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Abstract

Whole slide images (WSI) based survival prediction has attracted increasing interest in pathology. 

Despite this, extracting prognostic information from WSIs remains a challenging task due to their 

enormous size and the scarcity of pathologist annotations. Previous studies have utilized multiple 

instance learning approach to combine information from several randomly sampled patches, but 

this approach may not be adequate as different visual patterns may contribute unequally to 

prognosis prediction. In this study, we introduce a multi-head attention mechanism that allows 

each attention head to independently explore the utility of various visual patterns on a tumor 

slide, thereby enabling more comprehensive information extraction from WSIs. We evaluated our 

approach on four cancer types from The Cancer Genome Atlas database. Our model achieved an 

average c-index of 0.640, outperforming three existing state-of-the-art approaches for WSI-based 

survival prediction on these datasets. Visualization of attention maps reveals that the attention 

heads synergistically focus on different morphological patterns, providing additional evidence for 

the effectiveness of multi-head attention in survival prediction.
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1. Introduction

Each year, nearly 2 million people living in the United States are diagnosed with cancer; 

one-third of these patients will die within five years1. The accurate and timely prediction 

of patient survival is crucial for shared clinical decision-making, treatment planning, 

and patient psychological adjustments2. While both host- and environment-related factors 

can affect the survival of the cancer patient, the tumor itself is the most fundamental 

prognostic factor3. Pathological examination is a routine procedure at the time of diagnosis 

to determine the type and malignancy of tumors. Moreover, the histopathological features 

of cancer, including tumor size, lymph node involvement, and metastasis, are commonly 

used in survival prediction models4,5, proving the prognostic value of morphological 

features of tumors. However, the massive amount of information in histology slides presents 

formidable challenges. Manual information extraction from the microscopic examination is 

time-consuming, and the amount of information structurally collected in pathology reports 

is often limited to predetermined criteria and may vary by cancer types6,7. There has been 

a strong need for a tool to maximize the utility of histopathological features and to make 

accurate prognosis predictions for cancer patients.

To solve this problem, a growing body of work has focused on applying deep learning 

methods for predicting prognosis using whole-slide images (WSIs) 8–15. WSIs are the 

digitized versions of the complete microscope slides scanned at high resolution. A typical 

WSI can occupy several gigabytes of storage and contain billions of pixels, while the 

lesions may only cover a small region on the whole slide. Considering all regions with 

equal importance could miss the areas that are critical for prognosis. It has been reported 

that incorporating region-of-interest (ROI) annotations on WSIs could improve prognosis 

prediction performance16; however, such annotations require extensive time and expertise 

and are usually not readily available. Furthermore, prognostic information is not confined 

to tumor tissues. Lymphocyte aggregation, angiogenesis, and stroma are all found to be 

related to cancer progression and prognosis14,17–19. The lack of meaningful ROI annotations 

on WSIs limits the application of machine learning prognostic tools in clinical practice. 

Besides, using WSIs for prognosis prediction poses several other challenges: 1) accurate 

survival prediction requires both a holistic representation of a WSI to evaluate the extent of 

the tumor and detailed features at the cellular level to assess tumor characteristics, which 

are the opposite ends of the spectrum in image analysis; and 2) the whole slide datasets 

with survival information are usually of limited sample size, while the problem worsens as 

outcome information is often only available for a portion of the participants because either 

the study ended before the event occurred or the participants left during follow-up (i.e., right 

censoring). The insufficient number of events makes a deep learning model overfit easily 

and the evaluation of the model performance dependent on data partitions.

The malignancy of a tumor is affected by many factors, such as the size of the tumor and the 

mitotic activity of cells within the tumor. Focusing only on the tumor tissue can provide a 

better assessment of the cancer cells’ characteristics. However, this approach may overlook 

some important global features, such as the size of the tumor. On the other hand, although 

the relative size of the tumor on the slide can be reflected by the intensity of the activation 

signal from the neural networks when taking the entire slide into account, such averaging 
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operation assigns identical attention to all tissue types, which inevitably dilute the impact 

of individual tumor cells. Therefore, to reach a more accurate prediction of the patient’s 

survival, it is necessary to inspect the histopathology slide from various aspects.

Recent studies have focused on using attention mechanisms to automatically determine 

the importance of each patch for prognosis prediction tasks20,21. Within this framework, 

each instance is assigned an attention weight, and their respective feature vectors are 

combined by taking a weighted average over all instances. However, as the importance 

of each instance can only be evaluated by a single scale, the model may be limited in 

learning alternative patterns that are also significant for prognosis prediction. Meanwhile, 

in the field of sequence modeling, by using multiple layers of multi-head self-attention 

modules, the transformer model outperforms previous methods by a significant margin22. 

Despite its success, applying the transformer model directly to whole-slide images remains 

a challenging task, given the large size of individual whole-slide images and the significant 

amount of data and computational resources required to train a transformer model from 

scratch.

In light of the challenges described above, this paper proposes MHAttnSurv, a multi-head 

attention framework for cancer survival prediction using WSIs. Inspired by the powerful 

multi-head attention mechanism introduced in the transformer model, we modified this 

mechanism innovatively to allow it to work efficiently in the field of multiple instance 

learning (MIL). Specifically, the transformer model learns a context-sensitive representation 

for each element in the input sequence. This requires attention between every pair of 

elements and the computational cost increases quadratically with input length. However, 

for the prognostic information extraction task, only the global representation of the input 

sequence is of interest. This allows us to remove the nonessential but computationally 

expensive pairwise attentions among the input sequence and only keep the attentions 

between global query and local keys. With this modification, the computational cost scales 

linearly with input length. We compare our method with current state-of-the-art methods and 

perform extensive experiments on 4 cancer types from The Cancer Genome Atlas (TCGA) 

database to demonstrate its superiority. Our contributions can be summarized as follows:

• We present an efficient and flexible attention-based framework with multiple 

attention heads for survival prediction.

