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Summary
Background Inter-individual courses of multiple sclerosis (MS) are extremely variable. The objective of this study was
to investigate whether κ-free light chain (κ-FLC) index and serum neurofilament light (sNfL) have an additive pre-
dictive value for MS disease activity.

Methods Patients with early MS who had cerebrospinal fluid (CSF) and serum sampling at disease onset were
followed for four years. At baseline, age, sex, disease duration, number of T2-hyperintense (T2L), and contrast-
enhancing T1 lesions (CEL) on MRI were determined. During follow-up, the occurrence of a second clinical
attack and start of disease-modifying treatment (DMT) were registered. κ-FLC was measured by nephelometry,
and κ-FLC index calculated as [CSF κ-FLC/serum κ-FLC]/albumin quotient. sNfL was determined by single-
molecule array, and age- and body-mass-index adjusted Z scores were calculated.

Findings A total of 86 patients at a mean age of 33 ± 10 years and with a female predominance of 67% were included;
36 (42%) patients experienced a second clinical attack during follow-up. Cox regression analysis adjusted for age, sex,
T2L, CEL, disease and follow-up duration, and DMT use during follow-up revealed that both κ-FLC index as well as
sNfL Z score independently predict time to second clinical attack. The chance for freedom of relapse within 12
months was 2% in patients with high levels of κ-FLC index (>100) and high sNfL Z score (>3), 30% in patients
with high κ-FLC index (>100) and lower sNfL Z score (≤3), 70% in patients with lower κ-FLC index (≤100) but
high sNfL Z score (>3), and 90% in patients with lower levels of κ-FLC index (≤100) and sNfL Z score (≤3).

Interpretation κ-FLC index and sNfL Z score have an additive predictive value for early MS disease activity that is
independent of known predictors.

Funding This study was funded by a grant of the charitable foundation of the Austrian Multiple Sclerosis Society.

Copyright © 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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Introduction
Multiple sclerosis (MS) is a chronic inflammatory
immune-mediated disease of the central nervous system
(CNS) that mainly affects young adults and bears the
risk of physical and cognitive disability.1 Inter-individual
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courses of MS are extremely variable2 and weighing
benefits versus risks of disease-modifying treatment
(DMT) has become one of the main challenges for
neurologists counselling patients with MS.3 Since
criteria guiding treatment decisions are still
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Research in context

Evidence before this study
κ-Free light chain (κ-FLC) index and serum neurofilament
light (sNfL) are both biomarkers that indicate multiple
sclerosis (MS) disease activity.

Added value of this study
κ-FLC index and sNfL Z score predict time to second clinical
attack in patients with early MS not only in addition to

known clinical and paraclinical predictors but also
independent of each other.

Implications of all the available evidence
κ-FLC index and sNfL capture different pathophysiological
disease processes and, thus, increase the ability to predict
early MS disease activity. The combination of these biomarker
might take us one step closer to tailored medicine in MS.
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controversially debated, there is an urgent need of bio-
markers to predict disease activity.3,4 So far, the number
of brain MRI lesions and the presence of oligoclonal
bands (OCB) in the cerebrospinal fluid (CSF) imply
some prognostic value and are widely accepted.5

In recent years, κ-Free Light Chain (κ-FLC) as well as
Neurofilament Light (NfL) have evolved as emerging
biomarkers in MS. κ-FLC index which reflects intra-
thecal B cell activity shows a high diagnostic accuracy in
MS,6 has significant methodological advantages
compared to OCB detection,7 and also predicts early MS
disease activity independent of demographics, clinical
and MRI characteristics.8–12 Neurofilament Light (NfL)
mirrors axonal damage and also shows a good correla-
tion with MS disease activity already during early
course.13–18 Recent studies have now provided age- and
body-mass-index (BMI) adjusted Z scores for serum NfL
(sNfL) concentrations.19

