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Abstract

Liver transplant is an essential therapy performed for severe liver diseases. The fact of scarce liver resources makes
the organ assigning crucial. Model for End-stage Liver Disease (MELD) score is a widely adopted criterion when
making organ distribution decisions. However, it ignores post-transplant outcomes and organ/donor features. These
limitations motivate the emergence of machine learning (ML) models. Unfortunately, ML models could be unfair and
trigger bias against certain groups of people. To tackle this problem, this work proposes a fair machine learning
framework targeting graft failure prediction in liver transplant. Specifically, knowledge distillation is employed to
handle dense and sparse features by combining the advantages of tree models and neural networks. A two-step
debiasing method is tailored for this framework to enhance fairness. Experiments are conducted to analyze unfairness
issues in existing models and demonstrate the superiority of our method in both prediction and fairness performance.

1 Introduction

Liver transplant is an effective treatment option for end-stage liver diseases and acute liver failure such as hepatic
failure. However, the transplant organ resources are scarce compared with the number of patients on the waiting
list [1, 2]. Hence organ assignment becomes a crucial decision that demands careful consideration. A prevalently used
assigning strategy is based on the Model for End-stage Liver Disease (MELD) score, which estimates the patient’s
current status based on three lab test results, including serum creatinine, total bilirubin, and INR of prothrombin
time [3]. A higher MELD score indicates a worse situation of a patient, and thus a higher priority of the patient to
receive organs. The new version MELD score also includes serum sodium for calculation [4]. For pediatric patients,
the score definition is different, called Pediatric End-stage Liver Disease (PELD) score [5]. We do not differentiate
those metrics in our study.

Despite its prevalence, MELD score has two main drawbacks. First, MELD score does not explicitly consider the post-
transplant outcome [3, 6], which is an important metric for organ distributing decisions. Our experimental results show
that MELD score only has a very weak correlation with graft failure rate (i.e., the likelihood of graft failure occurs)
across genders and races with a Pearson correlation of only 0.36653 (see Table 2). Second, MELD score ignores the
features of organs and donors [3, 4], which may lead to injudicious organ assigning decisions. (detailed in Section 5.2).
As such, researchers are motivated to propose various substitute assignment strategies for liver transplant [7, 8].

Machine learning (ML) has provided data-driven solutions for the organ transplant task to better model post-transplant
outcomes. The key idea is to train an ML model that takes the features of patients and donors as input, and outputs the
predicted outcomes such as pre-transplant mortality, post-transplant mortality, etc. Then, the trained model is deployed
to predict a score for each patient-donor pair, which can help clinicians make decisions of organ transplant. Recently,
various ML models have been deployed and show promises in the organ transplant task [9, 10, 11]. For example,
Byrd et al. [12] use logistic regression and gradient boosting models to predict mortality in liver transplant. Lau et
al. apply neural network and random forest to predict graft failure after transplant [13]. Berrevoets et al. propose an
interpretable method for real-time organ allocation [14].

Unfortunately, recent studies suggest that ML models could be unfair and show bias against certain groups of people
in organ transplant. Several previous studies have discussed such fairness issues [15, 16, 17]. For example, Byrd et
al. [12] show that the scores predicted by ML models underrate the mortality of the female group. Our preliminary
experiments also show that the gap between GBDT’s positive prediction rates across different race groups can be as
large as 0.637 (see Table 3). The unfair predictions may cause unfair decisions towards specific race groups. Although
some pioneer works point out the unfair issue, there exists no concrete solution that can tackle such unfairness problem
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to the best of our knowledge. Thus, we are motivated to study the following research question: can we develop an ML
model that is both accurate and fair for the liver transplant task?

While fairness problems in machine learning have been widely investigated recently [18, 19], there are few attempts
to study the fairness problem in organ transplant tasks. Developing a fair ML system with competitive accuracy for
organ transplant remains a challenging task due to two roadblocks. Firstly, organ transplant datasets contain both dense
features (e.g., numerical lab test results) and sparse categorical features (e.g., blood type of recipients and donors). For
sparse features, the existing studies simply use one-hot encoding for transformation [20]. However, one-hot encoding
could lead to unsatisfactory performance when the feature cardinality is high due to the curse of dimensionality [21].
Secondly, it is challenging to incorporate fairness goals into the training process. Prior work mainly adopts tree-based
models [22, 23] for organ transplant prediction due to its strong performance on handling dense inputs. However,
existing bias mitigation algorithms mainly focus on the training process [18], including loss design and representation
learning [24, 25]; neither of them can be directly applied to tree-based models because of the indifferentiable property.