• We performed rigorous experiments using nested cross-validation. The 

experiments demonstrated that our proposed method performs better than 

existing state-of-the-art approaches, and is easier to implement and adapt for 

various tasks.

• By visualizing the attention map and inspecting the prediction ability of 

each attention head, we have demonstrated that our approach incorporates 

comprehensive morphological patterns into survival prediction.

The rest of the paper is structured as follows: Section 2 provides an overview of related 

work. Section 3 outlines the details of our proposed method. Section 4 presents the 

experimental setup and results. Section 5 offers a discussion of the findings. Finally, Section 

6 concludes our work.
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2. Related work

2.1 Manually generated features

Early studies have relied on manually extracted features for survival analysis. Tumor size, 

grade, and stage are commonly used in statistical models for prognosis prediction23,24. 

These features are routinely collected by pathologists and are available from pathology 

reports. Despite their high prognostic values, these variables can only provide crude 

partitions for the population and cannot further stratify the risk to guide individual 

prognostic estimates. More specific biomarkers, such as mitotic index (MI), have been 

shown to be an independent predictor of long-term survival of cancer patients25. While 

these biomarkers usually have strong clinical significance, obtaining them requires extensive 

inputs from domain experts. This process can be time-consuming and subject to human 

discretion. Moreover, prognostic pathological factors might only be specific to certain cancer 

types. Another related method is to use high-throughput cell image analysis tools (e.g., 

CellProfiler) to extract predefined cell features automatically, such as size, shape, intensity, 

and texture26,27. However, these handcrafted features are usually limited and relatively 

redundant28, and may not contain high-level prognostic information.

2.2. Automatic feature extraction with ROI annotation

With the evolution of computer vision techniques, automatic feature extraction using the 

latest deep learning models has become the standard practice. Nevertheless, training a deep 

convolutional neural network (CNN) model using the entire WSI is not a computationally 

feasible task given the enormous size of WSIs. As a result, WSIs are broken into smaller 

images, called patches, with standard image sizes for typical computer vision tasks. This 

approach treats the survival prediction problem as a multiple instance learning problem 

and does not consider the sequence or spatial location of the patches. As patches usually 

contain redundant information, a sampling approach is used to select a subset of patches for 

model training and evaluation. The DeepConvSurv model developed by Zhu et al. sampled 

patches of size 1024×1024 from the ROIs of WSIs29. These sampled patches were processed 

with a CNN model so the local features within the patches could be extracted for survival 

prediction. Another method by Mobadersany et al. sampled one patch from the ROI region 

as the input for a CNN model10. During prediction time, multiple patches were sampled 

from each ROI region, and the median risk score was computed. For patients with multiple 

ROI regions, the second largest risk score was used as the final risk score for the patient. 

Nevertheless, these methods still rely on expensive and subjective ROI annotations from 

pathologists, which limits their future applications.

In another study, a separate model was trained to predict whether each patch belongs to ROI 

or not30. The predicted ROI probability was used as the weight to average patches. During 

inference time, the pre-trained ROI differentiation model predicts the probability that each 

patch belongs to the ROI. This approach only requires the ROI annotation at the training 

stage but not the inference stage. A similar approach was used in other studies but with hard 

segmentation instead of probability weighting13,16. Despite a significant reduction in ROI 

annotation costs, these methods remain susceptible to incomplete prognostic information, as 

morphological features beyond the tumor region may also contribute to risk prediction.
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2.3. Automatic feature extraction without ROI annotation

Recent studies have focused on predicting the survival status of patients without ROI 

annotation. Wulczyn et al. used a weakly supervised approach to randomly sample several 

patches (e.g., 16 patches per case/iteration) and feed them to a CNN model12. The 

underlying assumption is that when a sufficiently large number of patches are sampled, 

the chance of having discriminative patches approaches 1. Average pooling was used 

to aggregate the feature vectors from multiple patches, and the resulting global feature 

vector was used for survival analysis. This entire system (i.e., feature extraction + survival 

prediction) was trained end-to-end. This method was also used in a prior study for predicting 

prognosis and genetic profiling of lower-grade gliomas and has achieved satisfying results31. 

Nevertheless, because this method does not distinguish discriminative patches from non-

discriminative ones, there is still room for further improvement.

In order to select the discriminative patches for survival prediction, the WSISA model 

resizes the patches into smaller thumbnails and uses K-means to group them into several 

clusters8. They then fit separate DeepConvSurv models for each cluster and select the 

clusters with high prognosis accuracy. Despite being able to identify discriminative patch 

clusters, this method consists of several steps and needs to train multiple separate models. 

As a result, the interplay among different feature types cannot be captured, which limits its 

performance.

2.4. Attention-based studies

Another approach to bypass the ROI annotation requirement for survival analysis is to let the 

model choose the discriminative patches using the attention mechanism. Attention was first 

designed for the sequence-to-sequence (seq2seq) models, such as natural language machine 

translation, to help memorize long source sentences32. The attention mechanism was soon 

brought to the computer vision field to generate captions for a given image by sequentially 

focusing on different locations of the image33. In the digital pathology field, a study by 

Tomita et al. used a 3-D convolutional layer to derive an attention map for aggregating 

feature vectors from all patches34. 64 such filters were used to increase the model’s capacity 

to recognize more complex patterns. A later method, clustering-constrained attention 

multiple instance learning (CLAM), uses an attention network to aggregate patch features 

for slide-level classification. The attention output can be further used by clustering layers 

to facilitate the separation between positive and negative classes35. While these methods 

are promising for the whole slide classification task, they cannot be adopted for survival 

prediction, given the lack of positive/negative patch distinction.