While the predictive value of κ-FLC index and NfL
separately has been reported, there is to date no infor-
mation whether the combination of κ-FLC index and
sNfL, both reflecting different pathophysiological as-
pects of MS, i.e. inflammation and neuroaxonal dam-
age, show an independent and additive predictive value
for early MS disease activity, which was the aim of the
present study.
Methods
Study design
The design of this study has been described in detail
before.8 Briefly, patients of the MS clinic of the
Department of Neurology, Medical University of Inns-
bruck, who had a first demyelinating event of the central
nervous system, had CSF and serum collection for
routine diagnostic purposes at disease onset and
received the diagnosis of clinically isolated syndrome
(CIS) or relapsing remitting MS according to the
McDonald criteria 201720 were included and prospec-
tively followed over a period of 3–4 years.

At baseline, demographic characteristics (sex, age) as
well as clinical and paraclinical variables were assessed.
Clinical variables comprised disease duration (time be-
tween symptom onset and lumbar puncture), type of
symptoms and use of corticosteroid treatment.
Paraclinical variables were number of hyperintense le-
sions on T2-weigthed MRI (T2L), number of contrast-
enhancing lesions on T1-weighted MRI (CEL), and
main CSF findings including OCB status.

During follow-up, the occurrence of a second clinical
attack (i.e. conversion to clinically definite MS, CDMS)
and start of DMT were registered. Clinical visits were
arranged at the treating physician’s discretion, usually
every three to six months but at least once a year. At
each visit, disability status was assessed by the Expanded
Disability Status Scale (EDSS).21

Primary endpoint
The endpoint of the study was the time to second clin-
ical attack. A clinical attack was defined as a monophasic
clinical episode with patient-reported symptoms and
objective findings reflecting a focal or multifocal in-
flammatory demyelinating event in the CNS, developing
acutely or subacutely, with a duration of at least 24 h in
the absence of fever or infection.20

κ-FLC assay and calculation of intrathecal FLC
synthesis
κ-FLC concentrations in CSF and serum samples were
analyzed as part of the previous study8 by nephelometry
using Behring ProSpec with the serum FLC immuno-
assay (N Latex FLC kappa assay, Siemens, Erlangen,
Germany) according to the manufacturer’s instructions.
κ-FLC concentrations were detected by latex-conjugated
monoclonal antibodies to epitopes that are exposed
when κ-FLC circulate freely.22,23

Intrathecal synthesis of κ-FLC was determined as
previously published24,25 by following formula consid-
ering serum κ-FLC concentrations and blood–CSF–
barrier function.

κ−FLC index = κ−FLCCSF / κ−FLCSerum

AlbuminCSF / AlbuminSerum

A κ-FLC index >6.1 denoted presence of an intra-
thecal κ-FLC synthesis (termed as ‘positive’), a κ-FLC
index ≤6.1 denoted absence of an intrathecal synthesis
(termed as ‘negative’).6 A κ-FLC index >100 was
considered as ‘high’, a κ-FLC index >6.1 and ≤100 was
considered as ‘moderately elevated’.8
www.thelancet.com Vol 91 May, 2023
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NfL assay and calculation of serum Z scores
NfL was measured in CSF and serum using the Simoa
Nf-light kit and provided consumables in the Simoa
SR-X Analyzer (Quanterix, Lexington, MA, USA).26 The
NfL assay was performed according to the manufac-
turer’s instructions and protocol, as previously
described.27 All samples were measured under blinded
conditions at the Medical University of Vienna,
Department of Neurology.

As sNfL concentrations increase with age and
decrease with BMI under physiological conditions, we
calculated age- and BMI-adjusted Z scores. This allows
to quantify the deviation of each patient’s individual
sNfL value in comparison to control persons of the same
age and BMI, based on a recently published reference
database.19 Z score >1.5 was defined as elevated (termed
as ‘positive’), Z score ≤1.5 was defined as ‘negative’. A Z
score >3 was considered as ‘high’, a Z score >1.5 and ≤3
was considered as ‘moderately elevated’.

Primary research question
Does the combination of κ-FLC index with sNfL Z score
in patients with early MS increase the ability to predict
the time to second clinical attack?

