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Abstract 

Scientific reproducibility that effectively leverages existing study data is critical to the advancement of research in many 

disciplines including neuroscience, which uses imaging and electrophysiology modalities as primary endpoints or key 

dependency in studies. We are developing an integrated search platform called NeuroBridge to enable researchers to search 

for relevant study datasets that can be used to test a hypothesis or replicate a published finding without having to perform a 

difficult search from scratch, including contacting individual study authors and locating the site to download the data. In this 

paper, we describe the development of a metadata ontology based on the World Wide Web Consortium (W3C) PROV 

specifications to create a corpus of semantically annotated published papers. This annotated corpus was used in a deep 

learning model to support automated identification of candidate datasets related to neurocognitive assessment of subjects 

with drug abuse or schizophrenia using neuroimaging. We built on our previous work in the Provenance for Clinical and 

Health Research (ProvCaRe) project to model metadata information in the NeuroBridge ontology and used this ontology to 

annotate 51 articles using a Web-based tool called Inception. The Bidirectional Encoder Representations from Transformers 

(BERT) neural network model, which was trained using the annotated corpus, is used to classify and rank papers relevant to 

five research hypotheses and the results were evaluated independently by three users for accuracy and recall. Our combined 

use of the NeuroBridge ontology together with the deep learning model outperforms the existing PubMed Central (PMC) 

search engine and manifests considerable trainability and transparency compared with typical free-text search. An initial 

version of the NeuroBridge portal is available at: https://neurobridges.org/. 

Introduction 

Replication of published research findings and meta-analysis of experimental findings are critical for advancing scientific 

research (1, 2). In particular, the reuse of datasets from previous studies to test a hypothesis or replicate published results is 
a resource efficient approach for scientific reproducibility instead of collecting new data by recruiting new subjects and 

performing the previous study again. However, the reuse of existing experimental data for replicating a previous study 

requires the use of data generated using comparable experimental protocols, recruitment criteria, and data analysis procedures 

(3). There are no existing informatics tools to support systematic and accurate search of research study data from published 

literature; therefore, researchers with limited resources often have to manually conduct a literature survey and contact authors 

of previous study to get access to the study data. This data accessibility challenge is acutely felt in neuroscience research 

community with a large number of projects generating experiment data; for example, the National Institutes of Health (NIH) 

funded more than 6000 neuroimaging projects in a year and more than 19,000 full-text articles are available, including 10,000 

papers describing studies using functional magnetic resonance imaging (fMRI) (4, 5). To address this growing challenge of 

supporting scientific reproducibility in neuroscience research, the NeuroBridge project is developing an integrated, user-

friendly web portal underpinned by semantic search functionalities to enables users to efficiently find relevant datasets for 

their research. 

To achieve its objectives, the NeuroBridge aggregates metadata or provenance information to discover datasets that match a 

research hypothesis with appropriate study subjects and experiment protocols. It is important to note that instead of creating 

a centralized warehouse of neuroscience datasets, the NeuroBridge platform aims to create a data discovery platform using 

neuroscience-specific provenance metadata supplied by authors of the original study. We are building on our previous 

work in the development of the SchizConnect platform that allowed sharing of neuroimaging, clinical and cognitive data 
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from multiple data sources, including MCICShare, NUSDAST, NMorphCH, fBIRN-II, and COBRE (6). The MCICShare 

data (7) with multisite sMRI, rest-state fMRI and dMRI scans that were collected on 1.5 Tesla (1.5T) and 3T scanners. The 

NUSDAST data (8) include sMRI scans collected on a single Siemens 1.5T Vision scanner. The NMorphCH data (9) include 

sMRI, fMRI and dMRI scans collected on a single Siemens 3T Trio scanner. The FBIRN-II (10, 11) data include multisite 

sMRI and fMRI scans collected on a variety of 1.5T and 3T scanners. The COBR data (12) include sMRI and resting-state 

fMRI scans collected on a single 3T scanner. 