The graph convolutional neural network (GCN) model has also been explored to 

represent the topological features of WSIs together with the attention mechanism. The 

DeepGraphSurv model36 constructs graphs from the feature representations of randomly 

sampled patches on WSIs. A parallel attention network helps with the selection of 

discriminative patches. A recent method, Patch-GCN37, constructs graphs based on WSIs 

by connecting each patch to the proximal patches, which allows the model to learn context-

aware features. The GCN method also has been used in pancreatic cancer for histology 

pattern detection38.
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As for the MIL-based analysis, Ilse et al. proposed an attention mechanism to adaptively 

aggregate multiple instances20. This attention mechanism was incorporated into the WSISA 

model by a later method called Deep Attention Multiple Instance Survival Learning, 

or DeepAttnMISL21. In this study, the patches were first grouped into multiple clusters 

(e.g., 8) using K-means. For each patient, the cluster-specific features were obtained from 

patches belonging to the same cluster. Finally, these multiple cluster-specific features were 

aggregated using an attention layer. This approach achieved promising results for survival 

prediction. However, as the patch clusters were determined beforehand, they may not 

directly relate to prognosis. Besides, as the clustering algorithm blocks the gradient flow 

from patches to the final predictions, it cannot be trained end-to-end.

A recent breakthrough in sequence analysis, the transformer model, is based solely on the 

attention mechanism22. The attention mechanism used in the transformer is also called 

Query-Key-Value (QKV) attention, following the terminology in database systems. Briefly, 

each record is stored as a key-value pair, where the value is the actual content. The query 

token works as the “search” term and will be compared with the key token to determine 

the relevance of each record. The self-attention algorithm allows each element to “attend” 

to every other component in the sequence. By integrating information from each other, 

a better representation could be obtained. The transformer model has achieved exciting 

results in both natural language processing39 and computer vision tasks40. A recent method, 

Multimodal Co-Attention Transformer (MCAT), combines genomic-guided co-attention 

with set-based MIL transformers for survival prediction35. Despite the success of this 

method, it remains a challenging task to expand the usage of the transformer model for 

general survival prediction purposes given the large number of parameters and relatively 

small sample size of labeled WSI datasets.

3. Methods

For each patient i in our study, P i = p1, …, pci  denotes all the ci patches that belong to this 

patient, and the number of patches ci differs across patients. Under the framework of MIL, 

the order of the patches does not matter as P is considered as a bag of instances41,42. The 

observed follow-up time is denoted as ti and the status at the end of follow-up is denoted 

as δi. For a patient who died during the follow-up, δi = 1 and ti is the survival time of this 

patient since cancer diagnosis. Otherwise δi = 0 indicating the patient was censored. Our goal 

is to learn a function that estimates the risk score (RS) from P for every patient, so the lower 

this score is, the longer this patient is expected to survive after a cancer diagnosis.

Our proposed MHAttnSurv method is illustrated in Figure 1. Briefly, we first use a backbone 

ResNet model to extract features from randomly sampled WSI patches. Then we project the 

feature map into values and keys. We split the value and key matrix and the learnable query 

vector into several chunks. Within each chunk, the attention process works in parallel to 

explore and identify the discriminative regions. The result from each attention map will then 

be concatenated for survival prediction.
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3.1. Sampling and feature extraction

Because each WSI typically contains thousands of patches and each patient can have 

multiple WSIs, it is not feasible to feed all of them to a model at once. Instead, we use 

a sampling approach to select N patches randomly during each iteration.

The ResNet model pre-trained on ImageNet provides good visual feature representations 

and is widely used in biomedical domains43–45. We use a ResNet model with 18 layers 

(i.e., ResNet-18) for feature extraction from the randomly sampled patches. By using the 

pre-trained backbone model, we can save time and computational resources by skipping 

the step of training a feature extractor from scratch and focus on developing the survival 

prediction model. The feature vectors from the ResNet-18 model are of size 512, and they 

are used as the input for the attention model.

3.2. Multi-Head Attention

Our proposed multi-head attention mechanism consists of three components analogous to 

self-attention in a transformer model, i.e., query (Q), key (K), and value (V). After applying 

the ResNet model, the feature embedding of a WSI with N sampled patches is denoted as 

X ∈ ℝN × d, where d is the embedding dimension of each patch (i.e., 512 as ResNet-18 is 

used as the backbone). X is then projected into K and V. Specifically, for V, we simply use 

an identity function, as the derived feature vectors from the pretrained ResNet model have 

already been adequate feature representations. The projection function for the K consists 

of a matrix multiplication with WK, a dropout layer46, and a ReLU47 activation function. 

W K ∈ ℝd × d is a trainable matrix. Its elements are initialized randomly using standard 

Gaussian distribution and will be updated during the training. The output K can be written 

as,

K = Relu Dropout XW K (1)

Q ∈ ℝ1 × d is a learnable vector with random initialization, where each element is sampled 

from uniform distribution u −1/ d, 1/ d . The attention aggregated feature representation 

can be written as

S = Attention Q, K, V = softmax QK⊤ V =
i

N
AiV i (2)

where the softmax normalization is applied on the raw attention scores QK⊤  along the 

patch dimension so that the attention weights A of the N patches will sum to 1. As 

A contains the attention weights of all the sampled patches, we will also refer to it as 

the attention map where applicable. The output S ∈ ℝ1 × d aggregates information from N 
sampled patches and is used as the feature representation of the whole slide.

