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Abstract 

Identifying disease-gene associations is important for understanding molecule mechanisms of diseases, finding 
diagnostic markers and therapeutic targets. Many computational methods have been proposed to predict disease 
related genes by integrating different biological databases into heterogeneous networks. However, it remains a 
challenging task to leverage heterogeneous topological and semantic information from multi-source biological data 
to enhance disease-gene prediction. In this study, we propose a knowledge graph-based disease-gene prediction 
system (GenePredict-KG) by modeling semantic relations extracted from various genotypic and phenotypic databases. 
We first constructed a knowledge graph that comprised 2,292,609 associations between 73,358 entities for 14 types 
of phenotypic and genotypic relations and 7 entity types. We developed a knowledge graph embedding model to learn 
low-dimensional representations of entities and relations, and utilized these embeddings to infer new disease-gene 
interactions. We compared GenePredict-KG with several state-of-the-art models using multiple evaluation metrics. 
GenePredict-KG achieved high performances [AUROC (the area under receiver operating characteristic) = 0.978, 
AUPR (the area under precision-recall) = 0.343 and MRR (the mean reciprocal rank) = 0.244], outperforming other 
state-of-art methods. 

1. Introduction 

Disease related gene detection is important for disease mechanism understanding and treatments1,2. Traditional 
approaches such as genome-wide association studies and linkage analysis were used for discovering disease-related 
gene3,4. In the past few decades, computational methods have been developed to prioritize candidate genes for 
diseases5-8. Network-based computational methods are commonly used for inferring disease-gene associations. The 
main intuition behind network-based models is that similar genes are more likely to be associated with a similar set 
of diseases and similar diseases tend to share similar genes9,10. Kohler et al. 11 presented a random walk method for 
prioritization of candidate genes by use of a global network distance measure for definition of similarities in protein-
protein interactions. Maji et al.12 proposed a gene selection algorithm by maximizing the relevance and functional 
similarity of the selected genes to identify disease related genes. Xu et al. constructed contest-sensitive networks 
(CSNs)13 by directly connecting diseases with associated phenotypes and used a network-based ranking algorithm to 
predict disease genes associations. Chen et al.14 constructed a gene-centric heterogeneous network based on gene 
associated phenotypes, functions of the gene products and anatomical location of gene expression, and further 
developed a graph-based method to predict gene-disease associations. However, due to the complexity and high 
dimensionality of biomedical data, how to make more effective use of the semantic knowledge embedded in the 
heterogeneous data resources remains a challenging problem in disease-gene prediction.  

Recently knowledge graphs (KGs) have emerged as an effective way to integrate various data sources and model 
complex semantic relationships15,16. KGs have been used for drug repurposing, drug toxicity prediction and drug-
target prioritization17-21. In this study, we developed a KG-based system for disease gene prediction. We first 
constructed a knowledge graph that consisted of more than 2,000,000 semantic inter-connections between drugs, 
genes, diseases, and phenotypic annotations from 10 data resources including publicly available genetic and genomic 
databases, ontologies, health records of patients, FDA drug labels, published research articles, and clinical trial studies. 
We then developed a deep learning framework to embed the knowledge graph into low-dimensional latent vectors and 
utilized these embeddings to predict novel disease-gene associations. We conducted extensive experiments to compare 
GenePredict-KG with several state-of-the-art models using multiple evaluation metrics.  
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2. Data and Method 

2.1 Data 

The knowledge graph was built from publicly available databases as well as knowledge bases that were constructed 
from published biomedical literature and patient health records using natural language processing and data mining 
techniques. Figure 1 showed the semantic descriptions and distributions of all relationships in the knowledge graph. 
We first collected nine types of phenome-level associations from several public databases. Human Phenotype 
Ontology (HPO) 22 provides a standardized vocabulary of phenotypic abnormalities that have been seen in human 
disease. We obtained Gene-human phenotype (HP) and Disease-HP pairs from HPO. The SIDER23 database 
provides information on marketed medicines and their recorded adverse reactions. We extracted Drug-side effects 
(SE) associations from the SIDER database. Genotype-Tissue Expression (GTEx)24 database provides the relationship 
between genetic variants and gene expression in multiple human tissues and across individuals. We chose a cutoff of 
4.0 transcripts per million as threshold14 to extract genes expressed in each tissue and mapped each tissue to the Uberon 
Anatomy Ontology25 to obtain Gene-Uberon Tissue associations. The Gene Ontology Annotation (GOA) 26 database 
provides annotations to the UniProt Knowledgebase using the standardized vocabulary of the Gene Ontology. We 
downloaded GO annotations (GOA) from the GO database and extracted Gene-GOA associations. Phenomebrowser27 
is a platform that aggregates phenotype connections with biomedical concepts and provides drug-phenotype dataset 
which include Mammalian Phenotype (MP) Annotations28 and Human Phenotype (HP) Ontology associating drugs. 
We extracted Drug-MP and Drug-HP associations from Phenomebrowser. Mouse Genome Informatics (MGI)29 
database provides access to data on the genetics, genomics, and biology of the laboratory mouse to facilitate the study 
of human health and disease. We extracted Gene-MP and Disease-MP associations from MGI. DrugBank30 is a 
comprehensive online database that provides information on drugs and drug targets. We obtained Drug-Gene 
associations from DrugBank. The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING)31 captures 
protein-protein interactions from over 5K different organisms. Gene-Gene associations was extracted from STRING. 
We also extracted genotypes and diseases from MGI and mapped each mouse gene to its human ortholog using mouse-
human orthology to construct Gene-Disease pairs. 