Data on SchizConnect are modeled using a SchizConnect metadata schema to describe structural, functional, and diffusion 

Magnetic Resonance Imaging (MRI) data, as well as clinical and cognitive data such as demographics, psychopathological 

symptom ratings, and neuropsychological assessments in schizophrenia and related disorders. Metadata for individual data 

sources are mapped onto the SchizConnect schema, and user queries on the SchizConnect metadata are translated to queries 

on the individual data source in a mediator framework based on the schema maps (13). In the NeuroBridge project, we are 

incorporating neuroimaging and neurophysiology datasets from across a wide range of clinical neuroscience studies. 

However, discovery of relevant study datasets is a significant challenge; therefore, we are using the principles defined in the 

Findability, Accessibility, Interoperability, and Reusability (FAIR) guidelines to allow users to find relevant datasets from a 

large corpus of study data (14). In addition to the FAIR principles, we propose to use Selectability using similarity measures 

computed over the associated metadata information. Although the use of metadata information allows NeuroBridge to address 

many of the challenges associated with data sharing, there is significant terminological heterogeneity in the metadata terms 

associated with the study datasets.  

For example, the names of clinical and cognitive assessment instruments vary across different studies, similarly different 

terms are used to describe the phenotype of the study subject, and methods used to process as well as analyze the datasets are 

also described using heterogeneous terms. The World Wide Web Consortium (W3C) developed the PROV specifications to 

standardize the representation of provenance metadata, which is used to describe the metadata associated with research 

studies, which can be broadly classified into three categories of: (1) Study Data, (2) Study Method, and (3) Study Tools (S3 

model) (15). This classification scheme for provenance metadata associated with biomedical research studies was developed 

in our earlier project called the Provenance for Clinical and Health Research (ProvCaRe) (16). In the ProvCaRe project, we 

extended the W3C PROV specifications to create the ProvCaRe ontology for modeling the S3 terms that can be expanded to 

model fine-grained provenance metadata terms associated with specific biomedical research domains such as neuroscience, 

sleep disorder research, and substance abuse. The ProvCaRe project developed a natural language processing workflow by 

adapting the Clinical Text Analysis and Knowledge Extraction System (cTAKES) to extract provenance metadata from full-

text articles and allowed users to search for publications related to a research hypothesis through a search engine interface 

(17). We leveraged the extensibility feature of the ProvCaRe ontology in the NeuroBridge project to model metadata 

information associated with neuroscience and substance abuse studies and the resulting NeuroBridge ontology forms the core 

knowledge reference model to standardize neuroscience metadata terms. The role of the NeuroBridge ontology is to support 

three core modules: 

1. NeuroBridge TextMiner: This module supports the mining of full-text articles from PubMed Central (PMC) to extract 

metadata information associated with neuroscience studies using the NeuroBridge ontology. 

2. NeuroBridge Data Discovery Portal: This module is an integrated search portal to allow users to search for relevant 

datasets based on their hypothesis-driven query (e.g., study involving schizophrenia patients with resting state fMRI and 

cognitive measures) using ontology for both query expansion and search. 

3. NeuroBridge Mediator: This module extends the SchizConnect mediator to search across study datasets using metadata 

information modeled in the ontology. 

In this paper, we describe the development and use of the NeuroBridge ontology in the NeuroBridge TextMiner module to 

support semantic annotation of full-text articles describing neuroscience studies related to substance abuse and schizophrenia. 

These annotated documents are used for training a Bidirectional Encoder Representation from Transformers (BERT) deep 

neural network model, which is used to mine and rank new articles in terms of their relevance to hypothesis-driven queries. 

Background 

Neuroscience data sharing for scientific reproducibility. There is increasing availability of multi-modal datasets in 

neuroscience research especially from research studies funded as part of the National Institutes of Health (NIH) Brain 

Research Through Advancing Innovative Neurotechnologies (BRAIN) initiative (18). However, sharing and discovery of 

relevant datasets remains a difficult challenge due the significant effort involved contacting individual study authors, 

matching terms across different datasets, and mapping variable names across studies to get datasets with comparable 

attributes. NIH has developed large-scale data repositories such as the National Institute of Mental Health (NIMH) Data 

Archive (NDA) that contains datasets from structural MRI (14,833 subjects), functional MRI (8,256 subjects), clinical 

phenotypes (171,116 subjects), and genomics (32,847 subjects). Similarly, our previous project SchizConnect included data 

from nine studies with 23,494 scans from 1392 subjects. However, the limited search functionality available in NDA portal 
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and our own experience in the SchizConnect project highlighted a clear need to develop a metadata-based search and 

discovery platform, which is being implemented in the NeuroBridge platform with data from more than nine neuroscience 

data repositories. 

