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Healthcare resources are published annually in repositories such as the AHA Annual Survey DatabaseTM. 
However, these data repositories are created via manual surveying techniques which are cumbersome 
in collection and not updated as frequently as website information of the respective hospital systems 
represented. Also, this resource is not widely available to patients in an easy-to-use format. Network 
analysis techniques have the potential to create topological maps which serve to aid in pathfinding for 
patients in their search for healthcare services. This study explores the topological structure of forty 
United States academic health center websites. Network analysis is utilized to analyze and visualize 
48,686 webpages. Several elements of network structure are examined including basic network 
properties, and centrality measures distributions. The Louvain community detection algorithm is used 
to examine the extent to which these techniques allow identification of healthcare resources within 
networks. The results indicate that websites with related healthcare services tend to form observable 
clusters useful in mapping key resources within a hospital system.

Background & Summary
Network analysis (NA) is an increasingly important means of visualizing digital information. NA is defined as 
the set of techniques that are used to depict and analyze the relationships and interactions among actors and to 
analyze the social structures that come from the recurrence of these relationships1. NA can aid in the process of 
describing systems composed of non-identical elements that have non-local and complex interactions. NA also 
allows further understanding of interactions ranging from those between websites to the interactions of proteins 
and genes at a molecular level2.

Understanding the architecture of healthcare websites can allow the general public to find pertinent and 
salient health information, including health service offerings available from hospital networks3. Determining the 
optimal architecture of a hospital websites represented as networks can lead to the development of more intuitive 
paths that online users take to search for critical health information. Also, network analysis of numerous hospi-
tal websites potentially opens the door for the establishment of an automated surveillance system of healthcare 
services availability across the US3. Manual surveys (such as that provided by the AHA Annual Survey) have 
historically been the primary means to understanding healthcare services in the US, but the automation of this 
kind of survey has occurred in other industries helping performance: recent analyses from the tourism industry 
demonstrate that studying hyperlink connectivity can result in the increased understanding of resource availa-
bility (American Hospital Association, 2022, Annual Survey Database section)4–6.

The development of NA on websites first began through natural text clustering analysis, which looked at 
certain defined metrics and how they connect different websites on the internet; these metrics include density, 
betweenness centrality, and eigenvector centrality7. Several metrics that relate to the development of the visu-
alization include the degrees of centrality, the betweenness centrality, the global clustering coefficient, and the 
average path length. Hyperlinks are quick connections between different websites along the World Wide Web 
(WWW)4. Through previous simulations, it was shown that hyperlinks provide direct connections in NA to 
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other parts of the webspace and improve the general visibility of clustering analysis. Hyperlinks also provide 
another dimension of network structure to analyze to understand the connections across the WWW beyond 
traditional webpage content scraping8. Hyperlink analysis has a sparse, centralized, and hierarchical structure 
that may be used to group websites based on the frequency of community interactions, among other possible 
analyses5.

This study focused on hospital websites, concentrating specifically on the hyperlink parameters of the clus-
tering coefficient, the modularity (community detection), assortativity (node similarity based on degree), and 
the reciprocity (tendency of node pairs to form connections with each other). This analysis has since been cor-
roborated by additional analyses by other organizations which look at the assortativity of hyperlinks and link 
strength6,9.

We propose the creation of a novel healthcare website analysis data repository in which healthcare organ-
izations would have their NA information collected in order to map the web structure and hyperlink activity 
between the organizations10. This would have the possibility of improving website functionality by (1) iden-
tifying key features of the website structure to characterize how users navigate between different webpages 
and (2) automate visualization of the healthcare services offered by different AMCs (AMC). To address the 
first aim, the proposed dataset contains the nodes and edges of webpages and hyperlinks between webpages 
respectively for different AMCs, allowing further study of how to optimize connectivity between webpages by 
adding new hyperlinks so that users can find health-related information intuitively through as few links as 
possible. Moreover, this dataset can help medical centers strategically market the online visibility of webpages 
of lesser-known services by increasing their connectivity to other webpages that users often must traverse while 
navigating through the website. To address the second aim, the visualization of the network topology of nodes 
and edges that represent website structure can be used to automate visualization of the services that an AMC 
offers. Further research into automatic plotting of healthcare services, such as mapping the geographic loca-
tions of different healthcare resources using hyperlink networks, can help patients find local resources. Future 
development of strategies to increase the connectivity and visibility of websites through characterization and 
optimization of hyperlink network topology has potential to reduce the time and knowledge necessary to find 
relevant healthcare information compared to traditional approaches based on webpage content analysis alone.