When expanding the attention layer from one to H heads, we split the Q, K, and V into 

chunks of size d/H along the embedding dimension. We then calculate the attention scores 
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within each attention head and concatenate the final representation vectors. Formally, the 

multi-head attention can be expressed as

MultiHead Q, K, V = concat ℎead 1 , …, ℎead H (3)

Where ℎead ℎ = Attention Q ℎ , K ℎ , V ℎ  and Q(ℎ) is the ℎth chunk of Q and so on. Then we 

can predict the patient’s risk score as

R = W ⊤dropout S (4)

where W ∈ ℝd × 1 is the weight for the final layer. In the evaluation mode, the dropout layer 

is disabled. So, the predicted risk score R can be written as

R = W ⊤S = W ⊤concat
i

N
A 1 V 1 , …,

i

N
A H V H =

ℎ = 1

H
W ℎ

⊤ ∑
i

N
A ℎ V ℎ (5)

W ℎ
⊤

i

N
A ℎ V ℎ =

i

N
A ℎ W ℎ

⊤ V ℎ =
i

N
A ℎ R ℎ (6)

This decomposes the multi-head attention risk score into the sum of head-wise predictions, 

where head-wise predictions can be obtained from the weighted average of patch-level 

predictions. This is the basis for attention visualization as presented later in Section 4.5.

3.3. Loss function

A fully connected layer was used to estimate the risk scores of the patients. We use the 

negative log of Cox proportional hazards partial likelihood as the loss function48, which is 

defined as

l θ = − 1
Nδ = 1 i: δi = 1

ℎθ xi − log
j ∈ ℛ T i

exp ℎθ xj (7)

where ℎθ xi  is the output (risk score) of a model with parameters θ and input xi, δ = 1 means 

having the event (death), and ℛ T i  is patient i’s risk set (i.e., those who are alive at the time 

Ti). For each patient who is deceased (e.g., patient i) at Ti, we compare the risk score of 

this patient, ℎθ xi , to the log sum exponential of those who survive longer than this patient. 

Patient i is expected to have a higher risk compared to patients in ℛ T i . Thus, if the model is 

working correctly, risk scores will be smaller for patients in ℛ T i , while ℎθ xi  will be larger, 

so a lower loss can be achieved.
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4. Experiments and Results

4.1. Dataset description

The datasets used in our experiments are from the TCGA Program (National Cancer 

Institute). The TCGA is a public database with comprehensive clinicopathological data and 

multi-platform molecular profiles for more than 30 cancer types, with data collected from 

multiple institutions. In this study, we selected 4 cancer types, Urothelial Bladder Carcinoma 

(BLCA), Breast Invasive Carcinoma (BRCA), Colon Adenocarcinoma (COAD), and Lower 

Grade Glioma (LGG). For each cancer type, we acquired the digitized Hematoxylin and 

Eosin (H&E) stained slides, the follow-up information, and the survival status at the end of 

the follow-up. Both flash-frozen and Formalin-Fixed Paraffin-embedded (FFPE) slides were 

included for model development and evaluation except for LGG, for which we found the 

flash-frozen slides contained excessive artifacts. A detailed description of the cancer types 

included in this study is shown in Table 1. In total, 2,375 patients (with 6,162 WSIs) were 

included in the experiment. The largest dataset is BRCA with over 1,000 patients included, 

and the smallest dataset is BLCA with only 386 patients. On average, the patients were 

followed up by 2 years after the cancer diagnosis until they died or the last visit.

The WSIs were scanned at 20× or 40× magnification. We converted the WSIs to 10× 

magnification and cropped the entire slide into patches of size 224×224 without overlapping 

to reduce the computational and storage cost. Another benefit of using a relatively smaller 

magnification level is that each patch will cover a larger spatial area without losing 

significant cellular feature details. To determine whether a patch belongs to the background, 

we counted the number of purple pixels in each patch by thresholding the RGB channel 

intensity and discarded patches with less than 100 purple pixels. A total of 15.55 million 

foreground patches were extracted across the four cancer datasets.

4.2. Implementation details

The proposed method was implemented in Python with the PyTorch library (version 

1.8.1)50. During each iteration, we randomly sampled 32 patches (with replacement) per 

patient for 64 patients producing 2,048 patches per batch. For a training split with 320 

patients, one training epoch consists of 5 (320 patients / 64 patients per batch) parameter 

update steps. We evaluated the model on the validation dataset every 100 epochs (or 500 

steps) to monitor the training progress, with 100 patches sampled from every patient.

Adam optimizer was used to optimize the parameters of the model51. The starting learning 

rate was set to 6×10-5. A cosine learning rate scheduler was used in optimization, and we 

reset the learning rate every 4,000 epochs.

4.3. Evaluation metrics and methods

The concordance index (c-index) was used as the primary evaluation metric in this study. It 

is defined as the proportion of pairs whose rank is correctly predicted among all admissible 

pairs52. C-index ranges from 0 to 1. A c-index of 1 means perfect prediction, while a c-index 

of 0.5 means no better than a random guess. We additionally evaluated the Kaplan-Meier 

curves, log-rank tests, and time-varying AUC for our method and baseline methods.
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As the sample size of the chosen cancer types is only several hundred, if we allocate 70% 

of the cases for model training and validation, and use the remaining 30% for model testing 

(as this is typically practiced in the deep learning field), we will end up with too few death 

events in our test set, and the c-index could be highly stochastic and unreliable. To overcome 

this problem, we used the nested cross-validation (Nested-CV) method to obtain a more 

stable estimate of the model’s performance. The Nested-CV method makes the most use 

of the data while avoiding information leakage and is widely used in evaluating machine 

learning methods with a moderate sample size53. Our Nested-CV framework consists of 

5 outer loops, and each outer loop consists of 4 inner loops (Supplementary Figure S1). 