W3C PROV specification and the ProvCaRe ontology. The W3C PROV specifications are formally represented in the 

PROV ontology that consists of three fundamental provenance terms of Entity, Activity, and Agent together with properties, 

which is modeled using the description logic-based Web Ontology Language (OWL) (19). In our ProvCaRe project, we 

extended the PROV ontology to model provenance metadata associated with biomedical research by reusing terms from 

existing terminologies, such the Problem/Population, Intervention, Comparison, Outcome and Time (PICOT) model used to 

structure clinical studies (20) and the Ontology for Clinical Research (OCRe) (21). The ProvCaRe ontology consists of 290 

classes and was used to extract structured provenance metadata from 435,248 full-text articles downloaded from PMC. The 

ProvCaRe ontology was designed as an extensible knowledge model that can be used to represent a variety of domain-specific 

provenance metadata; therefore, it was extended to develop the NeuroBridge ontology in this project. 

BERT model. The Bidirectional Encoder Representation from Transformers (BERT) is a deep neural network model for 

natural language (22). The BERT model learns from a large-scale corpus of documents to obtain the contextual representation 

of a word using information from all other words in a sentence. This makes BERT especially powerful in fine-grained natural 

language processing tasks (both at a sentence and at the word level) where nuanced syntactic and semantic understanding is 

critical. In this work, we fine-tune a BERT model to recognize NeuroBridge ontology concepts occurring in neuroscience 

literature. 

Related Work. There has been unprecedented focus on improving reproducibility of biomedical research through 

transparency and rigor as highlighted by the NIH Rigor and Reproducibility guidelines (1, 23). Provenance metadata plays a 

central role in supporting reproducibility as it enables the reuse of experiment data. Provenance metadata collection, storage, 

and querying has been the focus of extensive research in computer science, including relational databases, scientific workflow 

systems, sensor networks, and Semantic Web applications (16, 24, 25). In biomedical domain, the OCRe project developed 

an ontology to model metadata information associated with clinical trials and an annotation workflow called Eligibility Rule 

Grammar and Ontology (ERGO) to semantically annotate eligibility criteria in clinical studies (21, 26). In addition, many 

research communities have developed guidelines to report metadata information associated research studies, including the 

Consolidated Standards of Reporting Trials (CONSORT) guidelines (27), and the Animals in Research: Reporting In Vivo 

Experiments (ARRIVE) guidelines (28). In the neuroscience research community, there are several initiatives to identify 

metadata information that can be used to describe the context of studies, such as the brain imaging data structure (BIDS) and 

its extension to represent metadata associated with neuroimaging and neurophysiology datasets (29, 30). 

Method. 

The NeuroBridge TextMiner 

component described in this paper has 

two primary objectives: 

1. Given a study hypothesis, identify 

relevant research studies with 

associated experiment datasets that 

can be used to test a hypothesis or 

replicate the studies; and 

2. Enable researchers to query and 

discover relevant datasets based on 

their hypothesis using provenance 

metadata associated with the 

research study. 

To achieve these two objectives in the 

NeuroBridge TextMiner, we use a 

multi-step approach as shown in Figure 

1. Overall, our approach follows the 

design and evaluation methods used in 

semantic search engines as part of 

information retrieval systems. In the 

following section, we describe each of 

these components in the same order as 

they are numbered in Figure 1. The first 

component, Document collection is a 

Figure 1. A diagram of methods used to implement the NeuroBridge TextMiner. 