To tackle these challenges, we propose a fair ML framework for liver transplant. Specifically, we focus on the pre-
diction of liver1 transplant graft failure which is one of the most important post-transplant outcomes. Motivated by
the strong performance of DeepGBM [26] in recommendation tasks, we use an embedding layer to handle the sparse
features and a distillation network with distilled knowledge from a tree-based model to handle the dense features. This
design can not only combine the advantages of tree-based models and deep neural networks in handling the sparse
and dense features, but also enable us to apply in-processing debiasing techniques to achieve fairness. In particular,
we devise a two-step debiasing strategy that mitigates the fairness issues in both the knowledge distillation stage and
the end-to-end training stage. We demonstrate the superiority of our framework through extensive experiments on the
Standard Transplant Analysis and Research (STAR) dataset. Empirical results show that the proposed framework can
precisely and fairly predict graft failure across different races and genders.

2 Background of Fairness in Liver Transplant

In this section, we first describe fairness problems in liver transplant. Then we quantify the unfairness using the
fairness metrics adopted in the ML community.

Fairness of liver transplant. Following the existing fairness research in medical fields [27, 28, 29], we study fairness
in liver transplant at the group level and focus on race groups and gender groups. Specifically, a fair graft failure
predictor should allow patients of different races and genders to have an equal chance of receiving compatible organs.
However, fairness is a subjective term so that equal chance could have different interpretations. In this work, we
consider fairness defined from two perspectives. On one hand, we expect the patients in different groups to have an
equal percentage of being predicted as graft failed. In this sense, the patient in different groups will tend to equally
receive an organ if allocating organs based on the predicted score. On the other hand, ML models are expected
to provide an equal prediction quality for different groups, which can be quantified by true positive rates and false
positive rates of the graft failure prediction.

Fairness metrics. The above two fairness definitions correspond to two commonly used fairness metrics for ML mod-
els: demographic parity and equalized odds, where the former demands different groups to have an equal percentage of
a positive outcome, and the latter requires equal true positive and false positive rates. Specifically, we follow previous
work and quantify the degrees of demographic parity and equalized odds with demographic parity difference (DPD)
and equalized odds difference (EOD) [30], respectively. We put detailed mathematical definitions in Section 3.

3 Data and Problem Description

Dataset. The Standard Transplant Analysis and Research (STAR) organ transplant dataset is collected from patients
registered on the Organ Procurement and Transplantation Network (OPTN) waiting list, de-identified by removing all
the identifiers from data and randomly shifted dates under IRB protocol approval (HSC-MS-13-0549). It consists of
the biomedical information of both patients and organs/donors. The patients include the ones on the waiting list and the

1Liver and organ are considered exchangeable in this work when the context has no ambiguity.
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recipients who received organ transplants. The dataset also provides follow-up records of recipients’ post-transplant
outcomes. For the graft failure prediction task, we select 160360 recipients, where 41.8% of them suffer from graft
failure. We manually choose 40 features of recipients and 40 features from organs/donors. The race and gender of
each recipient are marked as sensitive attributes.

Notations. We denote scalars as lowercase alphabets (e.g., x), vectors as boldface lowercase alphabets (e.g., x), ma-
trices as boldface uppercase alphabets (e.g., X). We represent the liver transplant dataset as D = {(ri, si,oi, yi)}Ni=1,
where ri ∈ RMr denotes the features of the recipient (e.g., various kinds of lab test results, etc), si ∈ RMs denotes
the sensitive features of the recipient (e.g., the demographic information), oi ∈ RMo denotes the features of the organ,
and y ∈ {0, 1} denotes the post-transplant outcome describing whether the graft fails or not; here, Mr, Ms, and Mo

are the corresponding feature dimensions, and N is the total number of data points.