Methods
Sample selection.  This project focused on the websites of AMCs in the United States, consisting of the 73 institutions  
which were listed as members on the Association of Academic Health Centers (AAHC) website as of October 
25, 2021 (Association of Academic Health Centers, 2021)10. Websites corresponding to the primary teaching 
hospital associated with each AMC were identified and used in our analysis; these websites were crawled with 
either an unlimited depth (17 out of 73 websites) or a depth limit of three (23 of 73 websites), depending upon 
web domain size. Websites were excluded from analysis (33 of 73 websites) for one of two reasons: one, due to 
excessive web domain size that yielded data exceeding the processing capacity of the data analysis and visuali-
zation tools utilized (see Supplementary Table 1) or two, due to network security that prevented website crawl-
ing (The University of Tennessee Health Science Center and University of Oklahoma Health Sciences Center).  
These limitations can be addressed in future works that build upon the work done in this study.

Data collection and analysis.  All network analyses took place between January 20, 2022 to February 17, 2022.  
A database of webpage nodes and hyperlinks between nodes for each website was built using the Screaming 
Frog SEO web crawler tool (Screaming Frog, 2022, SEO section). A web crawler is a program which allows the 
user to index content within websites for analysis. Web crawling is designed to facilitate discovery of URLs, 
which contrasts from web scraping in which data is extracted from websites; examples of common web crawlers 
include Google Search and Microsoft Bing (Google Search, 2022; Microsoft Bing, 2022). In our study, URLs were 
gathered via web crawling in effort to study relationships between websites and did not include the extraction of 
copyrighted material.

The database created in this study contained each of the top-level URLs associated with each web page in our 
AMC dataset.

For example, a top-level domain, corresponding to a website’s homepage, may contain the URL: www.univer-
sityhospital.org. A subdomain, or internal link, of this web page may contain information regarding team mem-
bers and be associated with the URL: www.universityhospital.org/team. Other subdomains may also include 
topics such as care services provided, and location.

Included in this data extraction were internal links, inlinks and outlinks. Table 1 contains definitions of these 
terms. The internal links (i.e. subdomains) served as nodes, or endpoints in the network analysis. Inlinks are 
links between web pages on a single website: these serve as internal edges, or links that connect nodes inside the 
subgraph being analyzed. Outlinks serve as external edges, or links between nodes that are inside the subgraph 
and those outside.

Each top-level URL was inputted into the Screaming Frog SEO web crawler tool with an initial unlimited 
crawl depth, then refined to a limited crawl depth of three as necessary to limit total crawled URLs to 3,000 or 
less per NetworkX/Gephi data visualization restrictions (excessively large web domains were excluded from 
analysis, see Limitations section and Fig. 1 for details)10, thereby creating a topological map of the website which 
included its subdomains.

Secondary processing of the data included removing edges that led to “.css” or “.js” URLs, which real users do 
not directly interact with and are for purely stylistic and functional purposes, respectively.

The resulting network included 48,686 nodes (web pages) and 1,165,520 edges (links) between websites. 
Gephi was used for network visualization purposes, general analyses, and measuring network properties11. 
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For more detailed network analyses not available in Gephi, NetworkX was used, which is a Python language 
library package12. Several different network metrics were used in this study, including metrics for each node and 
summary metrics for the entire network. Node-specific metrics included betweenness centrality, Eigenvector, 
closeness, eccentricity, PageRank, and modularity. Network-wide metrics included total number of nodes, total 
number of edges, degree, average degree, network density, transitivity, average clustering, and diameter.

Analyses were performed at the global (network-wide) level and the individual node level. At the global level, 
the general structure and topology of the network was investigated. At the individual level, properties of the 
individual web page of one website were examined. The centrality metrics studied included betweenness, close-
ness, eigenvector, degree and clustering. The structural properties of each node, representing one web page, were 
described using the aforementioned centrality metrics. To identify the websites with the highest centrality met-
rics, we calculated the importance index as the normalized mean of the centrality measures. The top five AMC 
websites based on this metric were (in order): University of Utah Health Sciences Center, Augusta University, 
University of Miami, Midwestern University, and Tulane University Health Sciences Center.

Global network-wide metrics.  In order to gain a thorough understanding of the network, several 
network-wide analyses were conducted. These included total number of nodes, total number of edges, degree, 
average degree, network density, transitivity, average clustering, and diameter5,6. Regardless of which network 
property is studied, all must be examined in light of a network’s degree distribution5. In network analysis, the 
degree of a website represents the number of links the website has to other websites. In a directed network, 
the average node degree consists of in-degree (the number of incoming links to a website) and out-degree  
(the number of outgoing links from a website)6.