Details of each numbered component are described in text. 
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subset of articles in PMC with a focus on empirical studies involving drug abuse or schizophrenia patients using neuroimaging 

and neurocognitive assessments. The second component, Ontology-based document processor identifies natural language 

expressions of concepts in the full-text article as defined in the NeuroBridge ontology and links these expressions to the 

ontology terms. The goal of this component is to represent a document as a collection of ontology terms. The third component, 

Ontology-based document representation of each article is a collection of machine-recognized ontology terms, instead of 

the original representation as a sequence of words. The fourth component Search topic is used by a neuroscientist in the 

context of a specific topic, which often consists of the clinical condition of the study subjects, imaging protocols, and 

neurocognitive tests. The fifth component, Ontology-based query processor interprets the search topic using standard terms 

in the NeuroBridge ontology. This is achieved by using a query builder in the frontend user interface of the search engine, 

which helps the user explore and select terms in the ontology to express the constituents of the search topic. The sixth 

component, Ontology-based query representation uses a Boolean expression of ontological terms. The seventh component, 

Relevance ranking takes ontology-based representations of a document together with query expression and uses a ranking 

algorithm to compute a score that estimates the relevance of the document with respect to the query. The relevance score is 

used by the Search results component to produce a ranked list of articles in the document collection ordered by their 

estimated relevance with respect to the search topic. The final component of the NeuroBridge TextMiner is called Relevance 

judgment, which is used for evaluation, and it consists of domain-expert assessors who are invited to judge the relevance of 

an article in the search results. In this work, we treat relevance as a binary status: an article is relevant if it covers all aspects 

of the search topic, and non-relevant otherwise. Also in Figure 1, the dashed boxes illustrate the NeuroBridge ontology and 

manually annotated corpora used by various parts of the TextMiner component.  

A. NeuroBridge Ontology 

The NeuroBridge ontology aims to systematically model metadata information describing neuroscience experiments, for 

example the number of 

participants in a 

diagnostic group, type 

of experiment data 

collected (e.g., 

neuroimaging, 

neurophysiology, and 

rating scales), clinical 

and cognitive 

assessment instruments. 

The NeuroBridge 

ontology extends the 

ProvCaRe ontology; 

therefore, it uses OWL 

constructs such as object 

properties to link 

together classes to 

represent metadata 

terms associated with 

neuroscience studies. In 

the first phase of 

development, we 

focused on studies 

involving mental 

disorder schizophrenia 

and substance related 

disorders. To model 

metadata associated 

with these studies, we 

extended the prov:Entity class to model a variety of neuroscience clinical findings, including neurodevelopmental disorder, 

mental disorders, and cognitive disorder. Following ontology engineering best practices, we reused existing ontology classes 

from the Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) (31) and also defined class mappings to 

SNOMED CT terms using OWL annotation properties (e.g., rdfs:seeAlso).  

The ontology also models terms describing a variety of substance disorders, including stimulant dependence and psychoactive 

substance. Some research studies have focused on neurodevelopmental disorders related to substance abuse; therefore, the 

NeuroBridge ontology also models terms such as alcohol related neurodevelopmental disorder. To model the metadata 

Figure 2. A screenshot of the NeuroBridge ontology class hierarchy representing rating scales 

used in neuroscience research studies. 
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information describing the various clinical and cognitive instruments used in neuroscience research studies, we extended the 

prov:Agent class to model a variety of rating scales, including substance use scales, psychopathology scales, neurocognitive 

scales and mental health diagnosis scale. Figure 2 shows a screenshot of the NeuroBridge ontology with the class hierarchy 

representing various neurocognitive scales. The latest version of the NeuroBridge ontology is available on GitHub:   
https://github.com/NeuroBridge/neuro-ontologies. The current version of the ontology consists of 623 classes that are used 

for semantic annotation of the full text articles used in this study and they are also used to support query as well as document 

ranking functionality of the TextMiner component. 

B. Ad-hoc Retrieval Test Collection 

B.1 Document collection construction. We used the following principles to guide the selection of a subset of PMC full-text 

articles as the document collection for this study. First, we focused on studies involving subjects with two conditions: 

schizophrenia and substance-related disorder, which are of increasingly interest to neuroscience researchers. Second, we 

selected articles that describe recent studies with empirical functional neuroimaging data collected from human subjects. We 

excluded meta-analysis or review papers as these types of papers do not directly collect empirical data. Third, to simplify text 

mining and information retrieval algorithm development during the first phase of the NeuroBridge project, the search was 

constrained to include only articles that are indexed by the NLM BioC collection (32). BioC offers full-text biomedical 

articles in formats that facilitate text mining (e.g., plain text or JSON). Following the above criteria, we issued two scoping 

queries using the PMC search portal in May 2021. Details of the two queries are presented in Table 1. The query identified a 

collection of 356 full text articles in PMC. 

