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Abstract
Patients diagnosed with systemic lupus erythematosus (SLE) suffer from a decreased quality of life, an increased
risk of medical complications, and an increased risk of death. In particular, approximately 50% of SLE patients
progress to develop lupus nephritis, which oftentimes leads to life-threatening end stage renal disease (ESRD) and
requires dialysis or kidney transplant1. The challenge is that lupus nephritis is diagnosed via a kidney biopsy, which
is typically performed only after noticeable decreased kidney function, leaving little room for proactive or
preventative measures. The ability to predict which patients are most likely to develop lupus nephritis has the
potential to shift lupus nephritis disease management from reactive to proactive. We present a clinically useful
prediction model to predict which patients with newly diagnosed SLE will go on to develop lupus nephritis in the
next five years.

Introduction
Systemic lupus erythematosus (SLE) is an autoimmune disease that can disrupt multiple organ functions and
ultimately be life-threatening. SLE is a minority health issue, as there is a higher prevalence among black women. It
has a female to male ratio of 10-15:1 and is more than three times more prevalent in blacks than whites2,3. SLE has
symptoms ranging from mild skin and joint problems to more serious cardiac, neurologic, and renal complications,
leading to decreased quality of life and increased risk of death.

With no definitive diagnostic test, its similarity to other autoimmune diseases, and the range of symptoms with
which patients may present, SLE diagnosis is challenging. Therefore, the American College of Rheumatology
developed a standard list of criteria for clinical diagnosis, including symptoms such as malar or “butterfly” rash,
photosensitivity, oral ulcers, and pleuritis4. When SLE is suspected, clinicians will typically order laboratory tests
that assess a patient’s antibody profile2. However, because SLE may mimic other autoimmune diseases, patients
typically hop around to several providers prior to obtaining an official diagnosis, with an average of 3.5 years from
the time they first seek medical attention until they are formally diagnosed5. This delay prolongs time without
treatment and allows the disease to worsen. There has been recent research suggesting there exists a set of 14 genes
that are differentially expressed in patients with SLE, which could be used to confirm an SLE diagnosis early6.

To add to the mystery of this disease, the causes of SLE are also currently unknown, and thought to be a
combination of genetic, hormonal and environmental factors. There is also currently no cure for SLE, but instead is
typically managed through both lifestyle interventions, and medical interventions such as anti-inflammatories and
steroids. However, complications do arise, and these complications tend to be extremely severe. Patients can have
complications manifest in the kidneys, heart, and neural system, among others. This paper focuses on the most
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common serious manifestation of SLE, known as lupus nephritis, which is a complication that arises in the kidneys.
About 50% of patients with SLE will go on to develop lupus nephritis, and of those, roughly 10-30% of patients will
develop ESRD, a disease of the kidneys that leads to renal failure and requires dialysis or kidney transplant1,7. Not
only does lupus nephritis have a long term impact on morbidity with enormous costs ranging from $43K to $107K
per patient, but ESRD is its “most important and costly complication” and a profound influence on a patient’s life8.

Contrary to SLE, diagnosing lupus nephritis is more straightforward. Though clinical presentation of lupus nephritis
varies, there are key indicators such as presence of hypertension, foamy urine, and lab measurements for urinalysis,
urine protein excretion, etc. that signal possible presence of lupus nephritis. Even with these clinical characteristics,
lupus nephritis can only be definitively diagnosed by performing a kidney biopsy, which is usually taken after there
is noticeable decrease in kidney function. The international society of nephrology has outlined six classes of lupus
nephritis based on the results of the biopsy, with class VI being the most aggressive form of lupus nephritis9. Given
that there is no cure for lupus nephritis, the current “gold standard” for treatment is high-dose corticosteroids and
high-intensity immunosuppressive agents. However, the current treatment landscape may soon shift as the FDA
recently approved novel therapeutics belimumab and voclosporin for the treatment of lupus nephritis. With these
therapeutics and more in the pipeline, there is potential for more targeted, proactive treatment for patients with lupus
nephritis, and in a manner that does not have the adverse side effects associated with high-dose corticosteroids and
immunosuppressants.

The current challenge is to identify which patients will present with lupus nephritis and when. Research has shown
that there is benefit of early treatment with immunosuppressive agents and prednisone in the long-term prognosis of
lupus nephritis10. That is, if patients could be diagnosed and treated with these agents earlier, they might fare better
in the long-run. The challenge and opportunity detailed above motivates the development of a prediction model
designed to clinically predict which patients are most likely to develop lupus nephritis of those newly diagnosed
with SLE. To scope our effort, we attempt to identify patients who are likely to develop lupus nephritis within five
years of index date. Five years was selected as it provided a reasonable number of positive outcomes and provided
ample time for intervention.