Statistical analysis
Statistical analysis was performed using R software.28

Distribution of data was assessed by Kolmogorov–
Smirnov test and data were displayed as mean ±
standard deviation, or as median and interquartile range
(IQR). For group comparisons, Mann-Whitney-U test,
χ2 test or Fisher’s test were applied, as appropriate.
Spearman correlation coefficient (r) was used for
correlation analysis.

To identify predictors of the time to second clinical
attack, Cox regression was employed including the in-
dependent variables that statistically significantly
differed between patients who converted to CDMS and
patients who remained stable during follow-up (non-
converters), i.e. sex, disease duration, follow-up dura-
tion, T2L, CEL (Table 1), as well as the variables of
interest, i.e. κ-FLC index, sNfL Z score or CSF NfL.
p-values <0.05 were considered statistically significant.
Age almost reached the level of statistical significance
(p = 0.051) and thus, also due to findings of previous
studies,5 was included. Additionally, start of DMT was
considered, as a potential impact on time to second
clinical attack cannot be definitely excluded.

Non-linearity in relationship between the log-hazard
and the covariates was checked with martingale re-
siduals and LOWESS smoother29 Existence of influential
observations or outliers was examined with a Jackknife
procedure, and the proportional hazards assumption
was tested by χ2 test.30 For model quality Cox and Snell’s
pseudo R2 and the concordance were used.

To visualize the effects, we computed the estimated
Cox regression survival probabilities separately for each
www.thelancet.com Vol 91 May, 2023
of the possible combinations of negative/positive κ-FLC
index and negative/positive sNfL Z scores. The median
of these high and low values were used to plug into the
estimated Cox regression and to compute the graph.
The parameters T2L, CEL, disease duration, and follow-
up duration were fixed at their median values, age at the
mean value; for the categorical variables no DMT and
female sex were used.

For further visualization, we categorized patients
according to the extent of biomarker elevation: κ-FLC
index ≤100 and sNfL Z score ≤3, κ-FLC index >100 and
sNfL Z score ≤3, κ-FLC index ≤100 and sNfL Z score
>3, κ-FLC index >100 and sNfL Z score >3. For a finer
stratification, we also used 3-level categories, i.e. com-
bined κ-FLC index ≤6.1, 6.1< κ-FLC index ≤100, κ-FLC
index >100 each with sNfL Z score ≤1.5, 1.5< sNfL Z
score ≤3, sNfL Z score >3.

A post-hoc power analysis for Cox regression with
binary and non-binary covariates was computed31: the
type one error rate was fixed at 5%, the sample size
at 86, the standard deviation of the κ-FLC index
(sNfL Z score) was set as 50,1 the square of the
multiple correlation coefficient between the κ-FLC
index (sNfL Z score) and the other covariates as 0.2
(no high multiple correlation), proportion of subjects
having a second clinical attack as 0.4, the postulated
hazard ratio of κ-FLC index (sNfL Z score) as 1.011
from our prior analysis8 (1.7, with the assumption
that the sNfL Z score has a similar predictive capa-
bility as κ-FLC index and considering the different
scales of both variables). With these settings a power
for κ-FLC index (sNfL Z score) of 89.0% (87.3%) was
computed.

Sensitivity analyses were performed regarding to the
use of DMT, the type of disease manifestation and the
administration of corticosteroids before lumbar punc-
ture. Robustness of findings considering missing values
were checked by leaving corresponding co-variates out
of the Cox regression.

Ethics
The study was approved by the ethics committee of the
Medical University of Innsbruck (approval number
1244/2019). Written informed consent was obtained
from all patients.