Table 1. Details of two search queries used in constructing our document collection. 

Search Topic Schizophrenia Substance-related Disorder 

Search string ("functional neuroimaging"[mh]) 

("schizophrenia"[mh]) NOT (meta-

analysis[pt] OR review[pt]) NOT 

(meta-analysis[ti] or review[ti]) 

("functional neuroimaging"[mh]) 

("substance-related disorders"[mh]) NOT 

(meta-analysis[pt] or review[pt]) NOT 

(meta-analysis[ti] or review[ti]) 

PMC filters Free full text; Time In the last 5 

years; Subjects: Humans; language: 

English 

Free full text; Time In the last 5 years; 

Subjects: Humans; language: English 

# of returned articles 335 200 

# of returned articles in BioC 196 162 

# of articles in document collection  196 + 162 – 2 = 356 (two articles are shared between the above two sets) 

 

B.2 Test queries, search results, and evaluation of relevance. We collected a set of five search queries from neuroscience 

domain experts. These search queries represent typical information needs of neuroscientists who perform literature survey to 

identify studies that generate as well as share empirical data for secondary analysis or support replication. Table 2 shows the 

test queries in both natural language and using NeuroBridge ontology concepts. Each concept is an anchor text with a 

hyperlink pointing to the corresponding concept in the NeuroBridge ontology in GitHub. Basic statistics of relevance 

judgments for each query are also shown. For each query, we collected relevance judgment scores using the standard pooling 

procedure. More specifically, for each test query, top-k search results generated by four relevance ranking algorithms 

(described below) are merged into a pool of potentially relevant articles (the unordered “retrieved pool” of articles), whose 

relevance scores are judged by human assessors. In this preliminary work, we focus on the first page of search results, i.e., k 

= 10. The relevance scale is binary (either “Relevant” or “Not Relevant”). The fourth column in Table 2 shows the number 

of articles judged for each query, i.e., the size of the union of top-10 results retrieved by the four algorithms. Across five 

queries, 159 articles are judged by the human assessors for relevance.  

For each test query, each article in the retrieved pool was redundantly judged by two expert assessors (co-authors JT and 

LW). If these two assessors gave different relevance labels to an article, a third domain-expert assessor was asked to judge 

the article and break the tie, that is, for each article in a query’s retrieved pool, at least two of three domain experts agree on 

its label, which becomes the gold-standard label in the subsequent evaluation of ML/NLP/IR algorithms. The fifth column in 

Table 2 shows the number and percentage of articles judged as “Relevant” after adjudication for each query. The two expert 

assessors agreed on 130 of all 159 judged articles (i.e., both agreed on an article being “Relevant” or “Not Relevant”). The 
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interrater reliability is 0.629 (Cohen’s kappa). This level of agreement is often interpreted as “substantial” (kappa in between 

0.61 and 0.80).  

Table 2. Five test queries expressed in both natural language and NeuroBridge ontology concepts.  

Query 

ID 

Expressed in natural language Expressed in NeuroBridge 

ontology concepts 

# of articles 

judged 

# (%) of relevant 

articles  

Q1 Papers that had schizophrenia as 

some of the subject types, along 

with resting state fMRI, and any 

cognitive measure. 

Schizophrenia AND 

(RestingStateImaging OR 

RestingStateImagingProtocol) 

AND NeurocognitiveTest 

31 15 (48.39%) 

Q2 Papers that had healthy controls 

(“No known disorder”), and 

resting state fMRI. 

NoKnownDisorder AND 

(RestingStateImaging OR 

RestingStateImagingProtocol) 

40 27 (67.50%) 

Q3 Papers that had some measure of 

impulsivity, and structural 

imaging (T1-weighted) data. 