The inner loop is essentially K-fold cross-validation for hyper-parameter tuning with K = 4. 

As the death events are only observed for part of the study participants, to avoid possible 

imbalance, we split the datasets by stratifying on the outcome status of the patient, i.e., 

whether the patient was alive or not at the last follow-up. Both data splitting and model 

evaluation was performed at the patient level to avoid any potential information leak.

The hyperparameters we optimized for our model include dropout rate and early stopping 

epoch. We monitored the c-index on the validation set to determine the early stopping epoch 

for each configuration. We used a grid search approach to evaluate several dropout rates, 

namely, {0.0, 0.2, 0.5, 0.8, 0.95}. The optimal dropout rate is determined for each outer 

fold independently, by comparing the average of inner-fold validation c-indices. Then we 

evaluated the models on the test dataset. Dropout has been proven to be useful in preventing 

overfitting and improving the robustness of a model46. We applied the dropout directly on 

the output from the multi-head attention layer. And we showed the effect of dropout on 

the model performance from cross-validation in Supplementary Table S1. Additionally, we 

observed that if we eliminate dropout from our pipeline, the average c-index on the test sets 

would be reduced by 0.02. BRCA is the dataset that benefits the most from dropout, with a 

gain in testing c-index of 0.070.

After finetuning the hyperparameters, the final set of models trained from each inner loop 

were evaluated on the unseen test split of the outer loop. Their predictions were averaged 

to calculate the c-index. 1,000 patches were randomly sampled for each patient during the 

testing. We repeated this process five times (i.e., the number of outer loops) and reported 

the average c-index across multiple outer loops. This procedure is particularly beneficial to 

obtaining a more stable estimate of the performance of the proposed method when only a 

limited number of events/deaths are available.

4.4. Quantitative comparison with other methods

Based on our ablation study (Section 4.6.1), we set the number of attention heads to 8. We 

compared our model with three other state-of-the-art methods, the average pooling method 

(AvgPool)12, DeepAttnMISL21, and Patch-GCN37. These methods were chosen because 

they were developed for general survival prediction purposes, and have been tested across 

various cancer types, which aligns with the focus of our study. For the DeepAttnMISL 

method, we used the same number of clusters as the number of attention heads (i.e., 8). 

In the original DeepAttnMISL study, the performance of the model with 8 clusters is 

very close to that of the best model (either 6 or 10 clusters). We used the same strategy 
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for hyperparameter tuning and model evaluation for the baseline methods as described in 

Section 4.3. And we fixed the same split when repeating the nested cross-validation for 

different models. Because the outer loop specific c-index can be viewed as a repeated 

measurement of the model performance across model types, we used paired t-test to evaluate 

the statistical significance.

The comparison results are shown in Table 2. Our model achieved the best results for 

all four cancer types selected. Specifically, the differences between our method and 

the AvgPool method were statistically significant for the BLCA dataset (p < 0.01) and 

marginally significant (p < 0.1) for the LGG dataset. Overall, the average c-index of our 

model is 0.640, which is significantly better than the AvgPool method (c-index = 0.603, 

Δ = 0.037). While our method achieved a consistently higher c-index compared to the 

DeepAttnMISL and Patch-GCN methods, the difference was not statistically significant 

for individual cancer types. On average, there is a 0.021 (p = 0.16) and 0.028 (p = 0.04) 

improvement in c-index of our method compared to DeepAttnMISL and Patch-GCN model, 

respectively.

We further examined the time-varying AUC to assess the performance of each model up to 

5 years after diagnosis. At each assessed time point, this evaluation method considered the 

patients who died before this time point as cases, and patients who were still alive after this 

time point as controls, to measure the discrimination power of the model predictions. Inverse 

probability weighting is used to correct for right censoring54. Figure 2 shows that the models 

are typically better at predicting early events with the exception of BRCA, for which the 

AUC peaked at 3 years after a cancer diagnosis. For BLCA and BRCA, the MHAttnSurv 

method performs the best for almost all the evaluated time points. The patch-GCN method 

achieved the highest AUC for COAD at year 2 and 5. While for LGG, our method performs 

better than the baseline methods up to 3 years after diagnosis. Overall, the MHAttnSurv 

method is the best of the four in terms of time-varying AUC.

Additionally, we included the Kaplan-Meier curves for MHAttnSurv in Figure 3, and 

additional curves for the baseline methods in Supplementary Figure S2. For the test dataset 

of each outer fold, we split the predicted risk score into tertiles (i.e., based on the 33rd and 

67th percentiles) and denoted them as the low-risk, medium-risk, and high-risk groups. The 

log-rank test p-values of the MHAttnSurv method are significant for all four cancer types, 

and there is a discernible separation in Kaplan-Meier curves between the high-risk group 

and the low/medium group.

4.5. Qualitative and Quantitative Analysis of MHAttnSurv

To better understand how the attention model works, we present the connections between 

attention heads and patch features for one example WSI from the testing split of the LGG 

dataset in Figure 4. While our method does not require a clustering step, we included a 

clustering map in Figure 4(b) to facilitate the interpretation of the attention maps. To obtain 

the clustering map, we used K-means to group the patches from the selected WSI into 8 

clusters and assigned each cluster to a unique color.
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Figure 4(c) illustrates the attention map for each attention head. To create these 

visualizations, we first processed all patches from the WSI and shuffled them 10 times. 