Network analysis of evolving networks has shown that many of these networks are scale-free13. A scale free 
network is a network whose degree distribution follows a power law pattern9. Regardless of the system and 
identity of its constituents, the probability P(k) that a node in a network interacts with k other nodes decays as a 
power law by factor of the Euler–Mascheroni constant, γ, as in Eq. (1)2.

~P k k( ) (1)γ−

Term Definition

Top-level domain corresponding to a website’s homepage. A primary domain encompassing a distinct subset of the internet (Oxford 
Languages, 2022).

Subdomain a subdivision of a primary domain. Synonymous with internal link. These websites serve as nodes, or endpoints in 
network analyses.

Inlink a link between web pages on a single website. A link that connects nodes inside a subgraph. Synonymous with 
internal edge.

Internal edge synonymous with inlink.

Outlink a link between nodes inside the subgraph being analyzed and those outside of it. Synonymous with external edge.

External edge synonymous with outlink.

Table 1.  Network topology terminology and definitions.

Fig. 1  Methodology for data crawling via Screaming Frog web crawler and subsequent visualization and 
analysis of data via Gephi and NetworkX. The final step of data visualization/analysis included a cleaning step 
ridding data of URLs containing “.css” and “.js” addresses.
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The degree distribution of a network, Pdeg(k), is defined as the fraction of the websites (or nodes, n) with 
degree k, as in Eq. (2).

P k
n k

n
( )

[ ( )]
(2)deg =

Previous literature has described the scale-free power-law distribution of many large networks as the conse-
quence of two generic mechanisms. One, networks expand continuously by the addition of new vertices; two, 
new vertices attach preferentially to sites that are already well connected2.

The density of a network is a metric that depicts the interconnectedness of the concepts14. In other words, 
density represents the ratio of the total number of all existing links to the total possible number of links in the 
network15. More specifically, network density is the number of links (or edges), m, among the nodes, n, divided 
by the number of possible links, as in Eq. (3)14.

=
−

Network density m
n 1 (3)

Clustering is defined as a function that organizes nodes based on a proximity measure, thereby grouping 
similar nodes in the same cluster and dissimilar nodes in different clusters16. Nuances in clustering analysis have 
been explored in past works16,17.

Individual node-specific metrics.  The analysis of the network was also concentrated at the level of each 
individual node. Measurements applied to each node included betweenness centrality, eigenvector, closeness 
centrality, eccentricity, PageRank and modularity.

Fundamental to the field of social network analysis are two concepts: centrality and prestige. Studies in this 
field have suggested that an actor’s (or node’s) prominence in a network should be measured by its direct ties, 
adjacent ties, and indirect paths involving intermediary nodes18. More specifically, the prominent nodes in a net-
work are the most visible and have extensive relationships with other nodes6. Centrality is measured in terms of 
closeness centrality, degree centrality, eigenvector centrality, betweenness centrality, and eccentricity9,19. Prestige 
is defined in terms of degree prestige, rank prestige and proximity prestige9.

Betweenness centrality, CB(i), is defined as the number of times a node, i, falls on the geodesic path between 
two nodes, s and t, where σst is the total number of shortest paths from node s to node t and σst(i) is the number 
of those paths that pass through node i; see Eq. (4)19.
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In other words, it is the amount of times “an actor connects pairs of other actors, who otherwise would not 
be able to reach one another”20. Betweenness centrality is based on the intermediary function of a node in the 
network, where a central node serves as a gatekeeper, thereby controlling the flow of resources between other 
nodes19. Closeness centrality is defined as the inverse of the sum of the distances of a node to all other nodes in 
a network, expressed as CC(v) in Eq. (5), where where d(v,t) is the length of the shortest path between vertices 
v and t21.

C v
d v t

( ) 1
( , ) (5)

C
v

=
∑

Closeness centrality can also be defined as a measurement of the proximity of a node to all other nodes in the 
network. A node is central if its distance to the other nodes in the network is short18.