Role of funders
This study was funded by a grant of the charitable
foundation of the Austrian Multiple Sclerosis Society.
The Funder had no role in study design, data collection,
data analyses, interpretation, or writing.
Results
A total of 86 patients at a mean age of 33 ± 10 years with
a female predominance of 67% were included into the
study. Most patients showed a monofocal syndrome
3
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Total Non-CDMS converter N CDMS converter n P value

Baseline

Age (years), mean ± SD 33 ± 10 35 ± 11 50 31 ± 8 36 0.051f

Sex (female), n (%) 59 (67) 29 (58) 50 30 (83) 36 0.018g

Monofocal syndrome, n (%) 82 (95) 48 (96) 50 34 (94) 36 0.735g

Optic neuritis, n (%)a 25 (29) 13 (27) 48 12 (35) 34 0.426g

Myelitis, n (%)a 37 (43) 24 (50) 48 13 (38) 34 0.292g

Brainstem/cerebellum, n (%)a 19 (22) 10 (21) 48 9 (26) 34 0.551g

Other cerebral symptom, n (%)a 1 (1) 1 (2) 48 0 (0) 34 0.397g

Disease duration (days)b 13 (5–38) 18 (7–60) 50 8 (3–21) 36 0.006h

No corticosteroid treatment before LP, n (%) 55 (70) 34 (77) 44 21 (60) 35 0.357g

Brain MRI

Number of T2 hyperintense lesions 10 (3–17) 8 (3–15) 47 10 (7–20) 33 0.044h

Number of T1 contrast-enhancing lesions 1 (0–2) 0 (0–1) 44 2 (0–3) 27 0.003h

Dissemination in space, n (%)c 58 (73) 31 (66) 47 27 (83) 33 0.135g

Dissemination in time, n (%)c 39 (55) 19 (43) 44 20 (76) 27 0.014g

Field strength (1.5 T), n (%) 69 (86) 39 (83) 47 30 (91) 33 0.311g

Cerebrospinal fluid analysis

RBC count (/μl) 0 (0–2) 0 (0–8) 48 0 (0–1) 35 0.552h

WBC count (/μl) 5 (3–12) 5 (3–12) 48 6 (3–12) 35 0.644h

Oligoclonal IgG bands, n (%) 77 (90) 43 (86) 50 34 (94) 36 0.207g

CSF κ-FLC (mg/l) 1.91 (0.68–4.99) 1.75 (0.67–3.78) 50 2.79 (0.74–6.67) 36 0.093h

Serum κ-FLC (mg/l) 11.60 (9.47–15.50) 11.40 (9.53–15.50) 50 11.75 (9.22–15.35) 36 0.920h

CSF NfL (pg/ml) 895 (475–1704) 752 (476–1261) 47 1226 (444–2140) 34 0.177h

Serum NfL (pg/ml) 13.8 (8.4–22.7) 12.6 (8.3–18.4) 45 18.7 (9.1–30.4) 33 0.040h

Fulfillment of McDonald criteria 2017 at baseline, n (%) 61 (76) 33 (70) 47 28 (85) 33 0.130g

Follow-up

Follow-up duration (months) 47 (38–48) 43.6 (35.5–48.0) 50 47.9 (47.0–48.9) 36 <0.001h

Disease modifying treatment

DMT start before second attack in CDMS converter, or until
end of FU in non-CDMS converter, n (%)

20 (23) 11 (22) 50 9 (25)d 36 0.745g

Time to DMT start (months) 7.0 (3.7–8.4) 7.4 (3.0–11.2) 11 6.9 (3.8–7.9) 9 0.824h