ImpulsivityScale AND 

(T1WeightedImaging OR 
T1WeightedImagingProtocol) 

26 12 (46.13%) 

Q4 Papers that had subjects with 

alcohol use disorder, a personality 

questionnaire, and a task-based 

fMRI method. 

AlcoholAbuse AND 

PersonalityRatingScale AND 

(TaskParadigmImaging OR 
TaskParadigmImagingProtocol) 

32 12 (37.50%) 

Q5 Papers that had subjects with 

cannabis use disorder, 

neurocognitive assessment, and 

resting-state fMRI. 

CannabisAbuse AND 

NeurocognitiveTest AND 

(RestingStateImaging OR 

RestingStateImagingProtocol) 

30 8 (26.66%) 

 

C. Ontology-Annotated Text Corpus 

A random subset of the document collection (51 out of 356 articles) was manually annotated by project team members with 

ontology concepts. Two neuroscience 

domain experts led a team of trainees in 

creating these annotations. Specifically, the 

“Abstract” and “Methods” sections of each 

article were closely examined and natural 

language expressions of any concepts in the 

NeuroBridge ontology were identified and 

annotated with the corresponding canonical 

term in the ontology. The annotation team 

took a staged approach to this task that 

included training, individual annotation, 

and curation (quality check). During this 

process, the NeuroBridge ontology went 

through a number of revisions to resolve 

ambiguities and to address the need for 

additional concepts to modeled, which 

were identified by the annotation team. The 

Inception software was used to support the 

annotation workflow, team management, 

and data management. Table 3 shows the 

basic statistics of the resulting corpus. This 

semantically annotated corpus was 

subsequently used in the development of 

Table 3. Basic statistics of the ontology-annotated text corpus. 

Category Value 

Number of PMC articles annotated 51 

# of sentences in all “Abstract” and “Methods” sections 3,866 

# of sentences annotated with any concept 939 (24.29%) 

# of tokens in all “Abstract” and “Methods” sections 118,709 

# of tokens annotated with any concept 5,803 (4.89%) 

# of tokens per concept instance 3.44       

# of annotated concept instances  1,688 

# of distinct concepts annotated 94 

# of distinct concepts annotated only once in the corpus 19 (20.21%) 
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machine learning/natural language processing algorithms, i.e., concept recognition and concept linking in the ontology-based 

document processor. 

D. Ontology-based Document Processor 

The goal of ontology-based document processor is to represent a document as a collection of ontology terms. This allows 

users to search articles using ontology concepts without spending their efforts in reformulating each concept into its synonyms 

and related concepts (hypernyms and hyponyms). We follow the standard entity recognition and linking pipeline approach to 

identify ontology terms in an article. As shown in Figure 3, the pipeline contains two stages: concept recognition and concept 

linking. Given raw text (sequence of tokens in the Abstract and Methods sections of an article), the concept recognition stage 

is responsible for tagging text spans that may mention any ontology term. Then, given a tagged text span, the concept linking 

stage is responsible for 

relating it to one of the 

623 terms in the 

ontology. Both stages of 

the pipeline are 

developed using the 

ontology-annotated text 

corpus. We split the 51 

annotated articles into 

70% training (35 

articles), 10% validation 

(5 articles), and 20% test 

(11 articles).  

The rationale behind this two-stage pipeline instead of an end-to-end model (which simultaneously tags text spans and 

classifies the text span into one of 623 classes, or ontology terms) is due to insufficient training data. The majority of ontology 

terms have few annotated instances to train our model. In our pilot studies (not reported), an end-to-end model substantially 

underperformed a two-stage model. 

D.1 Concept Recognition. We formulate the concept recognition stage as a binary sequence tagging task, in which the model 

only needs to determine whether a text span should be recognized as any concept or not, regardless of the concept that it is 

linked to in this stage (this issue is resolved in the next stage). We employed the BERT model with a conditional random 

fields (CRF) output layer as the binary sequence tagging model. We evaluated the BERT concept recognizer by applying it 

on the 11 test articles. These articles contain 367 ground-truth concept instances. The BERT concept recognizer proposed 

443 text spans as concepts, 226 of which matched the ground truth. In terms of span-level named entity recognition 

performance, the recognizer achieves 52.2% precision (226/433), 61.6% recall (226/367), and 56.5% F1-score (harmonic 

mean of precision and recall). Figure 3(a) shows a sample output of the BERT model. Overall, the model was able to identify 

a relatively wide range of text spans potentially referring to ontology concepts. 