Google’s PageRank is a query-independent algorithm that measures the static ranking of websites and is 
based on rank prestige9. PageRank22 is a variant of eigenvector centrality, and is based on the idea that highly 
ranked web pages are linked to other highly ranked web pages6. Eigenvector centrality, or prestige score, is a 
measure in graph theory that explains a node’s influence in a network23. The purpose of the eigenvector cen-
trality measure is to locate the most central nodes in the network24. The eigenvector centrality of a node is 
influenced not only by the number of links that point to the node in question, but also by the prestige of the 
nodes connected to it4. Alternatively, eigenvector centrality is a recursive way to define importance in networks 
and represents a form of directed network in which “in-links” denote greater power16. Eigenvector centrality is 
determined by the largest characteristic eigenvalue of the adjacency matrix21. If the centrality of vertex i is des-
ignated as xi, the effect of prestige is accounted for by making xi proportional to the average of the centralities of 
the network neighbors of i, where t is a vertex linked to vertex i; see Eq. (6).

x 1
(6)i t M i( )ε

λ
= Σ

where λ is an eigenvalue constant and M(i) is a set of neighbors of v. If defining the vector of centralities x = (x1, x2,…),  
this can be rewritten in matrix form as in Eq. (7), where A is the adjacency matrix corresponding with eigen-
value λ:

λ =x Ax (7)
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Equation (7) shows that x is an eigenvector of the adjacency matrix corresponding with eigenvalue λ. 
Understanding the aim of the centralities to be non-negative, λ must be the largest eigenvalue of the adjacency 
matrix with x representing the corresponding eigenvector (according to the Perron-Frobenius theorem)25.

Eccentricity is a measure that represents the shortest distance, or geodesic path, from a specific node to the 
farthest node in the network20. The largest eccentricity of a network is referred to as the diameter of the net-
work25. Modularity represents the number of edges, up to a multiplicative constant, that fall within groups minus 
the expected number of edges in an equivalent network with the edges being placed at random26.

Similar to the ‘salience indicator’, previous studies have considered an ‘importance index’ in an effort to high-
light the nodes with the highest centrality scores in a network6,27–29. This was defined as the geometric (or nor-
malized) mean of the various centrality metrics, x g , as in Eq. (8)6,27–29:

∏=
=( )x x (8)g i

n
i

n
1

1

Where n is the total number of values and xi (x2, x1,…, xn) are the individual numbers in the data set. The for-
mula is equivalent to what is displayed in Eq. (9)6,27–29.

× × . . . ×x x x (9)n1 2n

In other words, the geometric mean represents the nth root of the product of n values.

Data Records
All datasets presented in this Data Descriptor are stored at Figshare (https://figshare.com/projects/Academic_
Medical_Center_Network_Topology/137301). Individual datasets stored as comma separated values files are 
described below. The 40 AMCs and their top-level URL used for website crawling are recorded for reference30. 
The network topology datasets include information about the nodes representing web pages, internal edges rep-
resenting hyperlinks between web pages within one website, and external edges representing hyperlinks between 
web pages of different websites31.

In addition, individual node-specific metrics32 and global network-wide metrics33 are reported. The mean 
global network-wide metrics values are reported in Table 2. For each AMC website, static34 and interactive35 
visualizations of their network graphs constructed using nodes and internal edges were generated. Scatter plots 
and the associated plotted data36 were also generated to show the degree distribution of each of the 40 website 
network topologies.

Importance indices for all 40 AMC websites were analyzed. The importance index was calculated as the 
geometric mean of centrality metrics yielded from global network analysis, see Supplementary Table 2.

Academic medical center top-level URLs.  This dataset lists each AMC and respective website that was 
used as input for the web crawler. The information contained in this dataset is described in Table 3.

Academic medical center network graph data.  Each AMC website has one external edges 
comma-separated values (CSV) dataset, one internal edges CSV dataset, and one nodes CSV dataset. These data-
sets are described in detail in Tables 4–6 respectively.

	 1)	 External Edges
Hyperlinks between the AMC web pages with the same top-level URL and external websites that do not 
share the same top-level URL, see Table 4 for dataset description.

Global Properties Value

Type of network Undirected

Nodes 1217.15

Edges 29138

Number of connected components 1

Average degree 39.059

Density 0.05299

Average path length 2.619

Diameter 4.45

Average clustering coefficient 0.3431

Assortativity −0.5684

Modularity 0.009690

Number of communities 6.3

Reciprocity (see Limitations)

Transitivity 0.2932

Table 2.  Table of the mean of each global network metric across 40 AMC websites. See Limitations section 
regarding the reciprocity metric.

https://doi.org/10.1038/s41597-023-02104-3
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	 2)	 Internal Edges
Hyperlinks between two AMC web pages with the same top-level URL, see Table 5 for dataset descrip-
tion. Internal edges were used to construct the network graphs that visually represent each AMC’s website 
structure.

