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SUMMARY
The spermatogonial stem cell (SSC) niche is critical for SSCmaintenance and subsequent spermatogenesis. Numerous reproductive haz-

ards impair the SSC niche, thereby resulting in aberrant SSC self-renewal and male infertility. However, promising agents targeting the

impaired SSC niche to promote SSC self-renewal are still limited. Here, we screen out and assess the effects of Lovastatin on the self-

renewal of mouse SSCs (mSSCs). Mechanistically, Lovastatin promotes the self-renewal of mSSCs and inhibits its inflammation and

apoptosis through the regulation of isoprenoid intermediates. Remarkably, treatment by Lovastatin could promote the proliferation

of undifferentiated spermatogonia in the male gonadotoxicity model generated by busulfan injection. Of note, we demonstrate that

Lovastatin could enhance the proliferation of primate undifferentiated spermatogonia. Collectively, our findings uncover that lovastatin

could promote the self-renewal of both murine and primate SSCs and have implications for the treatment of certain types of male infer-

tility using small compounds.
INTRODUCTION

In mammals, spermatogonial stem cells (SSCs) maintain

life-long male fertility through a balance between self-

renewal and differentiation (Clermont, 1972; de Rooij,

2017; Fayomi and Orwig, 2018). The testicular microenvi-

ronment, which is composed of various somatic cells and

their secreted growth factors, is critical for themaintenance

of SSCs and subsequent spermatogenic differentiation

(Chen and Liu, 2015; Mei et al., 2015; Oatley and Brinster,

2012; Tian et al., 2019). Among these growth factors,

GDNF,which is secreted by Sertoli andmyoid cells, is essen-

tial for the self-renewal of SSCs, and the number of SSCs in

GDNF knockout mice decreased significantly (Chen et al.,

2016; Meng et al., 2000; Parekh et al., 2019; Sada et al.,

2012; Takashima et al., 2015). The involvement of cyto-

kines in regulating SSC identity lays a foundation for the

establishment of an SSC in vitro culture system (Kanatsu-

Shinohara et al., 2003, 2005, 2011). The widely usedmouse

SSC (mSSC) in vitro culture system contains cytokines such

as GDNF, FGF2, LIF, and EGF, which canmaintain the long-

term expansion of mSSCs; meanwhile, the cultured mSSCs
Stem Cell
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could initiate meiosis properly under induction. More

importantly, the long-term cultured mSSCs can produce

functional spermatozoa after transplantation into the sem-

iniferous tubules of recipient mice, indicating that growth

factors from the testicular microenvironment play an

important role in the proper maintenance of SSC identity

in vitro (Kanatsu-Shinohara et al., 2003; Kubota et al.,

2004; Kubota and Brinster, 2018).

However, clinical treatment technologies with reproduc-

tive toxicity such as radiotherapy and chemotherapy can

damage the testicular microenvironment and impair the

SSC pool, thereby resulting in male infertility (Allen

et al., 2018; Delessard et al., 2020; Meistrich, 1993, 2013;

Vakalopoulos et al., 2015). Previous studies have shown

that busulfan chemotherapy, in which a large number of

germ cells undergo apoptosis, could decrease the number

of mSSCs, undifferentiated spermatogonia, and more

differentiated progenitor-type spermatogonia significantly

(Liu et al., 2014; Marcon et al., 2010; Nurmio et al., 2009;

Zohni et al., 2012). As for themicroenvironment, the num-

ber of peritubularmyoid cells decreased, whilemalfunction

alterations of Leydig cells and Sertoli cells have been
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reported (Brilhante et al., 2012; Sasso-Cerri et al., 2017) in

which the decrease of GDNF was observed (Morimoto

et al., 2021). Further studies indicate that proper SSC pools

and microenvironments are the basis for restoring male

fertility (Benavides-Garcia et al., 2015; Chen et al., 2021;

Kotzur et al., 2017; Zhang et al., 2019). Hence, it is of signif-

icance to know how to restore the male fertility capability

by triggering the proliferation of SSCs under the spermato-

genesis defective condition caused by chemotherapy or

other reasons.