 

Figure 4. This is “Section 2.3. Data acquisition” of a PMC article (Hua et al. (33)). Of the 11 concept instances detected, 

nine are unique concepts. The nine unique concepts are included as part of the document representation for the search system. 

Figure 3. Two-stage architecture of the ontology-based document processor. (a) In the first 

stage, a piece of plain text is input into the binary NER model, which will detect spans relevant 

to concepts regardless of their types. (b)  In the second stage, linker will assign these spans with 

their corresponding types. 
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D.2 Concept Linking. Given the tagged text spans from the concept recognition stage, the concept linking stage is to map 

the text span to the most relevant concept in the ontology. We estimate concept relevance as follows. For each concept, we 

construct a “concept document” by concatenating its textual labels in the NeuroBridge ontology, its synonyms in the Unified 

Medical Language system (UMLS), and its associated text spans in the training and validation data. The relevance of a text 

span with respect to a concept is measured by the textual similarity between the text span and the “concept document”. To 

accelerate the textual similarity calculation, we use Apache Solr to index all “concept documents”. A text span is treated as 

a free-text query and the BM25 relevance model is used to rank concepts. In case Solr returns no result for a given text span, 

we use fuzzy string matching between the text span and a concept as a fallback strategy to rank concepts. It measures the 

similarity between two strings by the Jaccard similarity of two sets of letter trigrams. We evaluated the Solr-based concept 

linker by applying it on text spans generated by the BERT concept recognizer on the 11 test articles. These articles contain 

367 ground-truth concept instances. The concept linker proposed one concept for each of the 443 text spans tagged by the 

BERT concept recognizer, 134 of which matched the ground truth. In terms of span-level entity linking performance, the 

linker achieves 30.9% precision (134/433), 36.5% recall (134/367), and 34.4% F1-score. Figure 3(b) shows a sample output 

of the concept linker.  

D.3. Document representation evaluation. After going through the two stages, an article is associated with a set of concepts 

in our NeuroBridge ontology. For each of the 11 test articles, we evaluated the set of machine-generated concepts against the 

set of human-annotated ones using precision, recall, and F1 score. Note that unlike the span-level evaluation for concept 

recognition and linking, the article-level evaluation here ignores the position of concepts. Averaged across 11 test articles, 

the two-stage pipeline achieved 44.5% precision, 92.4% recall, and 60.0% F1-score. Considering the low-resource nature in 

this task, we believe the document processor achieved an appropriate performance in this preliminary study. A high level of 

recall (92.4%) implies that in the subsequent retrieval stage, the system is able to retrieve almost all articles related to a query 

concept despite having some false positives (44.5% precision). This is desirable if the user aims to find all published articles 

and datasets relevant to a search criterion, that is, this represents the results of a comprehensive search in NeuroBridge. 

E. Relevance Ranking 

Our end goal is to improve the performance of neuroscience literature search according to FAIR data management principles. 

We applied the document processor on the “Abstract” and “Methods” sections of all articles in the document collection 

(except for the 40 training articles for the document processor), which generated a set of ontological concepts for each of the 

316 articles (316 = 356 - 40). We evaluate the following approaches to result ranking. Except for the PMC approach, all other 

approaches are implemented using Apache Solr. 

1. Free text: A query is represented as free-text terms (natural language words). A document is represented as a bag of 

free-text terms in the “Abstract” and “Methods” sections. Document relevance model is BM25. 

2. PMC: The PMCsearch engine is used to rank documents given a query. To facilitate a fair comparison, we restrict the 

ranked list of documents to be within the 316 articles in our document collection.  

3. NeuroBridge Concept (NBC): A query is represented as a disjunction of ontological terms (listed in Table 2). A 

document is represented as a set of machine-generated ontological terms. Document relevance model is BM25. 

4. Expanded NBC (ExNBC): A query is represented as a disjunction of ontological terms, where each term is expanded 

to include their immediate parent and children in the NeuroBridge ontology. A document is represented as a set of 

machine-generated ontological terms. Document relevance model is BM25. 