Objective. The goal is to train a model that takes ri, and oi as input, such that it can accurately predict yi and is
also fair w.r.t. the sensitive features si in terms of the fairness metrics. Previous studies have shown that, in most
times, improving fairness can harm the model performance [31]. Thus, a desirable model is expected to achieve a
good tradeoff and maximize prediction performance and fairness simultaneously.

Fairness metric definitions. We adpot two fairness metrics DPD and EOD [30] in our experiments, defined as follow:

DPD = diffsP (ŷ = 1|s), (1)
EOD = max[diffsP (ŷ = 1 | s, y = 1), diffsP (ŷ = 1 | s, y = 0)], (2)

where diffs specifies the difference between the largest and the smallest value among the ones across all s, ŷ is the
model prediction, where y = 1 represents the positive outcome, e.g., graft failed. Specifically, DPD measures the
performance gap between the positive outcomes across all groups, while EOD measures the gap between true positive
rates or false positive rates based on the confusion matrix across all groups.

4 Methodology

In this section, we propose our method for fairly predicting graft failure. Figure 1 shows the workflow, which consists
of data processing, prediction model, and fairness-aware training. Firstly, we will introduce how we process the data
to extract sparse and dense features from recipients and organs (Section 4.1). Then we introduce a tailored framework
that takes the advantage of tree-based models and deep neural networks to make accurate predictions (Section 4.2).
Finally, we present a two-step debiasing strategy to achieve fairness (Section 4.3).

4.1 Data pre-processing

Following the data pre-processing practice in machine learning, we first impute the missing values. Specifically,
we use zeros to replace the missing values for the numeric data. Then we identify the categorical features (i.e., the
features that only have a fixed number of values) and numerical features from the recipient and organ features. For
the categorical features, we employ two kinds of encoders, including a one-hot encoder that maps the raw features to
one-hot sparse vectors, and an integer encoder which transforms the categorical features into numerical values, where
the latter are further concatenated with the original numerical features to serve as the final dense features.

4.2 Combining deep learning and tree-based model for graft failure prediction

In previous works, tree-based methods such as random forest [13] have been adopted for graft failure prediction. How-
ever, the input space of graft failure prediction consists of both sparse categorical features and dense numerical ones.
While tree-based methods often show strong performance on the dense features, they can hardly deal with the sparse
features when the feature cardinality is high due to the curse of dimensionality [21]. In addition, it is quite difficult to
incorporate fairness constraints into the tree-based methods. To tackle these challenges, we propose to combine deep
learning and tree-based model for graft failure prediction. Our method is motivated by the success of DeepGBM [26]
in recommendation tasks, where an embedding layer and a distillation network with distilled knowledge from a tree-
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Figure 1: An overview of the workflow for graft failure prediction.

based method are employed to handle the sparse and dense features, respectively. We will first elaborate on how we
process the sparse and dense features, and then introduce the end-to-end training objective.

Sparse features. The sparse features from the recipient and the organ are combined and processed by a categorical
neural network (CatNN) [32, 33], which is an embedding lookup layer that maps categorical indices to dense vectors,
followed by feature interactions. Formally, given a recipient r and an organ o, we denote the combined sparse features
within r and o as xs. The embedding of a sparse feature can be denoted as

EVj
(xs

j) = embedding layer(xs
j ,Vj), (3)

where xs
j is the value of the jth sparse feature of xs, Vj ∈ Rc×d stores all the trainable embedding vectors of

the jth sparse feature, and c and d are the cardinality and the dimension of the embedding table, respectively. Then a
factorization machine (FM) is adopted to learn the first/second-order interactions of these features, denoted as Efm(x

s),
and a deep neural network is applied to learn the higher order interactions of these features, denoted as Edeep(x

s). For
more details of FM and the deep neural network, please refer to Eq. (2) and Eq. (3) in [26]. The output of FM and the
neural network are summed to obtain the final sparse representations:

yCatNN(x
s) = Efm(x

s) + Edeep(x
s) (4)