Duration of DMT before second attack (months) 9.0 (5.5–12.6) 9

Clinical attacks

Time to second attack (months)e 11.4 (5.1–23.2) 36

Time to second attack in treated patients (months)e 18.0 (13.7–24.3) 9

Time to second attack in non-treated patients (months)e 10.6 (3.1–22.1) 27

Number of attacks until end of FU 0 (0–2) 2 (1–3) 36 <0.001h

Disability

EDSS score ≥3.0 at yr 1, n (%) 3 (4) 2 (5) 44 1 (3) 31 0.774g

EDSS score ≥3.0 at yr 2, n (%) 6 (9) 2 (6) 36 4 (13) 32 0.314g

EDSS score ≥3.0 at yr 3/4 (LCF), n (%) 7 (8) 2 (4) 50 5 (15) 34 0.081g

Data are shown as median and interquartile range unless specified otherwise. CDMS, clinically definite multiple sclerosis; CSF, cerebrospinal fluid; DMT, disease-modifying treatment; EDSS, Expanded
Disability Status Scale; FLC, free light chain; FU, follow-up; LCF, last carried forward; LP, lumbar puncture; MRI, magnetic resonance imaging; NfL, Neurofilament Light; Qalb, CSF/serum albumin quotient;
RBC, red blood cell; SD, standard deviation; WBC, white blood cell. aFrequencies (%) are shown for patients with monofocal syndrome only. bDisease duration is the time between disease onset and lumbar
puncture. cDissemination in space and time was demonstrated by MRI as defined in Thompson et al. Lancet Neurology 2018; 17 (2):162–173. dDMT administered before the occurrence of a second clinical
attack comprised intramuscular Interferon-β-1a (n = 4), glatiramer acetate (n = 2), dimethyl fumarate (n = 1), and consecutively given teriflunomide, dimethyl fumarate (n = 1) as well as glatiramer acetate,
dimethyl fumarate (n = 1). eTime is calculated from disease onset. fIndependent t test was applied. gPearson Chi quadrat or Fisher’s test were applied. hMann Whitney U test was applied.

Table 1: Demographic, clinical, MRI and CSF characteristics.
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with myelitis (43%), followed by optic neuritis (29%),
brainstem/cerebellar syndrome (22%) or other topog-
raphy (1%). OCB were positive in 90% of patients.
During follow-up of median 47 months, 36 (42%) of 86
patients converted to CDMS. Twenty (23%) of 86 pa-
tients received early DMT, between disease onset and
the date of conversion to CDMS for converters, or dur-
ing follow-up for non-converters. Of 84 patients with
available EDSS data at follow-up, 7 (8%) reached an
EDSS score of 3.0. Detailed demographic and clinical
characteristics, CSF and MRI findings are displayed in
Table 1.
www.thelancet.com Vol 91 May, 2023
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κ-FLC index and sNfL Z score are increased in
patients who convert to clinically definite multiple
sclerosis
At baseline, κ-FLC index had a median of 36.5 (IQR
15.8–83.1) and was denoted positive in 76 (88%) of 86
patients. sNfL showed a median concentration of
13.8 pg/ml (IQR 8.4–22.7); the median age- and BMI-
adjusted sNfL Z score was 2.06 (IQR 0.95–2.87) and
was considered positive in 52 patients. CSF NfL had a
median of 895 pg/ml (IQR 475–1704).

κ-FLC index, sNfL, sNfL Z score and CSF NfL
showed a correlation with CEL and T2L on MRI as
shown in Fig. e-1 and Fig. e-2. κ-FLC index statistically
significantly correlated with CSF white blood cell (WBC)
count (r = 0.53, p < 0.001), while NfL levels did not
(sNfL: r = −0.04, sNfL Z score: r = −0.005; CSF NfL:
r = 0.20; each p > 0.05). Correlation between CSF NfL
and sNfL is shown in Fig. e-3. There was no correlation
between κ-FLC index and NfL levels (sNfL: r = −0.05,
sNfL Z score: r = −0.05; CSF NfL: r = −0.0003; each
p > 0.05). Correlation between κ-FLC index and sNfL
Z score is shown in Fig. e-4.

κ-FLC index and sNfL Z score were statistically
significantly elevated in patients who converted to
CDMS during follow-up as compared to non-converters
(Fig. 1). For absolute sNfL and CSF NfL concentration
we refer to Fig. e-5.