We then concatenated these 10 shuffled lists of patches to form a queue. Each time 1,000 

patches are sequentially taken out of the queue to simulate the random patches sampling 

approaches that we took in the evaluation process. Then we predicted the attention weights 

for each head, and rescaled the attention weights by multiplying 1,000, so the rescaled 

values can be interpreted as how many times each patch is upweighted (or downweighted) 

compared to assigning them with equal weights. We repeated this process until the queue 

was depleted, ensuring that every patch from the WSI was sampled exactly 10 times. Finally, 

we calculated the average attention weights for each patch based on all the simulated 

samplings.

As derived in equation (6), we decomposed the head-wise prediction into head-specific 

patch level attention score and head-specific patch level risk score in Figure 4(d). We show 

the patch-level attention map, unweighted and attention-weighted risk score map for two 

selected heads, Head-8 (H8) and H7. H8 is the best performing head in this experiment 

with a c-index of 0.644, while H7 is the worst performing head with a c-index of 0.452. 

Additionally, we showed the overall attention map as calculated by taking the average of all 

the head-wise attention maps (Figure (4d), last row).

The attention maps exhibit significant variation across attention heads, as demonstrated in 

Figure 4. For example, H5 focuses mainly on regions with patches from Cluster-2 (C2), 

C3, and C8, characterized by high nucleus density and active angiogenesis. H7 focuses on a 

similar region as H5 but with stronger attention, however, the performance of this head is the 

worst among all the heads. A further inspection of the risk score map in Figure 4(d) reveals 

that H7 incorrectly generates lower risk predictions for patches from C2 and higher-risk 

estimates for patches from C1. While the attention suppresses much of the generated false 

high-risk scores from C1, it also amplifies the negative signal from C2. Notably, H8, focuses 

primarily on the edges where the tissues meet the background region. This attention head 

retains the negative predictions from the edges and achieves the best performance among the 

eight heads. On average, the model focuses primarily on regions covered by C2, C3, and 

C7. The generated rich attention patterns enable the MHAttnSurv model to comprehensively 

consider various morphological features which might contribute to prognosis. Additional 

example predictions for the other cancer types are shown in Supplementary Figures S3, S4, 

and S5.

We further explored the correlation among the attention heads for LGG as shown in Figure 

5. We can see that the attention weights across different heads are only weakly correlated, 

further demonstrating that each attention head focuses on distinct patterns from a whole-

slide image. On the contrary, there exist much stronger correlations among patch-level risk 

scores across attention heads. This is interesting as the head-wise patch-level risk scores 

are calculated using a distinct chunk of the extracted feature vector from the ResNet-18 

model. Meanwhile, we noticed that the head-wise c-index could differ for two attention 

heads with a strong correlation in patch-level risk scores. Taking H2 and H7 for example, 

the correlation coefficients of their patch-level attention weights and patch-level risk scores 

are 0.24 and 0.67, respectively. Despite the high correlation coefficient in their patch-level 
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risk score predictions, their head-wise c-indices are very different. Because H2 amplifies the 

negative signals from relatively normal tissues and suppresses the falsely positive signals, it 

still achieves a moderate c-index (0.589) compared to H7. This suggests that the attention 

pattern is a driving force in the performance of head-wise predictions.

4.6. Ablation experiment

We have conducted extensive ablation studies to investigate the effect of various design 

choices in our framework. This includes the number of attention heads, and the number of 

patches sampled during the training and evaluation phase.

4.6.1. Effects of the number of attention heads—Table 3 presents the results from 

the ablation study exploring whether using a different number of attention heads could 

affect the model performance. When using only one attention head, the average c-index 

is 0.609, which is comparable to (or slightly better than) the AvgPool method (c-index: 

0.603). However, with 4 attention heads, the average c-index increases to 0.630. Using 8 

attention heads achieves the best overall results, but using more attention heads (e.g., 16 and 

32) results in performance degradation. For BLCA and COAD datasets, the best results are 

observed when using 8 attention heads. For BRCA and LGG, the best results occur when 

using 4 and 32 attention heads, respectively. Based on our results in this ablation study, 

starting with 8 attention heads is a reasonable choice in survival prediction studies.

4.6.2. Effects of the number of patches sampled during training time—Table 

4 shows the effect of the number of patches sampled during training on the model 

performance. Instead of running the full-scale Nested-CV which requires enormous 

computational resources, we restricted our experiments to 80 percent of our entire dataset 

(the first outer loop) and performed a 4-fold cross-validation. The presented ablation results 

are the average over these four validation folds.

For BLCA, BRCA, and COAD, the model performance is the best when 256 patches are 

sampled. While for LGG, the best performance is achieved with 16 patches. Therefore, on 

average, sampling 256 patches from WSIs during the training achieves the best c-index. Of 

note, with more sampled patches, there are higher computation costs that limit the maximum 

number of sampled patches in our experiments.