In this study, we applied a small-compound screening

strategy to find a novel small compound that can

promote the self-renewal of SSCs using the mSSC in vitro

culture system without the addition of GDNF. Then, the

effects of the candidate small compound were evaluated

using both the mouse male infertility model induced by

busulfan and the ex vivo primate testis culture system.
RESULTS

Small-compound screening identifies that Lovastatin

promotes mSSC self-renewal in the absence of GDNF

in vitro

GDNF is an essential factor for SSCmaintenance. To screen

novel small compounds that support the long-term main-

tenance of SSCs, high-throughput screening of small-com-

pound libraries was performed using the in vitro mSSC cul-

ture system (Figures 1A and S1A). First, we defined two
Figure 1. Lovastatin maintains the identity of mSSCs in vitro in t
(A) Schematic outline of the small-molecule screening.
(B) Morphology of mSSC clones in different culture conditions. mSSC
named the positive control group (PTC). mSSCs cultured without GD
compound-treated mSSC group (Lovastatin [LOVA]) was cultured in NT
enlarged in the red rectangle of left field. Scale bars: left, 100 mm, a
(C) Immunofluorescent staining of mSSC clones cultured in different g
dish. DDX4 and ZBTB16 as germ cell and undifferentiated spermatogo
(D) Immunofluorescent staining of mSSC clones cultured in differen
markers were labeled, respectively. Scale bars, 50 mm.
(E) Statistic histogram of ID4 and Ki67 double-positive cells for each g
SEM, ***p % 0.001.
(F) Statistic histogram of size of mSSC clones for each group from fi
***p % 0.001.
(G) Western blot of HMGCR knockdown mediated by CRISPR-Cas13d
HMGCR, while sgNT indicates non-targeting sgRNA. a-Tubulin was us
(H) Statistic histogram of relative HMGCR protein level in (G) from
*p % 0.05, **p % 0.01.
(I) Immunofluorescent staining of HMGCR knockdown and control sg
GDNF for 3 passages (18 days) after HMGCR or sgNT knockdown. ID
respectively. Scale bars, 50 mm.
(J) Statistic histogram of ID4 and Ki67 double-positive cells for each
mean ± SEM, ***p % 0.001.
See also Figure S1.
culture conditions for classical mSSC culture medium ac-

cording to the previous description, which was supple-

mented with GDNF, FGF2, LIF, and EGF (positive control

group [PTC]) (Kanatsu-Shinohara et al., 2003) or PTC

without GDNF (negative control group [NTC]), respec-

tively. We then set up the screening system to evaluate

the performance of small compounds on the proliferation

of mSSCs based on NTC culture conditions. As a result,

we screened out a small molecule drug, Lovastatin, which

is referred to LOVA hereafter. Similar to PTC, cells from

the LOVAgroup also showed the typicalmSSCmorphology

(Figure 1B). Remarkably, cell clones from both PTC and

LOVA groups expressed the germ cell marker DDX4 and

undifferentiated spermatogonia marker ZBTB16, which

could maintain their expression for 18 days, whereas cell

clones from the NTC group barely expressed these markers

(Figure 1C). Furthermore, the number of proliferative

mSSCs, which was indicated by ID4 (Chan et al., 2014;

Sun et al., 2015) and Ki67 double immunostaining, was

significantly higher in the LOVA group than in the NTC

group, indicating that the supplementation of LOVA signif-

icantly promoted proliferation of mSSCs (Figures 1D and

1E). Likewise, the sizes of the cell colonies from the LOVA

group were prominently larger than those from the NTC

group (Figure 1F). Consistently, mSSCs in the LOVA group

showed a tendency toward stable proliferation compared

with the NTC group, suggesting that LOVA supports

GDNF-independent proliferation of mSSCs (Figure S1B).

In addition, we optimized the dosage of LOVA for
he absence of GDNF

s cultured in regular conditions that contain exogenous GDNF were
NF were used as the negative control group (NTC). Small-molecule
C medium supplemented with LOVA. The right panel shows the clone
nd right, 10 mm.
roups for 18 days. GFP indicates mSSC clones seeded in the culture
nia markers were labeled, respectively. Scale bars, 50 mm.
t groups for 18 days. ID4 and Ki67 as mSSCs and cell proliferation

roup from ten independent experiments. Error bars indicate mean ±

fteen independent experiments. Error bars indicate mean ± SEM,

system. sgHMGCR-1 and sgHMGCR-2 were designed to knock down
ed as the loading control.
three independent experiments. Error bars indicate mean ± SEM,

NT mSSCs clones used in (G). mSSC samples were cultured withouth
4 and Ki67 as mSSCs and cell proliferation markers were labeled,

group in (I) from ten independent experiments. Error bars indicate

Stem Cell Reports j Vol. 18 j 969–984 j April 11, 2023 971



C
ou

nt

Hoechst
PNADDX4SSC-GFP DNA Merge

SYCP3γH2AXSSC-GFP DNA Merge

ZBTB16SSC-GFP DNA Merge

A

D

E

FG

C

SSC-GFP dervied from PTC group SSC-GFP derived from LOVA group

1 7 14 21
0

5

10

15

20

Days Postpartum

Bo
dy

w
ei

gh
t (

g)