High κ-FLC index and high sNfL Z score are
associated with shorter time to clinically definite
multiple sclerosis
To investigate whether κ-FLC index and sNfL Z score
predict the time to CDMS conversion, multivariable Cox
regression model including age, sex, number of T2L,
number of CEL, disease duration and follow-up dura-
tion as well as the administration of DMT during follow-
A B

Fig. 1: Increased κ-FLC index and sNfL Z score in patients who convert to
who convert to CDMS (n = 36) during 4-year follow-up compared to pati
significantly higher in patients who convert to CDMS (n = 33) during 4-ye
Mann–Whitney U test was used for group comparison. CDMS, clinically de
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up was performed. Both, κ-FLC index and sNfL Z score,
were independent risk factors for the time to CDMS
conversion (Table 2). For univariate analyses see
Table e-1. κ-FLC index had a hazard ratio (HR) of 1.23
per increase of κ-FLC index by 10 (p < 0.001), i.e. an
increase of κ-FLC index by 10 means a 23% higher risk
for conversion to CDMS. sNfL Z score had a HR of 1.08
for an increase in the Z score by 0.1 (p = 0.003), i.e. an
increase of the sNfL Z score by 0.1 indicates an 8%
higher risk for CDMS conversion (Table 2). The prob-
ability for a second clinical attack and freedom thereof
showed a stepwise increase depending on whether one
or both biomarkers were positive (Fig. 2).

Stratification of patients by the extent of biomarker
elevation further showed a stepwise relapse probability.
The chance for freedom of relapse within 12 months
was 2% in patients with high levels of κ-FLC index
(>100) and high sNfL Z score (>3), 30% in patients with
high κ-FLC index (>100) and lower sNfL Z score (≤3),
70% in patients with lower κ-FLC index (≤100) but high
sNfL Z score (>3), and 90% in patients with lower levels
of κ-FLC index (≤100) and sNfL Z score (≤3)
(Table e−2). Estimated median time to second clinical
attack was 25 months in patients with low κ-FLC index
but high sNfL Z score, 17 months in patients with high
κ-FLC index but low sNfL Z score, and 3 months in
those with high levels of both biomarkers. For a finer
stratification of probabilities for freedom of relapse, we
refer to Table 3.

The distribution of κ-FLC index and sNfL Z score
values and the absolute number of patients within
negative, positive, low and high biomarker categories
are shown in Fig. e-6.

Various sensitivity analyses support the robustness
of our findings. Cox regression analyses without DMT
(Table e-3), or considering also the type of disease
CDMS. (A) κ-FLC index at baseline is significantly higher in patients
ents who remain relapse-free (n = 50). (B) sNfL Z score at baseline is
ar follow-up compared to patients who remain relapse-free (n = 45).
finite MS; κ-FLC, κ free light chain; sNfL, serum neurofilament light.
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Coefficient Standard error Hazard ratio 95%-CI P value

Age (years) −0.051 0.032 0.950 0.892–1.012 0.109

Sex (ref: male) 0.462 0.650 1.587 0.443–5.677 0.478

Disease duration (days) −0.024 0.010 0.976 0.957–0.996 0.018

Follow-up duration (months) 0.204 0.079 1.226 1.050–1.433 0.010

Number of T2 hyperintense lesions −0.021 0.013 0.979 0.955–1.004 0.099

Number of T1 contrast-enhancing lesions −0.096 0.219 0.909 0.592–1.395 0.661

DMT administration 0.427 0.732 1.532 0.365–6.438 0.560

κ-FLC index 0.021 0.006 1.021 1.010–1.032 <0.001

sNfL Z score 0.784 0.268 2.191 1.300–3.706 0.003

Cox and Snell’s pseudo R2 = 0.481. Concordance = 0.834 (SE = 0.047). Disease duration was the time between symptom onset and lumbar puncture. Age was determined
at the time of lumbar puncture. Number of MRI lesions were also determined at baseline. Follow-up duration was the time between disease onset and the last clinical visit.
DMT administration was determined until occurrence of second clinical attack or end of follow-up, respectively. Model quality: Covariates were properly included (no
necessity for non-linearity). No influential observations were detected (Jackknife procedure revealed that after excluding each patient once all estimates were within the
95%-CI of the estimates of original patient cohort). Proportional hazards assumption was met (χ2 = 11.267, p = 0.258). CI, confidence interval; DMT, disease-modifying
treatment; FLC, free light chain; MRI, magnetic resonance imaging; sNfL, serum neurofilament light.