The pie plot in the lower left corner shows the head-wise c-index. (d) Patch level prediction 

for the selected heads. Rows: best performing head, worst performing head, and all heads 

combined. Columns: attention map, unscaled risk score for each patch, and weighted risk 

scores (i.e., attention weight × risk score). “High” and “low” risk scores refer to the 

maximum and minimum head-wise patient-level risk

4.6.3. Effects of the number of patches sampled during testing time—We 

varied the number of patches sampled during the testing to illustrate its effect on the 

resulting c-index. The results are shown in Figure 6. When only a small number of patches 

are sampled, the estimates of c-index are highly volatile, with an average standard deviation 

of 0.017. Further increase in the number of patches stabilizes the results and improves the 

c-index estimate as well. When 1,000 patches are sampled, the average standard deviation 
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declines to 0.005, while the average c-index estimate improves by 0.015 compared to 

sampling 32 patches. An additional increase in the number of patches still reduces the 

standard error in c-index estimations, but the improvement in accuracy is marginal. As a 

result, we kept sampling 1,000 patches in our evaluation experiments, while in practice, all 

the patches can be included for the most accurate results if there is no bottleneck on time or 

computational resources.

5. Discussion

In this work, we presented a novel multi-head attention approach for survival prediction 

on whole-slide pathology images. Accurate survival prediction and cancer risk stratification 

can greatly benefit cancer patients in making informed decisions regarding treatment plans 

and improving their physical and psychological adjustment2,55. An automated and effective 

prognosis prediction program will also benefit physicians and pathologists by reducing 

their workload and allowing them to communicate more confidently with patients when 

discussing treatment options56.

Prognosis prediction has been a challenging problem. Unlike the tumor subtype 

classification and tumor segmentation tasks, where the histopathological aspects are well-

defined, making accurate prognosis predictions based on histology slides is difficult. 

A comprehensive prognosis evaluation requires careful consideration of both the global 

and local structures of the pathology slides. This problem is exacerbated by the large 

size of WSIs. Most of the deep learning methods developed so far either require ROI 

annotations10,29 or make strong assumptions that every patch contributes equally to the 

prognosis prediction12. ROI annotations are costly to obtain, and the annotation process is 

subjective to pathologists’ discretion. While for approaches that assign equal weights to each 

patch, the cancer malignancy signal carried by the tumor tissue can be easily diluted by the 

large amount of normal tissues that coexist in the same slide.

Our proposed multi-head attention mechanism was effective in the experimental results, 

outperforming three powerful deep learning baseline approaches: AvgPool, DeepAttnMISL, 

and Patch-GCN. The improvement in the performance of our model can be explained by 

the following reasons. Firstly, our model employs the attention mechanism to combine 

patches based on their relevance to the overall task. This strategy could avoid assigning the 

same weight (as in the AvgPool method) to patches that are not prognostically relevant. 

Secondly, the multiple attention heads can achieve the same effect as the Siamese model 

used in the DeepAttnMISL. Each attention head can provide some unique aspects regarding 

how to combine the different patches. But unlike the fixed clustering algorithm used in 

DeepAttnMISL, the attention mechanism used in our model is more flexible. The different 

attention heads are not determined ahead of time from the extracted patch features. Instead, 

each head is allowed to focus freely on patterns that collectively benefit most to the 

prognosis prediction. In addition, in DeepAttnMISL, patches from the same cluster share 

the same attention weights, while our method does not have such constraints. In contrast, the 

attention weight of each patch is determined independently across multiple attention heads.
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Visualizing the attention maps demonstrates that each attention head acts relatively 

independently in exploring the regions that would benefit the overall prognosis prediction 

(Figure 4). While linking the attention maps to the head-wise c-index, we note that even an 

attention head that focuses primarily on the normal tissues (e.g., H1) can still provide some 

prognostic merits. One possible explanation is that the presence of normal tissue on a WSI 

is a positive sign for better survival. This also highlights the importance of a holistic view of 

the WSI to achieve more accurate prognosis prediction accuracy. In this study, we observe a 

0.037 improvement in the c-index comparing our method to the AvgPool approach. On the 

contrary, by focusing only on the patches within the ROI region, the c-index was improved 

less than 0.010 in a previous study16. This implies that even with expensive ROI annotation, 

our results will likely be worse without using the MHAttnSurv approach. In fact, when only 

one attention head is used, the average c-index of our method is only slightly better than 

the AvgPool approach. This observation suggests that the monochromatic ROI annotation is 

less effective than the multi-head attention approach for a complex task such as prognosis 

prediction, and further justifies our design of the multi-head attention mechanism.

Additionally, some attention heads in Figure 4 appear similar, such as H1 and H3. Such 

overlap is not unexpected since each attention head operates in parallel and we did not 

impose any constraints on the attention maps to prevent it. Suppose a particular tissue type is 

very important for the prognosis prediction task, multiple attention heads may focus on this 

tissue type because doing so could benefit the objective of the model. Despite the overlap, 

it is still beneficial to keep all attention heads as they learn slightly different representations. 

Also note that our model structure splits the representation vector of each patch into multiple 

chunks during multi-head attention. Deleting one attention head would result in information 

loss from the corresponding chunk of the representation vector.

For a more comprehensive comparison of our methods to the existing methods, we evaluated 

multiple metrics, including the standard c-index and Kaplan-Meier curves with log-rank 

test, as well as time-varying AUC. While the c-index provides a single number summary 

of the model’s discrimination capability, it does not measure the model’s performance at 

a particular time point. This limitation can be addressed by time-varying AUC. A notable 

finding is that, while AUC tends to decrease over time, the highest AUC is observed at 

year 3 after cancer diagnosis for the BRCA dataset. Usually, survival prediction models are 

better at predicting short-term events than long term events. This is not only because those 

long-term events are of less certainty than short-term events, but also due to the status of 

long-term survivors, which is more likely to be missing (i.e., right censoring). In the case 

of BRCA, we noticed that all the risk groups have relatively high survival rates compared 

to other cancer types (Figure 3). This indicates the BRCA patients usually have a longer 

survival time, thus fewer events at the beginning of the follow-up period. In addition, BRCA 

patients usually have a longer follow-up time compared to other cancer patients. This might 

explain why the AUC increases within the first few years for BRCA patients.