 
Figure 1. Summary of relationship themes and their distributions in the knowledge graph. 

In addition, two types of disease and drug relationships were obtained from published biomedical literature, clinical 
trial reports, FDA drug labels and patient health records. In our previous studies32, we extracted disease-comorbidity 
pairs from FAERS, a large-scale database that contains patient diseases, medications, drug adverse events, 
demographics of 17 million case reports33, using Frequent Pattern (FP)-growth algorithm34. Our previous studies also 
constructed TreatKB which included drug-disease treatment relationships mined by NLP techniques from records of 
patients in FAERS, FDA drug labels, MEDLINE abstracts and clinical trial studies35,36.  

Table 1 highlighted entity types and the number of entities extracted from each database. To integrate data from 
different data resources, we mapped each entity to an identifier using standard biomedical terminologies. Drug names 
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were mapped to their active ingredients using PubChem identifiers. Gene symbols were standardized based on Entrez 
gene37 identifier provided by the Entrez database. Diseases that were represented using their OMIM (online mendelian 
inheritance in man)38 identifiers in MGI and HPO databases were mapped into UMLS (unified medical language 
system)39 CUIs (Concept Unique Identifiers)40. Disease names in the disease comorbidity knowledge base that we 
constructed from FAERS have already been mapped to UMLS CUIS in our previous studies32-33.  Drug entities and 
disease entities in TreatKB have also been mapped to their CUIs in UMLS35,36.  Drug and side effect names in SIDER 
are standardized to their corresponding UMLS CUIs23. The standardized knowledge graph contained 73,358 nodes, 
2,292,609 edges, 7 node types, and 14 semantic relationships. The distribution of relationships is shown in Figure 1. 
For example, the “Disease-Gene” relationship occupies 0.36% (8,200/2,292,609) in the knowledge graph.  

Table 1. The type-wise distribution of the entities in the original database. 

DataSource Drug Gene Disease GO Terms MP UBERON 
Tissues HP 

HPO - 4,730 7,172 - - - 9,418 
SIDER 1.430 - 4,251 - - - - 
GTEx - 16,579 - - - 51 - 
MGI - 12,707 4,548 - 9,936 - - 
GOA - 16,283 - 15,924 - - - 

Phenombrows
er 

1,429 - - - 1,363 - 3,003 
DrugBank 984 1,365 - - - - - 
STRING - 15,664 - - - - - 
FAERS - - 924 - - - - 
TreatKB 1,973 - 6,988 - - - - 

 

2.2 GenePredict-KG: model, training, evaluation 

The overall architecture of GenePredict-KG is shown in Figure 2. The encoder of GenePredict-KG represents entities 
by aggregating connected entities and relations in the knowledge graph. With node and relation embeddings as the 
input, the decoder is used to represent the relations by recovering the original triplets in the knowledge graph. More 
specifically, we first define the knowledge graph as, 

𝐺 = (𝑉, 𝐸, 𝑋, 𝑅)                                                                             (1) 

where 𝑉 and 𝐸  denote the set of entities and relations, respectively. 𝑇 ⊆ 𝑉 × 𝐸 × 𝑉 denotes the set of triplets, 𝑋 
representes features of nodes, 𝑅 denotes features of relations. The encoder takes 𝐺 as input and learns embeddings of 
entities and relations by aggregating multi-relational information in the knowledge graph. Given an entity 𝑣 and a 
relation 𝑟, the decoder is input with node embedding ℎ! and relation embedding ℎ" generated by the encoder and 
predicted another suitable entity composing a correct triplet. We formulate the encoding and decoding part in the 
following sections. 