Table 2: Cox regression analysis identifiying κ-FLC index and sNfL Z score as predictors for time to second clinical attack.
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manifestation (Table e-4), or the administration of cor-
ticosteroids before lumbar puncture (Table e-5), or
storage time (Table e-6) as additional independent con-
trol variable consistently showed an effect of κ-FLC in-
dex and sNfL z score (with similar estimated
coefficients). Cox regression including only a priori
known variables as well as relapse free probabilities
based on this model are given in Table e-7. As supple-
ment, the results of the Cox regression including CSF
NfL (together with κ-FLC index) are shown in Table e-8.
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Fig. 2: Probability of clinically definite multiple sclerosis over 4 years.
The probability of developing a second clinical attack during the
4-year follow-up period is shown separately for each of the possible
combinations of positive/negative κ-FLC index and sNfL Z score.
κ-FLC, κ free light chain; sNfL, serum neurofilament light.
Discussion
In this study, we demonstrated that the combination of
κ-FLC index and sNfL Z score determined at the time of
diagnostic lumbar puncture in patients with a first CNS
demyelinating event predict the time to a second clinical
attack, that is conversion to CDMS, independent of
other prognostic factors including load and activity of
brain MRI lesions as well as independent of adminis-
tered DMT. For the first time, we showed that the
prognostic values of these two biomarkers are not only
additive to known clinical and paraclinical predictors but
also independent of each other.

κ-FLC index and sNfL Z score reflect the two main
pathophysiological processes of MS, i.e. inflammation
and neuroaxonal damage, both of which occur already in
the very early disease course.32 κ-FLC are intrathecally
produced in approximately 90% of MS patients.6 We and
others have shown that κ-FLC index correlates with MRI
activity and CSF white blood cell count at disease
manifestation and that κ-FLC index is prognostic for
conversion to CDMS.7–9 Similarly, several studies re-
ported a correlation of sNfL with MRI activity at base-
line15,33 as well as a prognostic value for conversion to
CDMS during follow-up.13,19 In contrast to κ-FLC index,
a correlation of sNfL with CSF white blood cell count
was not observed.

This indicates that each of the two biomarkers shows
a similar pattern of association with other baseline co-
variables and clinical endpoints; however, we did not
find a correlation between sNfL Z score and κ-FLC index
(r = −0.05). This is of interest, as one might hypothesize
that if κ-FLC index correlates e.g. with MRI CEL and
MRI CEL with sNfL Z score, κ-FLC index should also
correlate with sNfL Z score. As this is obviously not the
case in our cohort, one might speculate that κ-FLC index
and sNfL Z score reflect—at least to some extent—
different patient (sub) groups and/or different aspects of
www.thelancet.com Vol 91 May, 2023
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The probability (and 95%-confidence interval) of staying relapse-free within 12 months after disease onset is given for each of the possible combinations of negative,
elevated and highly elevated κ-FLC index and sNfL Z score. Number of clinical attacks and patients per category are given from left to right and top to bottom: 0/3, 1/5, 0/2,
4/13, 11/31, 5/7, 4/8, 3/4, 3/3. κ-FLC, κ free light chain; sNfL, serum neurofilament light.

Table 3: Relapse free probability at 12 months depending on κ-FLC index and sNfL Z score estimated by Cox regression.
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pathophysiology. Recent studies made similar observa-
tions reporting an independent predictive value of OCB
and sNfL concentration.13,34 Further studies including
higher number of patients are needed to investigate how
patients differ between a more inflammatory (i.e. high
κ-FLC index, low sNfL Z score) and a more ‘destructive’
(i.e. low κ-FLC index, high sNfL Z score) type in terms
of clinical and paraclinical characteristics.