There is existing work to predict the development of ESRD, though these models are not specific to SLE or lupus
nephritis11. Other previous similar work consists of one study assessing factors associated with an increased risk of
future lupus nephritis development at the time of SLE diagnosis. This study performed an associative analysis
investigating factors associated with higher risk of future lupus nephritis development rather than a true prediction
model. The study results concluded that a low albumin-to-globulin ratio was strongly associated with an increased
risk of future lupus nephritis development12. Though the sample size was less than 300 patients, predictors identified
in this research such as albumin, complement C3 levels, complement C4 levels, etc. were candidates to be included
in our model.

The goal of the current work is to compare two approaches for lupus nephritis prediction, assess model performance
for both, and determine the superior approach for learning such a clinical prediction model. We will compare models
learned using the 1) existing feature space by leveraging the Observational Health Data Sciences and Informatics
(OHDSI) tools as well as by applying domain expertise to guide feature selection, with models learned using a 2)
learned feature space via representation learning13. OHDSI is a free, open-source “collaborative to bring out the
value of health data through large-scale analytics”14. Additionally, we aim to provide an example of the advantage of
building prediction models using a representation scheme learned via pre-training on a large unlabeled dataset.

Methods
Data.
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All experiments were conducted on de-identified Stanford Electronic Health Record data from both Stanford
Hospital and Lucile Packard Children’s Hospital15. Stanford’s STARR-OMOP dataset, which is Stanford Electronic
Health Record data that is standardized in an Observational Medical Outcomes Partnership (OMOP) Common Data
Model (CDM) was used in model development and validation16. Patients from Stanford Hospital (2009-2021) were
used for model training, internal validation and final internal evaluation on a held out test set. For each particular
patient, all data prior to index date (time of SLE diagnosis) was utilized to make a clinical prediction at index date.

Cohort definition.
ATLAS, an OHDSI application designed to “provide a unified interface to patient level data and analytics”, was
used to translate our SLE patient phenotype into a cohort definition14. The target cohort consisted of patients with
the presence of condition occurrence of SLE, which included not only the occurrence of SLE, but also all possible
descendants. The index date is the date the patient was first diagnosed with SLE - given the data is limited to
STARR-OMOP data, a proxy of the first instance of SLE condition occurrence present in STARR-OMOP data was
used. The patient cohort was limited to patients with at least 365 days or 1 year of continuous observation prior to
index date to ensure the patient had clinical events and data in STARR-OMOP data from which the model could use
to make predictions at index date. Patients with prior diagnoses of diseases that mimic SLE like rheumatoid arthritis,
systemic sclerosis, dermatomyositis, and vasculitis were excluded. Due to the challenging nature of SLE diagnosis,
SLE condition was also confirmed using clinical notes data from STARR-OMOP’s NOTE_NLP processed note
table to identify patients with an SLE concept that was present, positive and occurring to the patient at the time of
the clinical note. For clinical utility purposes, patients with a lupus nephritis diagnosis prior to or on the same day as
SLE diagnosis were removed from the cohort. The outcome cohort was a subset of the target cohort with the
additional criteria of condition occurrence of lupus nephritis. Patients were limited to ages 14 years old and older
due to the differences in clinical presentation and applicable measurement thresholds in younger children. The final
target cohort consisted of 2853 patients with SLE. See Table 1 for details on cohort demographics.

SLE Cohort

Feature

Did not develop lupus
nephritis within 5 years

(n = 2608)

Developed lupus
nephritis within 5 years

(n = 155)
Sex, n(%)

Female 2367 (91) 133 (86)
Male 241 (9) 22 (14)

Race, n(%)
White/Caucasian 1245 (48) 36 (23)
Asian 440 (17) 51 (33)
Black/African American 209 (8) 15 (10)
Native Hawaiian or Other Pacific Islander 47 (2) 3 (2)
American Indian or Alaska Native 13 (<1) 2 (1)
Unknown 654 (25) 48 (31)

Ethnicity, n(%)
Non-Hispanic/Non-Latino 1945 (75) 111 (72)
Hispanic/Latino 482 (18) 42 (27)
Unknown 181 (7) 2 (1)

Age (years), mean 47 38

Table 1. Cohort demographic characteristics of the SLE Cohort.