PTC
LOVA

n.s.

n.s.

n.s.

n.s.

dleiFthgirB
U

V
lig

ht

F1 pups generated from
SSC-GFP in the LOVA group

LOVA group SSC-GFP derivedH I

F2

F1 F1

1N 2N 4N

PTC
LO

VA
0

10

20
30

40

50

C
ol

on
ie

s
/1

05
ce

lls *
B

Figure 2. LOVA maintains the function of mSSCs in vitro in the absence of GDNF
(A) Cell colonization in the recipient testes. The SSC-GFP cells derived form PTC or LOVA group were transplanted into 5–10 days post
partum recipient mice with fetal busulfan pretreatment and then were detected under a fluorescence microscope after 2 months of
transplantation. GFP-labeled mSSCs cultured in each group for 60 days were used to conduct the transplantation assay. Scale bar, 500 mm.

(legend continued on next page)
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supporting SSC clone formation, and the result showed

that 5 mM was the best (Figure S1C).

To prove the direct modulation of LOVA on SSCs, we

have interrupted the LOVA regulated pathway through

CRISPR-Cas13d-mediated knockdown of LOVA receptor

HMG-CoA reductase (HMGCR) (Jiao et al., 2020; Xia

et al., 2018) (Figures 1G and 1H). The result showed that

knockdown of HMGCR could mimic the promoting effect

of LOVA during cells’ in vitro proliferation in the absence of

GDNF (Figure S1D). Consistently, the number of prolifera-

tive cultured cells, which was indicated by ID4 and Ki67

double immunostaining, was significantly higher in

HMGCR knockdown groups than in the control group,

suggesting that LOVA might directly act on mSSCs to pro-

mote their proliferation (Figures 1I and 1J). Additionally,

we utilized the feeder-free culture method and found that

the expression of the markers that related to cell cycles

and undifferentiated spermatogonia were significantly

higher in the LOVA group than in the NTC group, which

supports the conclusion that LOVA acts directly on

cultured cells as mentioned above (Figure S1E).

LOVA culture-derived mSSCs could differentiate to

functional round spermatids and generate fertile

offspring

To assess the differentiation potential of mSSCs cultured in

LOVA condition, we conducted SSC transplantation exper-

iments by utilizing GFP-labeled mSSCs (SSC-GFPs). Cells

were cultured under LOVA or PTC conditions for 60 days,

followed by being transplanted into the testes of recipient

pup mice (Shinohara et al., 2001) (Figure 2A). Although

the number of colonies derived from the LOVA group was

significantly smaller than the PTC group, mSSCs from the

LOVA group were capable of colonization in seminiferous

tubules (Figure 2B). Two months later, the chromosome

ploidy analysis of GFP+ cells from these seminiferous tu-

bules showed that the cell composition included haploid,

diploid, and tetraploid cells, suggesting that the trans-

planted LOVA-treated mSSCs were capable of colonization

for spermatogenesis (Figure 2C). Additionally, the differen-
(B) The statistics of colonized colonies formed by transplantation as
experiments. *p % 0.05.
(C) Flow cytometry analysis of cell karyotype of recipient’s seminifero
digestion and then labeled with Hoechst. The karyotypes of GFP+ cells w
that the transplanted mSSCs could accomplish the spermatogenesis p
(D–F) Immunofluorescent staining of colonized exogenous SSC-GFPs
PNA (F) were labeled as markers of undifferentiated spermatogonia, s
(G) The F1 offspring derived from spermatids that were generated fro
(H) Growth weight analysis of F1 offspring derived from spermatids
respectively.
(I) The F2 offspring derived from F1 offspring in (H).
See also Figure S2.
tiation potential of mSSCs was maintained well after LOVA

treatment, with ZBTB16+ undifferentiated spermatogonia,

SYCP3+gH2AX+ spermatocytes, and DDX4+PNA+ sperma-

tids being detected (Figures 2D–2F). To evaluate the fertility

of spermatids derived from exogenous transplanted

mSSCs, we performed ROSI (round spermatid injection)

and found that embryo developments together with live

birth rate were comparable between PTC and LOVA groups

(Figures S2A and S2B). Spermatids derived from LOVA con-

ditions generated fertile offspring, whose growth showed

no significant differences compared with the PTC group

(Figures 2G–2I). Furthermore, after mSSCs from the LOVA

group were transplanted into the testes of recipient adult

mice, they could colonize in adult testes and differentiate

to ZBTB16+ undifferentiated spermatogonia, DDX4+SYCP3+

spermatocytes, and DDX4+PNA+ spermatids (Figures S2C–

S2F). In summary, mSSCs derived from the LOVA group

were capable of colonization in testes from both pup and

adult recipient mice. Notably, mSSCs derived from the

LOVA group could further reconstitute spermatogenesis

to yield fertile spermatids in the testes of pup recipient

mice, indicating that LOVA ensured the normal function

of mSSCs.