	 3)	 Nodes

Nodes representing each web page crawled starting from the AMC top-level URL, see Table 6 for dataset 
description.

Academic medical center node-specific metrics.  Each AMC website has one node-specific metrics 
CSV dataset. Table 7 lists descriptions of each of the node-specific centrality metrics included in these datasets.

Academic medical center network-wide metrics.  There is one CSV file that reports the network-wide 
metrics for each of the 40 AMCs included in this data presentation. Descriptions of these network-wide metrics 
are provided in Supplementary Table 3. The network-wide metric values for each of the 40 AMC websites are 
depicted in a bar graph format in Fig. 2. We observed a broad diversity in the 11 global network-wide metrics 
across the 40 different AMC website topologies included in this dataset, prompting further investigation into the 
functional importance of these differences on website usability.

We observed that the AMC website with relatively higher counts of nodes, representing webpages, also had 
relatively higher counts of edges, representing hyperlinks between these webpages. Moreover, we generally 
observed that the average degree of website networks were higher for websites with higher counts of nodes 
and edges. This suggests that websites with higher counts of webpages also have higher counts of total num-
bers of hyperlinks in the network and each webpage connects to a higher count of other webpages on average.  
In addition, we observed that diameter and average shortest path length of different AMC websites were gen-
erally similar across all website networks regardless of the number of webpages or the number of hyperlinks 
between webpages. Thereby, users of most AMC websites can usually expect to reach their target webpage from 

Column ID Column Name Description

A Academic medical center Full name of AMC

B Top-level URL URL of the AMC main website that was used as the starting input into the web crawler

Table 3.  Academic Medical Center Top-level URLs dataset description.

Column ID Column Name Description

A Source URL of the referring web page

B Target URL of the destination web page with a different top-level URL than the source

Table 4.  Variables in the external edges dataset associated with each AMC website.

Column ID Column Name Description

A Crawl Depth Number of hyperlinks between the web page and the top-level URL

B H1-1 First H1 heading on the web page

C H1-2 Second H1 heading on the web page

D H2-1 First H2 heading on the web page

E H2-2 Second H2 heading on the web page

F Last Modified Last date and time the web page was modified

G Meta Description 1 First meta description on the web page

H Meta Keywords 1 Meta keywords describing the topic of the web page

I Title 1 First page title on the web page

J Unique External Links Number of unique external outlinks from the web page

K Unique Inlinks Number of unique internal inlinks to the web page

L Unique Outlinks Number of unique internal outlinks from the web page

Table 6.  Variables in the nodes dataset associated with each AMC website.

Column ID Column Name Description

A Source URL of the referring web page

B Target URL of the destination web page with the same top-level URL as the source

Table 5.  Variables in the internal edges dataset associated with each AMC website.

https://doi.org/10.1038/s41597-023-02104-3
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the website homepage through a similar number of hyperlinks. Optimizing network metrics such as diameter 
and average shortest path length can reduce the number of links users need to traverse between webpages, help-
ing them find information more intuitively and faster. The detection of clusters of webpages, measured in part by 
network metrics such as transitivity, average clustering coefficient, assortativity, and modularity, can reveal the 
functional components of different AMC websites and how website structure has specialized to optimize how 
online users traverse different paths of hyperlinks that connect webpages to search for information. For instance, 
characterizing deficiencies in the connectivity and clustering of information found in webpages within an AMC 
website may motivate education of hospital administrators and website engineers about the importance of 
hyperlinks for patients to find information online and encourage them to design optimized hyperlink networks 
that intuitively guide patients towards information that they seek. Promotion of lesser known services offered by 
an AMC that otherwise might be overlooked, represented by a cluster of webpages on the AMC’s website, can be 
further marketed to the general public by increasing the connectivity of that cluster to other clusters of webpages 
within the website and important webpages with a high degree metric through the creation of new hyperlinks.