Model training, tuning, and feature selection.
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STARR-OMOP data was randomly split into stratified training, validation and test sets by patient. 20% of the
original dataset was initially removed to be the held-out test set. The remaining data was split 75% and 25% for
training and validation, respectively. We learned models using two feature spaces: 1) Using existing features with
OHDSI’s Patient Level Prediction and Feature Extraction package and attempting manual feature engineering with
binary and categorical features. 2) Using learned representations via pre-training on unlabeled data (called
CLMBR)17.

Models using existing feature space.
The first learned model using the existing feature space was developed using OHDSI’s Patient Level Prediction and
Feature Extraction R packages. Feature Extraction was used to generate the features (covariates) of the cohort
identified, and Patient Level Prediction (PLP) was used to build and validate the patient-level predictive models.
After feature extraction, there were ~26,000 covariates with ~861,000 non-zero covariate values. During model
training, covariates were normalized, and 12 redundant and ~8200 infrequent covariates were removed. Two models
were trained and tuned on the cohort using the validation dataset - a lasso logistic regression and gradient boosting
treemodel. Both models ran 5-fold cross validation and performed hyperparameter tuning. The best performing
logistic regression used a L1 regularization, and the best performing gradient boosting model had 100 trees, a
learning rate of 0.5, and a maximum depth of 1.0.

While the OHDSI model described above extracted features automatically according to a pre-developed pipeline, we
also wanted to explore if a feature engineered model but with added domain expertise would result in a higher
performing model. In consultation with a clinical expert, a rheumatology fellow from Stanford Hospital, we
selectively constructed a machine learning model with attentive feature curation and engineering. The features
chosen were selected a priori and representative of variables that a physician might consciously or subconsciously
take note of that might indicate a patient’s systemic lupus is abnormally active or exhibiting flare-ups. Some features
included drugs like prednisone and hydroxychloroquine, abnormal lab values of albumin, urine protein to creatinine
ratio, and indirect predictors of lupus nephritis such as hypertension, diabetes, and hypercholesterolemia. ATHENA,
an OHDSI tool containing standardized vocabularies, was used to appropriately select all features in STARR OMOP
data15. Drug and condition feature values were derived from any time point of a patient’s history prior to the patient’s
index date. Condition occurrences and drug administrations were transformed to binary representations to indicate if
a patient presented with a condition or received a particular drug. Measurement features were limited to the last time
point a measurement value was taken from a patient prior to index date. Labs and other continuous measurement
values were binned into “abnormal” and “normal” categorical representations. The bin threshold values were
established with physician consultation and hospital resources. Missing measurement values were binned into an
“unknown” categorical representation as the clinical implication would suggest the patient did not require a
particular lab or measurement test, which is an important value to feed into the model. Traditional patient
demographics like sex, age, race, and ethnicity (see Table 1) were also included. One hot encoding was used to
represent measurement categorical variables and race/ethnicity categorical variables. A total of 59 features were
used. See Table 2 for a full feature set.

Table 2. Description of feature set for manual feature engineering model.

Feature Table
Variable

Type Variable Values Units
# Non NULL

Values
Anemia Condition Binary 1: Present; 0: Not present NA 271

Synovitis Condition Binary 1: Present; 0: Not present NA 13

Proteinuria Condition Binary 1: Present; 0: Not present NA 39

Hypertension Condition Binary 1: Present; 0: Not present NA 351
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Diabetes Condition Binary 1: Present; 0: Not present NA 108

Hypercholesterolemia Condition Binary 1: Present; 0: Not present NA 53

Hydroxychloroquine Drug Binary 1: Present; 0: Not present NA 210

Mycophenolate Mofetil Drug Binary 1: Present; 0: Not present NA 43
Cyclophosphamide Drug Binary 1: Present; 0: Not present NA 8

Rituximab Drug Binary 1: Present; 0: Not present NA 23

Tacrolimus Drug Binary 1: Present; 0: Not present NA 28

Azathioprine Drug Binary 1: Present; 0: Not present NA 16

Prednisone Drug Binary 1: Present; 0: Not present NA 202

Methylprednisolone Drug Binary 1: Present; 0: Not present NA 101

Dexamethasone Drug Binary 1: Present; 0: Not present NA 137
Anti-Double-Stranded
DNA Antibody Measurement Binary 1: Present; 0: Not present IU/mL 3