Dense features. Similarly, we combine the dense features of recipient r and organ o, denoted as xd. To take the
advantage of the tree-based models in handling dense features, we train a neural network to distill the knowledge from
a trained tree-based model [34]. This is not an easy task because the structures of the trees and neural networks are
naturally different. Fortunately, Ke et al. [26] proposes an effective tree distillation strategy by distilling the clustering
patterns of the leaf nodes. First, since tree-based methods often do not use all the features but instead greedily choose
the useful features, we only select the used features of a tree to train the neural network. Formally, let NNdense be
the neural network for processing the dense features, I be the indices of the features that are used in the tree, and
xd[I] denote the used dense features. Then NNdense will take as input xd[I]. Second, we train NNdense by distilling
the knowledge of how the tree partitions the data. Specifically, a tree-based model essentially partition the data into
different clusters, where the data in the same leaf node belong to the same cluster. We train NNdense to distill the
knowledge from such tree structure by minimizing the following loss function:
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LKD =

N∑
i=1

mse(NNdense(x
d
i [I]), ci), (5)

where ci is the one-hot encoded cluster of the ith instance, cross-entropy(·, ·) is the cross-entropy loss. Due to the
strong expressiveness of deep neural networks, NNdense can well approximate the tree structure. Given NNdense, the
dense representations can be obtained by

yKD(x
d) = NNdense(x

d
i [I])× q, (6)

where q is the leaf values of the tree. For multiple trees, we learn leaf embedding to reduce the dimension of ci and
group the trees to reduce the number of neural networks following [26]. The leaf embeddings are trained independently
based on the tree-based model and will be used as dense representations in the end-to-end training.

End-to-end training. The final output is obtained by combining sparse and dense representations, given as

ŷ(x) = σ
(
w1 × yKD(x

d) + w2 × yCatNN(x
s)
)
, (7)

where w1 and w2 are trainable parameters to balance the two representations, x is combined sparse and dense features
from r and o, and σ(·) is the transformation function, such as Sigmoid. Finally, we can train the model in an end-to-end
fashion with the following loss:

L =

N∑
i=1

cross-entropy(ŷ(x), y). (8)

4.3 Bias mitigation

This subsection proposes a two-step debiasing strategy to mitigate the unfairness in the distillation stage and the final
training stage, where the former focuses on the bias inherited from the tree-based model when performing knowledge
distillation, and the latter aims to achieve fairness in the end-to-end training.

Fairness loss. Motivated by the successes of in-processing methods in debiasing machine learning models [24, 25],
we use fairness loss to incorporate demographic parity in model training. Specifically, we propose the following loss:

fairness-loss(ŷ, smaj) = (E[ŷ]− E[ŷ|smaj])
2 (9)

where ŷ is the prediction, smaj is the majority group, E[ŷ] is the expected prediction regardless of the sensitive groups,
E[ŷ|smaj] is the expected prediction of the majority group. The key idea is to enforce all the sensitive attributes to have
similar prediction distributions like the majority group. In training, E[ŷ] and E[ŷ|smaj] can be approximated with a
batch of data. Thus, Eq.9 can be naturally applied to the min-batch training of deep learning models.

Two-step debiasing. We propose to debias both the categorical neural network and the network for dense features. In
the first step, we achieve fair knowledge distillation by plugging in Eq. 9 into Eq. 5:

LKD =

N∑
i=1

cross-entropy(NNdense(x
d
i [I]), ci) + αKG × fairness-loss(yKD(x

d), smaj), (10)

where αKG is a hyperparameter to balance prediction performance and fairness. In the second step, we incorporate the
fairness constraint into the end-to-end training. Specifically, we similarly debias Eq. 8 with

L =

N∑
i=1

cross-entropy(ŷ(x), y) + α× fairness-loss(ŷ(x), smaj), (11)

where α is a balancing hyperparameter. These two debiasing steps complement each other towards fair final predic-
tions, where the first step focuses on the dense representations which serve as the input of the end-to-end training, and
the second step debiases the CatNN and the embedding tables.
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Race MELD-score Number of people Receiving rate Graft failure rate
Male Female Male Female Male Female Male Female

I 20.05852 20.36856 89700 49815 0.56405 0.49941 0.32300 0.29592
II 21.56156 22.74271 10209 8131 0.60251 0.57004 0.36482 0.34067
III 21.14621 21.49130 18282 12074 0.51400 0.47176 0.27754 0.26194
IV 17.82069 19.35089 5878 3095 0.53215 0.53312 0.24616 0.25818
V 22.13557 23.38609 686 676 0.54082 0.44822 0.28032 0.28713
VI 22.20161 19.42105 248 152 0.50000 0.55263 0.26613 0.29762
VII 19.80120 20.59470 664 491 0.63253 0.60285 0.26905 0.27703

Table 1: Statistical information from liver transplant dataset

5 Experiment

In this section, we perform analysis on the datasets and conduct experiments to evaluate the proposed framework. We
mainly focus on the following research questions:

• RQ1: Does MELD score align with the post-transplant outcomes for different races and genders (Section 5.2)?