As for limitations, we only evaluated the multi-head attention mechanism on one outcome 

type, which is survival after a cancer diagnosis. The utility of this method for other outcome 

types has not been explored. Furthermore, the number of patches randomly selected from 

a WSI in our pipeline is considered a hyperparameter that requires further exploration. Our 
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ablation studies have shown that a larger number of patches sampled during training and 

evaluation is associated with an upward trend in model performance. Although the random 

sampling approach could be modified to include all patches, this would require considerably 

more computational resources while the improvements may only be marginal. Future studies 

could explore alternative sampling strategies to optimize the tradeoff between computational 

costs and performance.

In addition, we experimented with whether finetuning the backbone model can further 

improve the model performance. But we did not observe any noticeable improvement in 

the validation c-index when finetuning the backbone model. Based on our observations, 

the model quickly overfitted. Overfitting persists even when only finetuning the last few 

convolutional layers of ResNet. This suggests that although our model is trainable end-to-

end, it requires a much larger dataset for effective finetuning of the backbone model.

In future work, we plan to evaluate our MHAttnSurv method with other patient outcome 

types, such as binary outcomes using cross-entropy loss (e.g., gene mutation status) or 

continuous outcomes using mean squared error loss (e.g., gene expression level). We also 

plan to evaluate the performance of our model by training it end-to-end on larger datasets.

6. Conclusion

In this paper, we proposed a multi-head attention mechanism to extract prognostic 

information from whole-slide images that does not require the resource-intensive region 

of interest annotations. Compared to three existing state-of-the-art methods, our model 

achieved better performance on four TCGA datasets in terms of both c-index and time-

varying AUC. Moreover, our method does not require the clustering step and is easy 

to implement. Visualization of the attention maps learned by our method demonstrated 

that each attention head focuses differently on the same whole-slide while together they 

work synergistically to achieve a comprehensive representation for prognosis prediction. We 

expect future studies to validate our method with larger datasets to further demonstrate its 

potentials.
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• Multi-head attention based multiple instance learning used in cancer 

prognosis prediction.

• Heads attend to various morphological patterns for prognostic features 

extraction.

• Achieved outstanding performance on 4 cancer datasets in c-index and time-

varying AUC.
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Figure 1. 
Overview of the model structure of MHAttnSurv. From each WSI, N patches are randomly 

sampled. 4 heads are shown in the multi-head attention part. WSI: whole slide image; CNN: 

convolutional neural network; MHAttn: multi-head attention; RS: risk score estimate.
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Figure 2. 
Time-varying AUC evaluated annually within 5 years after diagnosis.
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Figure 3. 
Kaplan-Meier curves of MHAttnSurv. Patients were stratified into three risk groups based on 

tertiles of testing c-index.
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Figure 4. 
Visualization of head-wise attention map and patch clusters for one sample WSI from LGG. 

(a) Whole Slide Image. (b) Patch clusters on the WSI level and example patches from each 

cluster. (c) Head-wise attention map. Red color: rescaled-attention weights > 2; Blue color: 

rescaled-attention weights = 0.
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Figure 5. 
Correlation of attention weights and risk scores across attention heads for LGG. (a) 

correlation of attention weights. (b) correlation of patch-level risk scores.
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Figure 6. 
Effects of the number of patches sampled during evaluation time.
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Table 1.

Descriptive statistics of the utilized datasets from TCGA.

BLCA BRCA COAD LGG

Number of patients 386 1,050 449 490

Number of WSIs 898 3,003 1,418 843

Number of patches (million) 3.05 6.46 2.97 3.07

Median follow-up time (years) 1.65 2.34 1.80 1.87

Number of events (deaths) 175 144 100 115
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Table 2.

Comparison of model performance.

BLCA BRCA COAD LGG ALL

AvgPool 0.551 0.575 0.601 0.685 0.603

DeepAttnMISL 0.594 0.600 0.581 0.700 0.619

GCN 0.573 0.570 0.632 0.674 0.612

MHAttnSurv (ours) 0.604 0.607 0.636 0.714 0.640

Δ1: MHAttnSurv – AvgPool 0.054** 0.031 0.035 0.029† 0.037**

Δ2: MHAttnSurv – DeepAttnMISL 0.010 0.007 0.055 0.013 0.021

Δ3: MHAttnSurv – Patch-GCN 0.031 0.037 0.004 0.039 0.028*

Boldface: Best c-index.

†:
p-value < 0.1;

*:
p-value < 0.05;

**:
p-value < 0.01.
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Table 3.

Effect of the number of attention heads on the performance of our approach.

Number of heads BLCA BRCA COAD LGG ALL

1 0.576 0.592 0.583 0.685 0.609

4 0.577 0.614 0.628 0.702 0.630

8 0.604 0.607 0.636 0.714 0.640

16 0.567 0.614 0.626 0.710 0.629

32 0.583 0.570 0.626 0.715 0.623

Boldface: Best c-index.
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Table 4.

Effect of the number of patches sampled during training time.

Number of patches BLCA BRCA COAD LGG All

8 0.603 0.608 0.638 0.760 0.652

16 0.605 0.616 0.642 0.767 0.657

32 0.604 0.618 0.633 0.757 0.653

64 0.610 0.615 0.641 0.754 0.655

128 0.621 0.618 0.637 0.753 0.657

256 0.627 0.622 0.644 0.751 0.661

Boldface: Best c-index.
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