Encoder 

The encoder module is based on composition-based multi-relational graph convolutional networks (CompGCN)42 to 
aggregate the amount of information from neighboring entities and relations to learn representations of entities and 
relations. As shown in Figure 2, for capturing multi-hop dependencies in the knowledge graph, the encoder stacks 
several convolutional layers and treats the knowledge graph as multiple single-relational subgraphs where each 
subgraph entails a specific type of relations.  

For the first layer, the relationship between two adjacent nodes is determined by their relation embedding for each 
edge type. We define separate filters for each of them. The update equation of node embedding is given as:  

ℎ!# = 𝑓(∑ 𝑊$
#𝜓(𝑥%, 𝑧"))%,"∈((!)                                                                  (2) 

where 𝑥%  , 𝑧"  denote initial features for node 𝑢  and relation 𝑟  respectively, 𝑓  is an activation function, 𝜓(∙) is a 
composition operator,  ℎ!#  denotes the updated representation of node 𝑣 at first layer, and 𝑊$

#  is relation-specific 
coefficient matrix at the first layer.  
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Figure 2 Overview of GenePredict-KG. For encoder, a stack of multiple graph convolutional layers embeds both 
entities and relations into a low-dimensional embedding space. For decoder, ℎ!and ℎ" are fed into the model and the 
model outputs embedding ℎ+through the three operations. Then ℎ+ is matched with all candidate embeddings via inner 
products. A logistic sigmoid function is used to get predicting scores.  

The relation embeddings are also transformed as follows:  

ℎ"# = 𝑊",-
# 𝑧"                                                                              (3) 

where 𝑊",-
#  is a learnable transformation matrix which projects all the relations to the same embedding space as nodes 

and allows them to be utilized in the next layer.  

Let ℎ!-  represents the input vector of the entity 𝑣 in the 𝑙-th layer. If there are a total of 𝑙 layers in the encoder, the 
output ℎ!-.# of the 𝑙-th layer is the final embedding of node 𝑣. Hence, the output of 𝑙-th layer for entity 𝑣 can be written 
as follows: 

ℎ!-.# = 𝑓(∑ 𝑊$
-𝜓(ℎ%- , ℎ"- ) 	+	𝑊/-ℎ!- )%,"∈((!)                                                   (4) 

where 𝑊/- is self-specific coefficient matrix. 

Similarly, let ℎ"-.# denote the representation of a relation 𝑟 after 𝑙 layers. Then,  

ℎ"-.# = 𝑊",-
- ℎ"-                                                                             (5) 

Decoder 

The decoder is based on the InteractE model43 to infer unseen interactions by defining a score function 𝜙(𝑣, 𝑟, 𝑠) for 
each triplet. This optimization aims to generally score a correct triplet higher than incorrect triplets. 

The decoder first utilizes multiple permutations to capture more possible feature interactions preserved in the 
embeddings of entity and relation. It generates 𝑡-random permutations of both ℎ! and ℎ" as, 

	𝑃0 	= 	 [(ℎ!#, ℎ"#); . . . ; (ℎ!0 , ℎ"0)]	                                                             (6) 

Then the decoder applies chequer reshapes as the reshaping operation. Thus, 

𝜑(𝑃0) 	= 	 [𝜑(ℎ!#, ℎ"#); . . . ; 𝜑(ℎ!0 , ℎ"0)]                                                       (7) 

where 𝜑(∙) is the reshaping function capturing maximum heterogeneous interactions between entity and relation 
features. 

Finally, the decoder stacks the reshaped matrices into a 3D tensor, that is then processed with depth-wise circular 
convolution. The output of each circular convolution is flattened and concatenated into a vector. The decoder projects 
this vector to the embedding space. Formally, the score function is defined as follows:  

𝜙(𝑠, 𝑟, 𝑜) 	= 	𝑔(𝑣𝑒𝑐(	𝑓(𝜑(𝑃0) 	⊕ 	𝑤	)	)	𝑊1	)	ℎ+                                         (8) 

where ⊕	denotes depth-wise circular convolution, 𝑣𝑒𝑐(·)  denotes vector concatenation, ℎ+  represents the object 
entity embedding and 𝑊1	is a learnable weight matrix. 𝑤	 ∈ 	𝑅2×2 is a convolutional kernel of size 𝑘. Functions 𝑓 and 
𝑔 are chosen to be ReLU and sigmoid respectively.  
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Model Training 

The GenePredict-KG is a knowledge graph embedding model that follows the multi-phase procedure to learn a vector 
representation for entities and relation of a knowledge graph. First, the model initializes its embeddings with random 
noise. It then updates them by iterative learning on the training data. In each training iteration (e.g., epoch), the model 
splits the training data into mini-batches and executes its learning pipeline over each batch. The learning pipeline of 
the model learns the embeddings of entities and relations by maximizing the scores of true triples and minimizing 
false triples. 

