found in infants of family-centered care and higher
parental satisfaction. Further work to elucidate mechanisms of parental stress, placental
growth, brain development and neurodevelopmental outcomes is warranted.

Strengths & Limitations

The strengths of this work include the accuracy and rigor of quantitative fetal MRI

with comprehensive neonatal neurobehavioral assessments. While there are controversies
regarding optimal definition and identification of FGR, the classification scheme in

this study was implemented to exclude fetuses with chromosomal abnormalities, genetic
syndromes or intrauterine infections that can independently and adversely influence
neurodevelopment. Despite these strengths, there are several limitations that deserve
mention. First, there is no control group of otherwise healthy pregnancies with normal

birth outcomes to measure fetal brain volumes and neurodevelopmental outcomes. It also
worth noting that the infants lost to follow-up may have introduced bias into the sample.
Similarly, given the dynamic nature of early brain development and neurobehavior, it is
important to recognize that while we adjusted for gestational age at study timepoints, it

is likely that there are specific periods of vulnerability in brain development. Prospective
studies that include both healthy and high risk pregnancies over discrete gestational

ages are needed to identify optimal windows of both risk and subsequent intervention.
Second, additional risk factors for growth restriction that may also confound with adverse
neurodevelopment must be considered, including parental genetics, socio-economic status,
stress and lifestyle factors, including smoking, substance or environmental toxin exposure.
Third, while we identified several regions of fetal brain and placental volumes that were
associated across multiple NNNS domains, there was no consistent pattern of fetal brain
volume and neurodevelopmental outcomes. This may be due to other significant contributors
of placental insufficiency, such as the timing or duration, that were unaccounted for in this
analysis. Adjustments for multiple comparisons also narrowed the number of significant
associations, highlighting the association between brainstem volume and neonatal self-
regulation. Nonetheless, given the exploratory nature of this work, the described findings are
consistent with known developmental and behavioral functions of key brain areas, and worth
validating in larger populations. Similarly, further studies are warranted to determine if these
differences in the newborn period persist throughout childhood. These critical long-term
studies are currently underway.
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Conclusions

In this work, we identify regional impairments in fetal brain and placental growth detected
across the second half of pregnancy and report significant associations with altered neonatal
neurobehavior in pregnancies complicated by the antenatal diagnosis of FGR. While only
45% of these pregnancies delivered SGA infants, rates of abnormal neurobehavior remained
high for both SGA and AGA groups, highlighting the limitations in identifying high-risk
groups, and the need for more precise measures of intrauterine neurodevelopment. Advances
in the field also will require more precise measures of placental function, along with more
specific detection methods of pathologic growth. Interestingly, the cerebellum was a key
brain region associated with several neurobehavioral domains. This finding coincides with
previous work identifying the cerebellum as one of the fastest and largest growing regions
of the fetal brain in the second half of pregnancy, and thus one of the most vulnerable

to disturbed antenatal growth. Further work to explore the onset and duration of placental
insufficiency and subsequent FGR and the relationship with regional vulnerability of the
developing brain is warranted.
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Category of Study:
Original clinical science study
Impact Statement:

. Fetal growth restriction is a risk factor for adverse neurodevelopment, but
remains difficult to accurately identify

. Intrauterine brain volumes are associated with infant neurobehavior

. The antenatal diagnosis of fetal growth restriction is a risk factor for abnormal
infant neurobehavior
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