LOVA acts on mSSCs through multiple molecular

regulations

To know how LOVA supports the proliferation of mSSCs

while maintaining its proper differentiation potential,

bulk RNA sequencing (RNA-seq) was performed on cell

samples from PTC, LOVA, and NTC groups. Further anal-

ysis found that a total of 68 differentially expressed genes

(DEGs) (cutoff: top 200 DEGs with p < 0.05) were identified

between PTC and LOVA groups, in which 56 genes were

down-regulated and 12 genes were up-regulated (Fig-

ure 3A). Notably, the down-regulated genes were mainly

associated with inflammatory response and granulocyte

chemotaxis, suggesting that both LOVA and GDNF might

be involved in the anti-inflammatory regulation of mSSCs

(Figure 3B). To test this hypothesis, cytokine array analysis

was performed to evaluate the anti-inflammatory effects in
say in (A). Error bars indicate mean ± SEM from four independent

us tubules from the LOVA group. Cells were obtained by enzymatic
ere detected to contain haploid, diploid, and tetraploid, indicating
rocess.
in recipient testis section. ZBTB16 (D), SYCP3 and gH2AX (E), and
permatocytes, and spermatids, respectively. Scale bars, 50 mm.
m SSC-GFPs of the LOVA group.
that were generated from SSC-GFPs from the PTC or LOVA group,
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these 3 groups. We found that the treatment of mSSCs by

either LOVA or PTC could significantly decrease the secre-

tion of cytokines, such as granulocyte-macrophage col-

ony-stimulating factor (GM-CSF), chemokine (C-X-C

motif) ligand 1 (CXCL1, a.k.a. KC), C-X-C motif ligand 5

(CXCL5, a.k.a. LIX), interleukin-6 (IL-6), MCP-1, tumor ne-

crosis factor receptor superfamily member 1a (Tnfrsf1a,

TNF-RI), TNF RII, IL-12 p40/p70, chemokine (C-C motif)

ligand 3 (CCL3, a.k.a. MIP-1a), and C-C motif ligand 9

(CCL9, a.k.a. MIP-1g) (Figures 3C and S3A). DEG analysis

between LOVA and NTC also found that genes down-regu-

lated in LOVA treatment were associated with inflamma-

tory response and cytokine production, while genes in

LOVA that regulated cytoskeleton, chromosome organiza-

tion, and M phase were up-regulated (Figures 3D and 3E).

And the representative genes related to inflammation

were significantly down-regulated in LOVA, whereas those

involved in cell cycles and self-renewal were markedly up-

regulated (Figures 3F–3H). Consistent with this finding, we

observed a decrease of complement C3 signals in either the

LOVA or PTC group compared with the NTC group

(Figures 3I and S3B). Based on the RNA-seq results and

the fact that complement C3 mediates activation of cell

apoptosis (Alexander et al., 2005; Jha et al., 2011; Rensen

et al., 2009), it was most likely that apoptosis was more

severe in the NTC group. Immunostaining results showed

that the signal of cleaved caspase-3 was higher in NTC

than that of either the LOVA or PTC group (Figures 3J

and S3C), which was further supported by qPCR results,

in which the expression of proapoptotic genes was down-

regulated (e.g., Bax and Fadd), whereas the anti-apoptotic

gene was up-regulated (e.g., Bcl2), in the LOVA group

compared with the NTC group (Figure S3D) (Ge et al.,

2019; Mao et al., 2021). Together, LOVA was essential for

the alleviation of inflammation and apoptosis in mSSCs.