• RQ2: Can the proposed framework makes accurate and fair predictions of the graft failure (Section 5.3)?

• RQ3: How does each stage of debiasing contribute to the fair predictions (Section 5.4)?

5.1 Experimental setting

Baselines. To better demonstrate the effectiveness in prediction performance and debiasing, we choose two categories
of baselines. The first is traditional clinical method, which is MELD score in our experiments. We use the Logistic
Regression [35] as a classifier with MELD score as the input. The second category is machine learning models, where
we use Logistic Regression, Random Forest [36] and GBDT [37].

Evaluation protocol. For a fair comparison, all the machine learning methods are tested under the same setting
as follows: the dataset are randomly splited for 5-fold cross-validation for training and testing. The input of all
models are the same 80 features selected based on patient and organ/donor’s pre-transplant status. The area under the
receiver operating characteristic curve (ROC AUC) is employed as the metric to measure the prediction performance.
Meanwhile, two fairness metrics, demographic parity difference (DPD) and equalized odds difference (EOD) are used
to evaluate the fairness of prediction towards different groups.

Implementation details. We implement baseline methods with scikit-learn [38] and the proposed method with Py-
Torch. The model is trained on Tesla V100 GPU. The knowledge distillation and end-to-end training stages are both
trained for 10 epochs. We use Adam [39] as optimizer for knowledge distillation and AdamW [40] for end-to-end
training. The learning rate is set as 0.001 in both steps.

5.2 Statistical analysis of the liver transplant dataset

For statistical analysis, we select the patients from 7 main races and 2 genders with recorded MELD scores. There
are 14 subgroups intersected by races and genders. The average MELD score and the total number of people of each
divided subgroup are calculated in Table 1. We can observe there are obvious gaps between each subgroups’ MELD
score. The minimum MELD score is only 76.2% of the maximum MELD score. Additionally, the size of majority
races is much larger than minority races.

Due to the variety existing in each subgroup’s MELD score and group size, we take two perspectives that correspond
to the organ receiving rate and graft failure rate to better investigate the liver transplant task.

• Organ receiving rate (ORR) represents the chance of a group of patients on the waiting list to receive organs.
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Figure 2: Population size and average MELD score across races and genders.
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Figure 3: Average organ receiving rate and graft failure rate across races and genders.

We use the accumulated samples on the waiting list recorded receiving liver transplants based on the MELD
score as the number of receiving patients for each subgroup, denoted as nr. The receiving rate is calculated by
dividing them by the total number of people in this group registered on the waiting list, denoted as nw.

• Graft failure rate(GFR) reflects the percentage of graft failed for a group of patients who have received the
transplant liver. We count the recorded graft failure samples, denoted as nf , and divide it by the number of
patients who already received organs, denoted as nr. These two metrics provide an intuitive measure to explore
organ assigning and post-transplant outcomes, which are the most essential stages in the liver transplant task.

Formally, these two metrics can be denoted as:

ORR =
nr

nw
;GFR =

nf

nr
. (12)

For the organ receiving rate, we can observe from the organ receiving rate column in Table 1 that obvious gaps exist
between organ receiving rate of different subgroups. The highest receiving rate is 0.63253 of subgroup interacted by
race VII and male, while the lowest receiving rate is 0.44822 of subgroup interacted by race V and female. However,
the latter subgroup’s average MELD score is significantly higher than the former subgroup. This means the latter

MELD-score Population size
Organ receiving rate -0.32376 -0.02243

Graft failure rate 0.36653 0.33444

Table 2: Pearson correlation between demographic information and liver transplant metrics
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Model Sensitive attribute: Race Sensitive attribute: Gender
ROC AUC DPD EOD ROC AUC DPD EOD

MELD-score 0.505±0.000 — — 0.505±0.000 — —
Logistic Regression 0.777±0.000 0.648±0.017 0.834±0.007 0.777±0.000 0.021±0.000 0.033±0.001