We used the standard cross entropy loss as loss function. These losses were used by Adam optimizers to generate 
gradients and updated embeddings and parameters. Hyperparameters for GenePredict-KG were tuned using the grid 
search on the validation set. We tuned the learning rate {0.0001, 0.001, 0.01}, embedding dimensions {100, 200, 400}, 
Number of GCN Layer {1, 2, 3}, batch size {64, 128, 256}, and dropout {0.1, 0.2, 0.3}. The optimal values were 
selected based on MRR results. We first checked whether the number of GCN layers affected the performance or not. 
We found that deeper GCN layers did not highly improve the performance and can largely increase of computational 
cost. Thus, the number of GCN layers was set to 1. We also investigated the influence of embedding dimensions. 
Increasing embedding dimensions can boost the performance. But the gain was marginal. Too large dimension of 
embedding was a burden on memory and computation. Thus, the dimension of both hidden layers and the latent vectors 
were all set to 200. The size of the mini-batch was set to 128. The learning rate was set to 0.001. To avoid overfitting, 
we used dropout after each convolution layer with the drop rate of 0.1 in the embedding module and 0.3 in the 
predicting module. This procedure was performed iteratively for 500 iterations. 

Evaluation and Comparison  

We conducted cross validation to evaluate the model performance on disease-gene prediction. All disease-gene 
associations were randomly shuffled five times, and were spitted into training (80%), validation (10%) and test (10%) 
set in each round. We used each training set to build the model, used each corresponding validation set to optimize 
the parameter setting of the model, and used the test set to verify the model performance and report results. This 
procedure was repeated five times. In each testing configuration, we used the known disease-gene interactions as 
positives, and all other possible combinations between genes and diseases as negatives. We compared our model with 
several state-of-the-art knowledge graph embedding methods for the task of disease-gene prediction, including 
TransE44, and HRGAT21. TransE was a knowledge graph embedding model for link prediction that has been applied 
in drug repurposing and drug target prediction17,19,20. HRGAT was a graph neural network-based method to learn 
knowledge graph embedding for drug-disease and disease-gene predictions. 

We also compared GenePredict-KG with traditional network-based methods, including the context-sensitive networks 
(CSN)-based approach that we have recently developed13. The CSNs modeled biomedical relationships by taking into 
account their context-specific semantics. We have showed that CSN-based approaches performed better than 
similarity-based network approaches in both disease-gene prediction13, drug target prediction45 and drug 
repurposing46.  

We also provided a comprehensive comparison of GenePredict-KG with two state-of-art disease-gene predicting 
systems including DL2Vec14 and SmuDGE47. DL2Vec integrated a variety of gene-related information to construct a 
heterogeneous network including gene associated phenotypes, functions of the gene products and anatomical location 
of gene expression. It utilized several machine-learning models for disease-gene based on the heterogeneous networks. 
SmuDGE exploited ontologies and knowledge graphs to learn representations of genes, gene products and diseases, 
based on the phenotypes they are associated with. These representations were further be used to predict gene-disease 
associations. 

We used several widely used metrics17,21,45,48 to comprehensively evaluate and compare the performance of 
GenePredict-KG to other methods. These metrics included Hits@N, the mean reciprocal rank (MRR), area under 
receiver operating characteristic curve (AUROC) and area under precision-recall curve (AUPRC). Hits@N is the hit 
percentage of true samples in a test set being ranked by a model within the top N positions, it evaluates the ability for 
“early recognition” of true predictions. MRR is the average inverse rank for true samples. A higher MRR value 
indicates a better model.   

3. Results 

We first tested GenePredict-KG and compared it with several state-of-art knowledge graph embedding methods on 
the same knowledge graph. TransE was a translation-based method for link prediction, which employs a transitional 

472



  

characteristic to model relationships between entities. HRGAT was a graph neural network-based method which used 
global network structure and domain features embedded in knowledge graph to predict new interactions. As shown in 
Figure 3, GenePredict-KG outperformed the TransE by 7.3% (Hit@1), 5.9% (MRR), 2.0% (AUROC) and 3.4% 
(AUPR). It also improved over HRGAT with 3.3% on MRR and 2.9% on AUPR. This validated GenePredict-KG 
captured rich heterogeneous topologic and semantic information preserved in the entity and relation embeddings can 
better infer disease-gene associations. 