Table 4 shows the ranking performance of four retrieval methods. We use precision@10, recall@10 and mean average 

precision as the evaluation metrics. 

Table 4. Ranking performance of four retrieval methods. 

 Precision@10 (%) Recall@10 (%) Mean average precision 

(%) 

Free text 64.0 33.16 37.25 

PMC 44.0 23.15 22.64 

NBC 40.0 18.24 33.44 

ExNBC 52.0 23.44 34.55 
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Discussion 

Results interpretation. The ranking evaluation results show a few trends that are of significance to the overall goal of the 

NeuroBridge portal. First, within our proposed methods, ExNBC outperforms NBC. This highlights the importance of 

leveraging the ontological structure in query representation. For example, if the query contains the term 

“NeurocognitiveTest”, ExNBC knows that “VerbalFluencyTask” is a subtype of “NeurocognitiveTest”, and an article that 

contains “VerbalFluencyTask” would satisfy the term “NeurocognitiveTest”. In contrast, NBC does not have this knowledge 

without using ontology reasoning. Second, ExNBC outperforms PMC. This shows the proposed method has the potential to 

better serve the special information needs in the neuroscience domain, which is not well-covered by a general search service 

like PMC. Finally, ExNBC does not perform as well as the simple free-text approach, which we analyze in the error analysis 

below. On the other hand, our methods have two critical advantages over the free-text approach.  

● Trainability: Our machine learning-based method is capable of further improvements when more ontology-annotated 

articles are available. In comparison, the performance of the free-text approach is fixed. 

● Transparency: Our method is able to explain which concepts in the query have a match in the article, and where the 

match is. In contrast, the free-text approach is only able to show lexical matches without semantic understanding (e.g., 

a lexical matching system does not know that two terms are almost synonymous despite having different forms). 

Error analysis. There exist three major types of errors in the system: errors in concept recognition, linking, and results 

ranking:  

1. Concept recognition errors: For example, in Figure 2, “Philips Achieva” was recognized as a concept. However, the 

phrase itself refers to the brand of a neuroimaging device, not an imaging modality or protocol. This phrase was 

subsequently linked to a wrong concept “WideRangeAchievementTest”.  

2. Concept linking errors: For example, in Figure 2, “echo planar imaging (EPI) sequence” was recognized as a concept, 

which is reasonable since EPI is a neuroimaging modality. However, it is linked to a wrong concept “MolecularImaging”. 

3. Results ranking errors: For example, for a query that is a conjunction of three terms, a relevant article should contain 

all three terms simultaneously. However, the current ranking function of the system is a vector-space model that gives 

“partial credit” to each matched term between the query and an article, even if the article only contains two of the three 

query terms. The rationale behind this strategy is that the document processor may only recognize some (but not all) 

query terms in a relevant article, and these articles should still receive partial credits. However, this strategy also increases 

the chance of retrieving non-relevant articles that do not match all query terms. This can be attributed to the usage of 

BM25, in which the number of detected terms is also taken into consideration. 

Conclusions and Future Work 

By taking advantage of NeuroBridge ontology as a reference knowledge model, the NeuroBridge search engine demonstrates 

a potential for interpretable search results and a potential for iterative boosting. It can be regarded as a cornerstone of our 

further step focusing on the improvement of the concept processor. In future work, we will proceed to improve the system in 

the following directions. First, we will continue to improve the ontology-based document processor pipeline. Second, on our 

analysis of the ranking error implies that the BM25 vector-space model may lower the precision of retrieved results by 

introducing false positives. In our future iterations of this research, we will improve our document relevance model to enforce 

concept-based match between documents and queries. This can be implemented by a concept-based Boolean relevance model. 

As the new model retrieves new results per test query, additional relevance judgments will need to be collected to evaluate 

the new relevance model. Third, we envision a live literature search system using FAIR principles. Future evaluation of the 

system will involve real users interacting with a live search system that has an updated index of documents, an interactive 

search interface, an ontology-based query builder, a search result presentation page, and mechanisms for users to save 

searches and provide feedback.  
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