Random forest 0.804±0.000 0.630±0.030 0.703±0.047 0.804±0.000 0.020±0.001 0.036±0.001
GBDT 0.809±0.000 0.637±0.027 0.713±0.033 0.809±0.000 0.017±0.000 0.031±0.001

W/o first-step 0.793±0.000 0.596±0.022 0.687±0.038 0.792±0.000 0.016±0.002 0.027±0.002
W/o second-step 0.793±0.001 0.616±0.041 0.745±0.076 0.793±0.001 0.014±0.007 0.026±0.009

Ours 0.792±0.000 0.597±0.015 0.662±0.029 0.793±0.001 0.011±0.001 0.022±0.003

Table 3: Comparison of prediction and fairness performance on graft failure prediction

subgroup should have higher priority on the waiting list, which contradicts our findings from the observed data. This
phenomenon indicates the MELD score does not align with organ receiving rate. As presented in Table 2, the Pearson
correlation between organ receiving rate and MELD score is −0.32376. This means the MELD score has no close
relation with the organ receiving rate from the group-level analysis.

For the graft failure rate, we can observe that notable gaps exist between graft failure rates across different subgroups
as shown in the graft failure rate column in Table 1. The subgroup with the highest graft failure rate is the male race II
subgroup with a 0.36482 graft failure rate. The lowest graft failure rate exists in race IV male groups, which is 0.24616.
The MELD score of the latter subgroup is smaller than the former subgroup. It suggests better pre-transplant medical
condition, which may explain the lower graft failure rate. To quantify and further look into the relations between
MELD score and graft failure rate, we calculate the Pearson correlation between them. The Pearson correlation is
still very weak as shown in Table 2. It implies the MELD-score cannot indicate group-level graft failure rate at the
post-transplant stage.

To summarize, we analyze two main components of organ transplant statistically, the organ assignment and post-
transplant outcome. The results show remarkable gaps across subgroups in both two components, which indicates a
strong bias existing in organ transplant systems.

5.3 Results of prediction and fairness performance

We conduct experiments to compare the prediction and fairness performance of the proposed method with multiple
baseline methods (Table 3). The key observation is that the proposed model can provide competitive prediction
performance with less bias across subgroups.

Compared with the MELD score, we observe that machine learning models show much stronger prediction capability
of graft failure. The poor graft failure prediction performance of MELD score aligns with the weak correlations
between MELD score and graft failure rate from statistic analysis in Table 2. The tree model has better and less biased
prediction performance than linear model. This may be caused by the tree model’s internal selection of features, which
could implicitly omit some features with bias.

Compared with baseline machine learning methods, when the sensitive attribute is race, the proposed method can
significantly debias the prediction with only 2.1% decreases of ROC AUC, while the two fairness metrics decrease by
5.5% averagely. As for gender, the ROC AUC decreases only 2.0%, however, the two fairness metrics decrease by
32.2% on average. Recall that the parity loss we applied is based on the demographic parity. In Table 3, we observe
improvement not only on DPD but also on EOD. This can validate the effectiveness of our debiasing method, which
can generally mitigate the unfairness issues.

5.4 Ablation study

To validate the effectiveness of our two-step debiasing strategy, we conduct ablation study to investigate the contribu-
tion of each component. From Table 3, we observe that by only adding the debiasing method in knowledge distillation
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step (first step), the proposed model can only improve the DPD metrics. When only debiasing the end-to-end training
step, both fairness metrics improve to some extent. The model achieves the best debiasing performance when the
two debiasing steps are combined. This is because the knowledge-distilled embedding and end-to-end training are
interleaved, which verifies the necessity of the two-step debiasing strategy.

6 Conclusion and future work

This paper aims at fair graft failure prediction for developing unbiased organ assigning strategy. A two-step knowledge
distillation framework is built to encourage fair prediction towards different groups while preserving competitive
performance. The fair and competitive prediction performance of the whole framework has been experimentally
signified on graft failure prediction dataset. In the future, we will investigate and identify more fairness issues such as
intersection fairness problem. Furthermore, we will continue designing debiasing methods for liver transplant tasks,
fairness problem discovered from the liver transplant task can also inspire research on other organ transplant systems.
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