 
Figure 3 Overall predictive performance of disease-gene associations on the proposed knowledge graph 

We compared GenePredict-KG with CSN-Rank based on the same datasets that CSN-Rank used. CSN-Rank predicted 
disease-gene associations based on a random walker in context sensitive networks and achieved a better performance 
than similarity-based network approaches13. GenePredict-KG aimed to learn low-dimensional representations of 
entities and relations and further utilized these representations for disease-gene predictions. Results were shown in 
Figure 4. The GenePredict-KG outperformed CSN-Rank in terms of Hits@N and MRR. In addition, GenePredict-KG 
consistently got a better performance, with 0.4% higher AUROC and 3.3% higher AUPR than CSN-Rank. It indicated 
that GenePredict-KG can better preserve the topologic and semantic feature information to low-dimensional entity 
embeddings which enhanced disease-gene prediction. 

 
Figure 4 Evaluation results for predicting gene-disease associations using CSNs. 

To further evaluate the proposed system performance, we compared GenePredict-KG with state-of-art disease-gene 
prediction systems. Chen et al.14 constructed a heterogenous networks (HNs) and used several machine learning 
models to predict disease-gene associations. They conducted cross-validation for disease-gene prediction. Within each 
split, they used 10% of the data as the test data to report the results and used the other 90% data to train the model and 
tune its parameters. We selected DL2Vec and SumDGE with excellent performance on HNs as baselines. The HNs 
shared the same disease-gene associations with our proposed knowledge graph. We followed the same data splitting 
process to divide the disease-gene associations in our proposed knowledge graph and trained GenePredict-KG. Results 
were summarized in Table 2. DL2Vec got the highest score of Hits@10. Our GenePredict-KG model improved upon 
DL2Vec’s Hits@1 by a large margin of 14.1%, and upon SumDEG’s Hits@1 by a large margin of 15.0%. 
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GenePredict-KG also achieved a competitive performance with DL2Vec and SumDEG in terms of AUROC. 
Compared with HNs, GenePredict-KG had more gene-related and disease-related edge types that can form more paths 
between genes and diseases, which potentially improved predicting performance. In addition, the embeddings of genes 
and disease learned by our model effectively integrated heterogeneous information from multiple type of entities and 
relations, hence, was useful for providing accurate disease-gene predictions. 

Table 2. Disease-gene predicting performance of GenePredict-KG and two baseline models. 

Model Hits@1 Hits@10 Hits@100 AUROC 
SumDGE* 0.028 0.214 0.582 0.973 
DL2Vec* 0.037 0.255 0.637 0.976 

GenePredict-KG 0.178 0.362 0.596 0.978 
*Results were adopted from the reference16. 

4. Discussion and Conclusion 

In this study, we built a knowledge graph-based predicting system, called GenePredict-KG, to integrate diverse 
information from different sources to predict novel disease-gene associations. We first constructed a large-scale 
knowledge graph which contained over 2,000,000 interconnections between more than 70,000 entities including 
drugs, genes, diseases, and phenotypic annotations. We then developed a knowledge graph-based predicting system, 
GenePredict-KG, to predict disease-associated genes. GenePredict-KG was validated on two datasets and compared 
with state-of-the-art methods using several evaluation metrics. We demonstrated that GenePredict-KG achieved high 
performances and outperforming other state-of-art methods. 

GenePredict-KG has several limitations that warrants further investigation. First, the underlying knowledge graph of 
GenePredict-KG is un-weighted and the encoder integrated information from all neighboring entities with equal 
weights to learn knowledge graph embeddings. However, not all neighbors have the same contribution to the 
prediction target. Currently we are experimenting with adding a self-attention layer to the encoder to assign different 
weights to neighbors to learn more robust embeddings enhancing the accuracy of disease-gene prediction. Second, we 
currently treated all genes that are not known to be associated with a given disease as negatives. That can result in 
data class imbalance (negatives outnumber positives) as well as a high rate of false negatives. In the future, we will 
utilize several rational sampling methods49,50 to reduce data imbalance to improve predicting performance. Third, the 
predicted disease-gene relationships are associational. Additional works are necessary to further establish the causal 
relationships between genes and diseases as well as if a gene is a driver or an effector for a given disease. Finally, we 
have evaluated the performance of GenePredict-KG using standard cross-validation based on known disease-gene 
associations. However, how GenePredict-KG in identifying truly novel (and unknown) disease-gene associations 
remains unknown. 

In summary, GenePredict-KG incorporated a large amount of semantic knowledge from multiple data resources and 
the knowledge graph embedding was able to learn low-dimensional representations of entities and relations, and 
utilized these embeddings to infer new disease-gene interactions. GenePredict-KG achieved high performance and 
outperformed state-of-art methods, indicating that it has high potential in discovering disease associated genes. 
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