Grouping different AMC websites by their network-wide metrics can reveal what types of website topology 
structures may exist and draw similarities between different website structures. To achieve this aim, Fig. 3 por-
trays a two-dimensional uniform manifold approximation and projection (UMAP) plot of all of the 11 global 
network-wide metrics described in Supplementary Table 3 for each of the 40 AMC websites. AMC websites that 
cluster more closely together tend to have more similar global network-wide metrics associated with website 
topology structure compared to other websites that do not cluster together. The UMAP plot visualizes two clus-
ters of AMC websites distinguished by the 11 network-wide metrics that characterize the hyperlink topology 
of each website. For instance, we would expect that the metrics and associated hyperlink topology structure of 
VCU Health would be more similar to ETSU Health compared to Yale New Haven Hospital since VCU Health 
is closer in distance to ETSU Health on the UMAP plot. To generalize, we postulate that further clustering of 
academic medical websites based on global features of their hyperlink topology may yield insights into the pro-
totypical website structures that may relate to sociocultural or functional components of AMCs across the US. 
Thus, further study directions can identify (1) prototypical website hyperlink topology structures of AMCs and 
(2) correlations between sociocultural or functional components of AMCs and features of their website hyper-
link topology structure in order to guide the future purpose-built design of future AMC websites.

Academic medical center static network visualization.  Each AMC website has one static visual rep-
resentation of the network graph structure constructed using the nodes and internal edges datasets and saved as 
a PNG file. Nodes are sized based on their degree, where larger nodes with higher degrees have a greater number 
of edges that link to other nodes. Nodes are positioned using the Fruchterman-Reingold force-directed algo-
rithm for 50 iterations. Figure 4 provides two examples of a network topology graph visualization for two AMC 
websites.

Academic medical center interactive network visualization.  Each AMC website has one interactive 
visual representation of the network graph structure constructed using the nodes and internal edges datasets and 
saved as an HTML file. Nodes are colored based on their degree, where darker red nodes with higher degrees 
have a greater number of edges that link to other nodes. Nodes are positioned using the Fruchterman-Reingold 
force-directed algorithm for 100 iterations.

Limitations.  Data collection via Screaming Frog web crawler was limited by two main factors. First was the 
intrinsic web crawler capability: for example, the respective hospital websites for the University of Oklahoma 
Health Sciences Center and the University of Tennessee Health Science Center were unable to be crawled due to 
excessive size. Second was the intrinsic data visualization capacity: quantities of crawled links that exceeded 3,000 
URLs led to overwhelming of the subsequent attempted data visualization via NetworkX/Gephi. Thus, web crawls 
were adjusted to a limited depth of three to yield datasets that were able to be visualized: out of the 73 total AMCs 
websites, two were unable to be crawled (as aforementioned), 31 others were unable to be included in analysis due 
to excessive quantity crawled URLs, 23 websites were limited to a web crawl depth of three, leaving 17 websites that 

Column ID Column Name Description

A Node Web page URL

B Degree Number of connections to other nodes

C Betweenness Measure of centrality based on the number of shortest paths between any pair of nodes in the network that 
pass through the node

D Eigenvector Measure of centrality based on the number of connections between the node and other nodes with high 
relative eigenvector centrality scores.

E Closeness Measure of centrality based on the reciprocal of the sum of the short path lengths between the node and all 
of the other nodes in the network

F Eccentricity Maximum path length between the node and all of the other nodes in the network

G PageRank PageRank ranks nodes in the network based on the structure of incoming and outgoing hyperlinks to the 
node

H Clustering Clustering coefficient based on the proportion of all possible triangles in the network that pass through the 
node

Table 7.  Node-specific centrality metrics associated with web pages of each AMC website.

https://doi.org/10.1038/s41597-023-02104-3
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were able to be successfully crawled without a depth limit (for a detailed outline of this breakdown, please see Fig. 5)  
prior work has shown that pages on website depths exceeding three are less likely to be reached by users, thus, are 
less relevant in the context of information presentation, however this does inherently lead to limited representa-
tion of websites and domains30. While this study was not an exhaustive survey of hospital websites nor was it a 
comprehensive look into each website analyzed, future studies will look to expand the horizon of this endeavor in 
scope and depth of hospital websites.

With regard to the interpretation of results, further analysis of the ranking results in Table 2 was outside of 
the scope of this project. Future research may incorporate other metrics such as hospital size, budget for online 
presence and website maintenance to determine if this data is correlated with importance ranking. A reciprocity 
metric was not included in Table 2 given that the dataset in this project did not include directionality of edges, 
but rather considered them as links5.