Statins inhibit apoptosis potentially through

mevalonate cascades to support mSSC self-renewal

Statins have a great lipid-lowering function by blocking

the mevalonate metabolic pathway through competitive

inhibition of HMGCR (Jiao et al., 2020; Xia et al., 2018)
Figure 3. LOVA promotes mSSC self-renewal as well as inhibits in
(A) Venn diagram showing the intersection of differentially expresse
(B) GO analysis of significantly down-regulated genes in both LOVA v
(C) Heatmap of cytokine array analysis.
(D) GO analysis of LOVA down-regulated genes compared with NTC.
(E) GO analysis of LOVA up-regulated genes compared with NTC.
(F–H) qPCR analysis of the relative expression level of representative
(H). Error bars indicate mean ± SEM from three independent experim
(I and J) Immunofluorescent staining of complement 3 (I) or cleave
clones cultured in 3 different groups. Scale bars, 50 mm.
See also Figure S3.
(Figure 4A). Increasing evidence shows that statins could

exert anti-inflammatory and anti-apoptotic functions

both in vitro and in vivo (Parihar et al., 2019; Tripathi

et al., 2018; Xia et al., 2018). To confirm if statins exert

function through the mevalonate pathway, functional

studies were performed accordingly. We found that the

addition of three intermediate metabolites of the mevalo-

nate pathway, including geranyl pyrophosphate (GPP), fa-

gini pyrophosphate (FPP), and squalene, can abolish the

anti-apoptotic effect of LOVA in mSSCs. Of note, the addi-

tion of FPP led to the highest level of cell apoptosis

(Figures 4B and 4C). These results suggest that LOVAplayed

an anti-apoptotic role in mSSCs by inhibiting the down-

stream metabolites of the mevalonate pathway.

To further test if other statins also exert anti-inflamma-

tory and anti-apoptotic effects on mSSCs, eight commer-

cially available statins were then evaluated. Our results

showed that all the tested statins could promote the prolif-

eration of mSSCs compared with the control group (Fig-

ure 4D). Among these statins, the effect of fluvastatin

(FLUVA) not only had an effect on promoting the prolifer-

ation of undifferentiated spermatogonia for further verifi-

cation but also decreased the levels of complement 3 and

cleaved caspase-3 (Figures 4E and 4F). Consistent with

this, the expressions of Apoe and Cd68 have markedly

decreased in mSSCs derived from the FLUVA group. In

contrast, the expression of Etv5, a typical marker of mSSCs,

was significantly increased (Figures 4G and 4H). In addi-

tion, cell numbers that were double stained with ID4 and

Ki67, classical markers of proliferative mSSCs, were signifi-

cantly higher in the FLUVA group than in the NTC group

(Figures 4I and 4J), raising the possibility that other statins

exert similar effects on cultured cells. These results indicate

that statins might inhibit apoptosis through the mevalo-

nate pathway to support the proliferation of mSSCs.

LOVA promotes the proliferation of testicular

undifferentiated spermatogonia and reduces their

apoptosis under spermatogenesis defective conditions

To know if the LOVA could promote the proliferation of

mSSCs in vivo, intraperitoneal (i.p.) injection of LOVA was
flammation and apoptosis
d genes between different comparisons.
s. NTC and PTC vs. NTC.

genes regarding inflammation (F), cell cycle (G), and self-renewal
ents, ***p % 0.001, ****p % 0.0001.
d caspase-3 (J) in ZBTB16-labeled undifferentiated spermatogonia
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performed onmice daily with dosages of 1, 5, and 10mg/kg

for 5 days, with the mice injected with isotypic solvent as

the control. After 5 days, the testes were collected to detect

the proliferation of undifferentiated spermatogonia by im-

munostaining (Figure S4A). We found that the signal of

Ki67 in undifferentiated spermatogonia was increased in

LOVA-treated mice compared with the control, indicating

that LOVA could promote the proliferation of undifferenti-

ated spermatogonia in vivo (Figures S4B–S4D).

We then injected busulfan-treated mice with LOVA

to evaluate if LOVA could induce the proliferation of

undifferentiated spermatogonia in the spermatogenesis

defective condition (Figure 5A). Five days later, the LOVA

group exhibited a significant increase of ZBTB16+Ki67+ pro-

liferative undifferentiated spermatogonia. The increase of

ZBTB16+Ki67+ spermatogonia in the LOVA-treated group

could still be observed after 10 days, when the number of

undifferentiated spermatogonia in the control group grad-

ually recovered (Figures 5B, 5C, and S4E).

To confirm if LOVA could protect the in vivo undifferen-

tiated spermatogonia from apoptosis during the process of

the busulfan treatment, we administrated LOVA simulta-

neously with busulfan treatment (Figure 5D). We found

that LOVA could significantly decrease apoptosis in testic-

ular undifferentiated spermatogonia (Figures 5E–5G).

These results demonstrated that LOVA could promote the

proliferation of undifferentiated spermatogonia under

both normal and spermatogenesis defective conditions

and prevent the testicular undifferentiated spermatogonia

from apoptosis.