In clinical practice, improvement of risk stratification
in early MS is of high importance. By using a multi-
variable analysis, we identified the independent prog-
nostic effect of κ-FLC index and sNfL Z score weighing
their impact on the outcome in comparison with the
remaining baseline characteristics representing the
available arsenal of clinical and paraclinical predictors.
Using this representative cohort of patients with a first
demyelinating CNS event, we showed that the combi-
nation of both biomarkers led to a powerful risk strati-
fication. While elevation of either κ-FLC index (>100) or
sNfL Z score (>3) showed only a probability of approx-
imately 20–30% for further relapse within 12 months,
the additive effect of both biomarkers allowed the
identification of high risk patients. Patients with
elevated κ-FLC index and sNfL Z score had a risk of 98%
for relapse within 12 months, while patients with
negative levels of both biomarkers had a risk of less than
5%. Such a reliable identification of patients at risk for
early MS disease activity would have a high impact on
daily clinical routine. Patients at high risk could be
advised to start DMT early and even use highly effective
DMT. There is evidence that the time to the second
attack has a prognostic impact on long-term disability35,36

and that early treatment not only delays second clinical
attack but much more importantly disability
progression.37–44 Conversely, there is a certain propor-
tion of patients who shows a mild disease course,
www.thelancet.com Vol 91 May, 2023
probably identified by both low or normal κ-FLC index
and sNfL Z score, who may not need a potentially
harmful, psychologically distressing and, last but not
least, costly DMT.

Interestingly, disease duration differed between pa-
tients who converted to CDMS and non-converters
(median 8 versus 18 days). One might hypothesize
that shorter disease duration, i.e. shorter time period
between symptom onset and CSF/serum sample with-
drawal, might be linked to severity of onset symptoms.
And, the latter might be another surrogate for (further)
disease activity. However, as we did not have the in-
formation on onset severity, this consideration remains
speculative. Including severity of symptoms as well as
the degree of remission might be informative co-
variables in future studies on κ-FLC index and sNfL Z
score.

There are some limitations to this study. First, not all
CSF and serum samples were collected before admin-
istration of corticosteroids. Although it has been
recently shown that high-dose corticosteroids did not
affect κ-FLC index,45 evidence on sNfL is still lacking.
However, in the present study, the proportion of pa-
tients with corticosteroid treatment before lumbar
puncture did not differ between patients who converted
to CDMS and non-converters. Corticosteroid treatment
as independent variable as well as its interaction effect
with κ-FLC index and sNfL Z score in the regression
analysis did not reveal any impact on the time to CDMS
conversion nor on both biomarker estimates. The κ-FLC
index and sNfL Z score were comparable between the
groups (Fig. e-7). Nevertheless, it has to be stated that an
effect of corticosteroids cannot be ultimately excluded
due to the limited number of patients. Secondly, we
measured κ-FLC and NfL concentrations out of frozen
and thawed CSF and serum samples after medium-term
7
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storage at −80 ◦C. However, no relevant effect of
freezing has been reported for κ-FLC46 as well as for
NfL.47 Also, adding storage time to the multivariable Cox
regression model did not change the overall result
(Table e-6). In our study, we used the time to second
clinical attack as endpoint, and a clinical attack had to be
confirmed by a physician. We are aware of the fact that
non-confirmed clinical attacks might have occurred,48

which means that results could be biased. Further
studies on the two biomarkers for prediction of MS
disease activity should consider different definitions of
clinical attacks. At this point, we also have to state that
although we achieved statistically significant hazard ra-
tios for both the κ-FLC index and sNfL Z score, the
number of patients and the number of events (i.e.
clinical attacks during follow-up) were small. This
means that results that are not statistically significant
(e.g. MRI parameters) might still have an impact.

This study provides evidence that κ-FLC index and
sNfL Z score are additive prognostic biomarkers in MS
that capture different pathophysiological processes and
might take us one step closer to tailored medicine in
MS. Further studies in a multicenter setting including a
higher number of patients are required to replicate the
additive prognostic value of κ-FLC index and sNfL Z
score.
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