Fig. 2  Bar graph of network-wide metric values for 40 academic medical center website network graphs. 
Eleven metrics are shown, including total number of nodes, total number of edges, average degree, density, 
diameter, average shortest path length, transitivity, average clustering, assortativity, modularity, and number of 
communities.
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For the Health Sciences Center at Prisma Health and University of Missouri-Columbia, unique URLs  
(uniform resource locators) to a primary teaching hospital were unable to be identified and subsequently 
analyzed; thus, the original website domain URL was utilized for scraping. Of note, since the time analysis 
was performed for this study, University of Miami, Georgetown University Medical Center, Louisiana State 
University Health Sciences Center - Shreveport, and The University of New Mexico Health Sciences Center are 
no longer AAHC members, but University of Miami and The University of New Mexico Health Sciences Center 
are included in this study. As well, Stony Brook University is now listed as an AAHC member but was not at the 
time of this analysis, and is thus excluded from this study.

Technical Validation
Regarding the degree distribution of networks in this study, we found that the coefficient of determination 
(R2) ranged between approximately 0.52 to 0.83 for a majority of the networks, with exponents between −0.56  
and −0.47 for the fitted power-law distributions. A few of the websites had a very low R2 value and did not 
demonstrate a scale-free behavior leading to a power-law distribution. Visual inspection of the networks showed 
it is likely that many of the degree distributions seem to be a mixture of smaller clusters of degree distributions. 
Each of these smaller clusters seem to follow a power-law form with different exponents. While interesting, this 
observation requires further investigation which is beyond the scope of the current work.

For the methodology of the paper, we focused on a subset of AMCs and ran the analysis for a period of three 
weeks. The bulk of the analysis involved crawling from the top-level URLs of the web page and extracting data 
that connected the websites to other medical websites, which mainly came in the form of links. These internal 
links from the websites served as the connections between nodes in the network and the outward links served as 
connections between the main website and other websites.

Regarding the future utility of the gathered data: we maintain that this study is a first step toward the develop-
ment of deeper and more comprehensive hyperlink network topology datasets that will hold even further utility. 
As well, we believe that conducting a smaller analysis with a different subset of ten medical centers would be val-
uable, as even a smaller subset would likely have similar eigenfeatures to our larger dataset which demonstrates 
the validity of the approach. In addition, conducting a reverse analysis in which we use the topological data 
provided from the initial calculations to map the connections shown on the actual hospital websites would also 
serve to further demonstrate the utility of this data. Looking within the components of the analysis, we would 

Fig. 3  Two-dimensional uniform manifold approximation and projection plot of the eleven network-wide 
metrics for 40 academic medical center websites. Website networks with a more similar set of metrics values will 
cluster more closely.
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propose doing a smaller analysis of our main dataset by dividing the medical centers into small groups of three 
centers. By doing the same calculations for the eigenfeatures, we would be able to calculate the differences of the 
subgroups relative to the large group dataset.

We would develop a positive and negative control for the comparison as well. The positive control would be 
the results that were previously gathered in our network analysis (Fig. 2) while the negative control would be a 
network analysis performed on a set of websites that did not have any connection to each other. We hypothesize 
the results from the positive control would show similar results to our initial network analysis and the negative 
control would demonstrate very low eigenvalues.

Next, we conducted a case study of community detection within the website network topology of University 
of Louisville Hospital website to show that subsets of web pages within one website network can be connected 
based on a common functional theme. Moreover, node-specific network metrics generated as part of the pro-
posed dataset, such as the modularity metric used in this case study, can be used to recapitulate communities of 
thematically-related web pages.

Fig. 4  Comparison of the network graph visualization of the a) number 1-ranked academic medical center 
website (University of Utah Health Sciences Center; 0.495) and b) number 40-ranked academic medical center 
website (The University of Iowa; 0.153) based on the Importance Index. Nodes in the network are colored based 
on their degree, where red-colored nodes have a greater number of edges that connect to other nodes and tend 
to be centrally located relative to black-colored smaller sized nodes with a fewer number of connected edges.

Fig. 5  Methodology for identifying academic medical centers, compiling data for their respective websites via 
Screaming Frog web crawler, then visualization/analysis of data via Gephi and NetworkX. The data set consists 
of any website that could be crawled by a crawl depth of at least 3 or more.
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From this validation case study, we detected 8 community clusters of nodes in the website topology of the 
University of Louisville Hospital website using Louvain clustering as shown in Fig. 6. From the 731 links on the hospital  
website analyzed for the validation, the cluster 0 had 63 webpages, the cluster 1 has 157 websites, the cluster 2 had 
42 websites, the cluster 3 had 137 websites, the cluster 4 had 8 websites, cluster 5 had 154 websites, cluster 6 had 159 
websites, and cluster 7 had 11 websites. Community clusters 0–3 had eccentricity values from 2–3 while clusters 4–7 
had an eccentricity value of 4. There were little changes of eccentricity values within communities. For the overall 
descriptive statistics, we see that the average degree of connectedness was 636.81694, the average betweenness value 
was 0.01957998, the average Eigenvector value was 0.37733584, the average closeness value was 3.45765027, and the 
average PageRank was 0.00136612. The median degree of connectedness was 0.01388889, the median betweenness  
value was 0.0096276, the median Eigenvector value was 0.33227273, the median closeness value was 4, and the median 
PageRank was 0.0002964. For the range of values, we see that the ranges for the degree of connectedness were 0–21781.5664,  
the ranges for the betweenness values were 0.0003413–0.10765595, the ranges for the Eigenvector values  
were 0.29547292–0.59673469, the ranges for the closeness values were 2–4, and the ranges for the PageRanks were 
0.00023279–0.01145176.