LOVA promotes the proliferation of primate

undifferentiated spermatogonia of in vitro organ

culture

To test if LOVA could promote the proliferation of primate

spermatogonia, we established a temporary primate testic-

ular culture system (Figure 6A) in which human and cyno-

molgus monkey spermatogonia could be maintained well
Figure 4. Statins play an anti-apoptotic role by regulating the m
(A) Schematic diagram of statin-dependent regulation of mevalonate
(B) Fluorescence-activated cell sorting (FACS) analysis of cell apopto
(C) Statistic histogram of apoptosis proportion for each treatment
experiments.
(D) mSSC clone formation analysis after treatment with 8 kinds of
experiments.
(E and F) Immunofluorescent staining of undifferentiated spermatog
(F) in mSSC clones cultured in the fluvastatin (FLUVA) group. Scale b
(G and H) qPCR analysis of the relative expression level of representativ
indicate mean ± SEM from three independent experiments. ****p %
(I) Immunofluorescent staining of ID4+ Ki67+ cells in mSSC clones cu
(J) Statistic histogram of ID4 and Ki67 double-positive cells from F
indicate mean ± SEM, ***p % 0.001.
on the basement membrane of a seminiferous tubule for

more than 30 days. LOVAwas added to the culturemedium

to evaluate its effects. After treatment for 14 days, cynomol-

gus monkey or human samples were collected to evaluate

the number of germ cells including undifferentiated sper-

matogonia (von Kopylow et al., 2010; Wu et al., 2009).

We found that the number of either prepuberty or adult

monkey undifferentiated spermatogonia in the lumen

was higher in the LOVA-treated group than in the control

group, especially adult monkeys, which had a significant

increase (Figures 6B–6E). Similarly, the number of human

undifferentiated spermatogonia in the lumen was also

significantly higher in the LOVA-treated group than in

the control group (Figures 6F and 6G). These data suggest

that LOVA significantly promoted the proliferation of pri-

mate undifferentiated spermatogonia.
DISCUSSION

SSCs that are capable of repopulating spermatogenesis

have ceased due to the side effect of chemotherapy to the

SSC niche, including GDNF reduction, inflammation,

and apoptosis (Harman and Richburg, 2014; Morimoto

et al., 2021; Qian et al., 2020; Zhang et al., 2013). Apart

from the key regulator of SSC self-renewal, GDNF also in-

volves anti-inflammation and anti-apoptosis, which

made it essential for SSC propagation in vivo and in vitro

(Gao et al., 2014; Kanatsu-Shinohara et al., 2003; Kubota

et al., 2004; Masaki et al., 2018; Meng et al., 2000; Sharma

and Braun, 2018; Tadokoro et al., 2002; Tan et al., 2020;

Wang et al., 2019). Therefore, we set up a drug screening

system to identify potential candidates that promote

mSSC self-renewal independent of GDNF, which may pro-

vide a hint for SSC recovery in defected testis. As a result, we

identified LOVA, which promotes mSSC self-renewal, ex-

hibits typical SSC morphologies, and expresses mSSC key

markers. Importantly,mSSCs derived from the LOVA group
evalonate pathway
metabolism.
sis and cell-cycle distribution.
group. Error bars indicate mean ± SEM from three independent

statins. Error bars indicate mean ± SEM from three independent

onia marker (ZBTB16) and complement 3 (E) or cleaved caspase-3
ars, 50 mm.
e genes regarding inflammation (G) and self-renewal (H). Error bars
0.0001, ns, non-significant.
ltured in NTC or FLUVA group. Scale bars, 50 mm.
LUVA or NTC group from ten independent experiments. Error bars
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were capable for spermatogenesis that generate fertile

offspring after being transplanted into the testes of recip-

ient mice, indicating that LOVA ensures normal mSSC

functions while faithfully promoting mSSC self-renewal.

Further mechanism analysis suggested effects of LOVA on

SSCs through multiple layers, including promotion of

self-renewal and cell cycle as well as inhibition of inflam-

mation and apoptosis, which might partially substitute

and fulfill the role of GDNF in mSSC proliferation (Gao

et al., 2014; Kubota et al., 2004; Masaki et al., 2018; Meng

et al., 2000; Sharma and Braun, 2018; Tadokoro et al.,

2002; Wang et al., 2019), as statins inhibit HMGCR, the

rate-limiting enzyme of the L-mevalonate pathway,

thereby preventing the formation of downstream metabo-

lites (Assmus et al., 2003; Zeiser, 2018; Zeiser et al., 2009).

Hence, we tested and found that the addition of down-

stream metabolites such as GPP, FPP, and squalene were

capable of abolishing LOVA-mediated apoptosis preven-

tion to mSSCs, suggesting that inhibitory effects of LOVA

are dependent on HMGCR. Likewise, other statins that

share the same target for HMGCR inhibition also demon-

strate similar effects, indicating that the effects of LOVA

on mSSCs could be generalized to various statins, which

expands our knowledge that HMGCR inhibitors could con-

trol cell proliferation (Assmus et al., 2003; Chen et al.,

2008; Mills et al., 2019). Intriguingly, the mechanisms of

how the downstream metabolites of HMGCR are involved

in mSSC proliferation remain elusive and require further

study.

Prior studies have suggested that the effects of statinsmay

be diverse to different types of stem cells (Assmus et al.,

2003; Gauthaman et al., 2009; Kupcsik et al., 2009; Xu

et al., 2009, 2013). Of note, statins could promote self-

renewal and then benefit further differentiation for normal

embryonic stem cells (ESCs) but inhibit the growth of
Figure 5. LOVA could promote the proliferation of undifferentiate
from apoptosis damage in vivo
(A) Schematic outline of LOVA injection after 10 days of busulfan tre
(B) Histogram calculation of the proportion of undifferentiated sperma
(A) from six independent experiments. Error bars indicate mean ± SE
(C) Histogram calculation of the proportion of cleaved caspase-3+ Z
compared with ZBTB16+-labeled undifferentiated spermatogonia in (A
***p % 0.001, ****p % 0.0001.
(D) Schematic outline of mouse treated by busulfan simultaneously w
therapy injury.
(E) Immunofluorescent staining of undifferentiated spermatogonia
markers (cleaved caspase-3) in mouse testis under the treatment of b
(F) Histogram calculation of the proportion of undifferentiated sperma
(E) from six independent experiments. Error bars indicate mean ± SE
(G) Histogram calculation of the proportion of cleaved caspase-3+ZBT
with total ZBTB16+-labeled undifferentiated spermatogonia in (E) fr
***p % 0.001, ****p % 0.0001.
See also Figure S4.
variant ESCs (Gauthaman et al., 2009). In order to investi-

gate the effects of LOVA in the impairedmSSCniche, we in-

jected busulfan into mice to simulate chemotherapy, fol-

lowed by LOVA treatments. Our finding reveals that LOVA

could not only promote the recovery of undifferentiated

spermatogonia but could alsoprotect undifferentiated sper-

matogonia during chemotherapy treatment. Due to its role

in anti-apoptosis, we speculated that LOVA alleviated the

damage to mSSC niche by anti-inflammation, thereby

creating a microenvironment that is suitable for mSSC sur-

vival and self-renewal, which partially substitute GDNF for

its anti-inflammatory and protective efficacy during gona-

dotoxic therapies (Morimoto et al., 2021). Of note, statin

medication has its advantages over GDNF in clinical appli-

cations for the following reasons. Firstly, GDNF is a neuro-

trophin that plays an important role in the nervous system,

in renalmorphogenesis, and in spermatogenesis,whichhas

complicated its clinical use (Ibanez and Andressoo, 2017;

Jain, 2009; Lin et al., 1993;Meng et al., 2000). Additionally,

increasing evidence shows thatGDNFmight be involved in

tumor progression. These findings are also supported by the

fact that overexpression of GDNF could result in the gener-

ation of the seminoma-like tumor, thereby eliciting con-

cerns about its safety in clinical use (Airaksinen and Saarma,

2002; Meng et al., 2000). In contrast, the safety of statin

medication has been validated, making it more suitable

for potential use in treating male infertility (Athyros et al.,

2010; Gu et al., 2019; Jiang et al., 2018; Yan et al., 2013).

In the past years, numerous studies have been carried out

to explore the efficient utility of gamete cells by increasing

the proliferation and differentiation of spermatogonia in

primates including human beings (Fayomi et al., 2019;