However, there were profile metrics in which eccentricity values across different communities were different. 
From cluster 0 to cluster 7, the eccentricity values rise from an average eccentricity value of 2.725 to an average 
of 4. Looking at the betweenness quantification, clusters 0 and 1 had values always greater than one. Conducting 
a t-test between cluster 0 and cluster 7, we calculated a p-value of 0.00265 in the quantification. This indicates a 
statistically significant difference in the quantification values between the clusters. The eigenvector values calcu-
lated generally decreased through the clusters, as the zeroth cluster had the higher average of eigenvectors while 
the seventh cluster had the lowest average. There were not any specific trends for PageRank or closeness values.

In network analysis, semantic grouping refers to the process of grouping webpages in a hyperlink network 
based on their thematic content, rather than their structural network relationships. The goal is to group nodes 
that have similar content together, allowing for a more meaningful representation of the data. To do so, we 
manually annotated different groups of webpages based on their shared themed content shown on the web-
page through consensus among the co-author team as a proof-of-concept approach to grouping webpages by 
semantic meaning. We identified the content theme that each webpage belonged to through triangulation across 
multiple raters for reliability. Future research directions can aim to automate the grouping of webpages by text 
content using natural language processing methods. Looking at the semantic relation between web pages within 
each community, we observed that cluster 0 and 1 were generally not directly related to University of Louisville 
Hospital website links. Clusters 2 through 7 are University of Louisville Hospital sub links to different webpages 
of the main website, which mainly includes payment lists for procedures. Some clusters had strong semantic 
groupings while others were connected by more generalized themes. For example, cluster 7 generally grouped 

Fig. 6  Network graph visualization of the University of Louisville academic medical center website. 
Community detection using Louvain clustering identified eight communities based on modularity.
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links that focused on the University of Louisville Hospital Trauma Center. Cluster 4 focused on the hospital’s 
financial statements and implementation strategies from different fiscal years while cluster 2 had its theme about 
maternal child health. Further study into how users travel across hyperlink paths between multiple web pages in 
each community or between different communities can reveal bottlenecks that can be optimized so that patient 
users can find the information they need more intuitively and conduct their search using fewer hyperlinks 
between different web pages.

Usage Notes
The network data of 40 AMC websites, each consisting of nodes and edges searched to a crawl depth of 3, 
may be used for several downstream analyses including (1) detection of network communities37 and network 
clustering as well as (2) comparative network analysis38. Network communities are useful to understand how 
a given website is organized, how users may potentially interact with related web pages, including which web 
pages may receive the highest traffic and how to efficiently optimize the different paths of websites that users 
take to seek desired information. For instance, characterizing the different communities of web pages within a 
website can help AMCs optimize their websites so that patient users can find related information on different 
pages more intuitively. Comparative network analyses, such as network alignment, can characterize similarities 
and differences between different network topologies. This may be useful in identifying which types of AMC 
website (sub)structures exist that are common to different centers. Intuitions from such comparative analysis 
can help us determine which structure is expected to be most effective at delivering content to their respective 
user demographics when paired with website traffic data.

Code availability
The code used to calculate the node-specific metrics, network-wide metrics, as well as static and interactive 
visualizations of each of the 40 AMC websites can be found at https://github.com/davidchen0420/Academic-
Medical-Center-Topology. The Jupyter notebook AMC_Topology_Metrics.ipynb describes the steps used to 
calculate the metrics as comments. To run the Jupyter notebook, installation of the Anaconda distribution of 
Python 3.8.0+ and required scientific packages listed in the notebook is needed. Example input data and expected 
output results are provided in example_data.zip in the GitHub. The example input data is a subset of 3 AMC 
website nodes and internal edges that can also be found in the Figshare repository (see Data Records).
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