Tan et al., 2020). However, there are still several bottlenecks

that limit the development of this field, such as an in vitro

spermatogonial cell culture system for primates. Therefore,
d spermatogonia and protect undifferentiated spermatogonias

atment in order to simulate reparation after chemotherapy.
togonia (ZBTB16+ cells) compared with Sertoli cells (SOX9+ cells) in
M, **p % 0.01, ns, non-significant.
BTB16+-double labeled apoptotic undifferentiated spermatogonia
) from six independent experiments. Error bars indicate mean ± SEM,

ith LOVA injection in order to estimate the prevention of chemo-

marker (ZBTB16) and Sertoli cell marker (SOX9) or apoptotic cell
usulfan with or without LOVA injection. Scale bars, 50 mm.
togonia (ZBTB16+ cells) compared with Sertoli cells (SOX9+ cells) in
M, *p % 0.05, **p % 0.01.
B16+-labeled apoptotic undifferentiated spermatogonia compared
om six independent experiments. Error bars indicate mean ± SEM,
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based on the study of a LOVA culture system in rodent, we

then made a preliminary attempt by applying LOVA in the

testicular organ culture, which was derived from monkeys

and humans with normal spermatogenesis. Immunofluo-

rescence analysis indicated that LOVA improves the main-

tenance of germ cells and undifferentiated spermatogonia

to varying degrees, with significant elevation of undifferen-

tiated spermatogonia in human samples, suggesting the

conserved role of LOVA acting on spermatogonia. Notably,

statins showed pleiotropic effects in cancer therapy

including great suppression on tumor growth, induction

of apoptosis in specific cancer cell types, and chemo-sensi-

tizing effects (Ahmadi et al., 2020; Clendening and Penn,

2012; Gopalan et al., 2013; Likus et al., 2016; Sadaria

et al., 2011; Yin et al., 2018). Given that statins

promote undifferentiated spermatogonia proliferation in

the defected testicular niche, we proposed statins hold

promise for future clinical application of repopulating

spermatogenesis.
EXPERIMENTAL PROCEDURES

Resource availability

Corresponding author

Further information and requests for resources and reagents

should be directed to and will be fulfilled by the corresponding

author, Xiao-Yang Zhao (zhaoxiaoyang@smu.edu.cn).

Materials availability
Not applicable.

Data and code availability

The accession number for raw data and processed data in this

article is GEO: GSE182897.
Human seminiferous tubule in vitro culture
Biopsies of human testicular tissue samples were obtained and

washed twice with PBS. The sample was dissociated into 2 mm

pieces by tweezer, put on 1% agarose gel, and then cultured with

SSC culture medium. In detail, StemPro-34 SFM (Invitrogen)

with its supplement and 1% knockout serum replacement
Figure 6. LOVA promotes the proliferation of in-vitro-cultured p
(A) Schematic outline of primate seminiferous tubule culture conditi
(B) Histogram calculation of the germ cell number in seminiferous tubu
SEM, ns, non-significant.
(C) Immunofluorescent staining of undifferentiated spermatogonia
prepuberty seminiferous tubule cultured tissue. Scale bars, 20 mm.
(D) Histogram calculation of the germ cell number in seminiferous tubu
SEM, *p % 0.05.
(E) Immunofluorescent staining of undifferentiated spermatogonia m
seminiferous tubule cultured tissue. Scale bars, 10 mm.
(F) Histogram calculation of the proportion of undifferentiated sper
ments. Error bars indicate mean ± SEM, *p % 0.05.
(G) Immunofluorescent staining of undifferentiated spermatogonia
seminiferous tubule cultured tissue. Scale bars, 20 mm.
(Thermo Fisher Scientific, A3181502) were added. The medium

were supplied with 0.1 mM NEAA; 1 mM sodium pyruvate;

2 mM GlutaMAX; 100 U/mL penicillin; 0.1 mg/mL streptomycin;

50 mM b-mercaptoethanol; 1 mL/mL DL-lactic acid; 1 3 minimal

essential medium (MEM) vitamin solution; 10 mg/mL biotin;

100 mM ascorbic acid; 60 ng/mL progesterone; 30 ng/mL b-estra-

diol; 6 mg/mL glucose; 5 mg/mL BSA; 1% N2 supplement;

20 ng/mL recombinant human GDNF (R&D Systems, 212-GD);

and 10 ng/mL recombinant human FGF2 (R&D Systems,

233-FB). 5 mM LOVA (TargetMol, T1207) or DMSO solvent was

added as necessary. The samplewas incubated at 34�C, and theme-

dium was changed every other day.
Cytokine array
Culturemedia of different SSC treatment conditionswere collected

from days 12 to 18, and all media were concentrated proportion-

ally to 1 m using a prechilled centrifugal. Forty cytokines were de-

tected according to the manufacturer’s instructions of Mouse

Inflammation Antibody Array Membrane (Abcam, ab133999).

Chemiluminescence imaging of all spots in the array membrane

was performed using blot documentation systems, and the signal

density of each spot was measured by densitometric analysis using

ImageJ. For background subtraction and normalization, the raw

numerical data of each spot were subtracted from the mean of

negative control spots then normalized based on the mean of pos-

itive control spots.
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