Complement C3 Measurement Categorical

1: Abnormal < 86
0: Normal >= 86
-1: Unknown mg/dL 722

Complement C4 Measurement Categorical

1: Abnormal <20
0: Normal >= 20
-1: Unknown mg/dL 717

Erythrocyte
Sedimentation Rate Measurement Categorical

Males (under 50): 1: Abnormal > 14
0: Normal <=14
-1: Unknown

Males (over 50): 1: Abnormal > 19
0: Normal <= 19
-1: Unknown

Females (under 50): 1: Abnormal > 19
0: Normal <= 19
-1: Unknown

Females (over 50): 1: Abnormal >29
0: Normal <= 29
-1: Unknown mm/h 992

C-reactive Measurement Categorical

1: Abnormal > 0.5
0: Normal <= 0.5
-1: Unknown mg/dL 732

Creatinine Measurement Categorical

1: Abnormal > 1.0
0: Normal <=1.0
-1: Unknown mg/dL 1458

Urine PCR Measurement Categorical

2: Extremely abnormal >3
1: Abnormal >0.2 and <=3
0: Normal <=0.2
-1: Unknown mg/mg 370

Albumin Measurement Categorical

1: Abnormal >5.5 or < 3.5
0: Normal 3.5 - 5.5
-1: Unknown g/dL 1314
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Urine ACR Measurement Categorical

2: Extremely abnormal > 300
1: Abnormal > 30 and <= 300
0: Normal <= 30
-1: Unknown mg/g 72

Glomerular Filtration
Rate Measurement Categorical

1: Abnormal < 64
0: Normal >= 64
-1: Unknown

mL/min/1.73
m2 665

Systolic Blood Pressure Measurement Categorical

2: Extremely abnormal >130
1: Abnormal >120 and <=130
0: Normal <=120
-1: Unknown mmHg 1470

We trained a logistic regression CV, a logistic regression with L1 regularization, a random forest, and a gradient
boosting tree model on this curated feature space. All models were trained with hyperparameter tuning 5-fold
cross-validation when applicable. The random forest hyperparameters included number of estimators, maximum
number of features, maximum tree depth, minimum samples split, minimum samples leaf, and bootstrap. Gradient
boosting hyperparameters included maximum number of features, maximum tree depth, and number of trees. Due to
the extreme class imbalance with incidence of positive cases of less than 6%, optimization for metrics such as
F1-score, area under the receiving-operator curve (AUROC), and area under the precision-recall curve (AUPRC)
were the primary focus. We also explored two data augmentation methods to combat class imbalance: 1) Performed
a grid search to manually identify the optimal weight for the minority class, and 2) Used the Synthetic Minority
Oversampling Technique (SMOTE) to oversample the minority class18. After comparing all models developed,
including those with data augmentation performed prior to training, the best performing lasso logistic regression,
logistic regression CV, gradient boosting, and random forest models were selected for internal evaluation on the
held-out test set.

Models using learned feature space.
For our second model approach, we explored using a learned feature space to represent patients. CLMBR, developed
by Steinberg, et. al, is a representation learning technique that uses pre-trained medical language models to learn
fixed length representations for medical timelines17. We pre-trained CLMBR on our unlabeled medical dataset after
carefully excluding our held-out test set, and then trained a logistic regression CV classifier with 5-fold
cross-validation, L2 regularization, and an LBFSG solver on the resulting fixed length representations.

Results

Table 3. Summary of model performance on internal validation data and held-out test set. The highest performing
model results are in bold.

AUROC AUPRC F1 Score
Approach Model Validation Test Validation Test Validation Test

Existing
Feature Space

OHDSI Lasso Logistic Regression CV 0.79 0.76 0.29 0.27 0.13 0.06

OHDSI Gradient Boosting Machine 0.81 0.79 0.33 0.28 0.04 0.11

DE Logistic Regression CV 0.74 0.73 0.19 0.23 0.06 0.00

DE Logistic Regression L1 0.73 0.73 0.19 0.21 0.06 0.00

DE Gradient Boosting Machine 0.75 0.72 0.27 0.16 0.12 0.15

DE Random Forest 0.73 0.63 0.24 0.10 0.15 0.05

DE Random Forest* 0.70 0.63 0.20 0.10 0.19 0.05
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Learned
Feature Space CLMBR Logistic Regression CV 0.83 0.80 0.30 0.30 0.08 0.16

DE = Domain Expertise model; * denotes used dataset with SMOTE performed prior to model training and tuning

Results of models learned in existing feature space.
The OHDSI PLP models saw relatively high scores across most metrics. The best performing logistic regression
used a L1 regularization, and the best performing gradient boosting model had 100 trees, a learning rate of 0.5, and a
maximum depth of 1.0. For both model validation and evaluation, the gradient boosting model slightly outperformed
the lasso logistic regression model in terms of AUROC, AUPRC, and F1-score. All metrics were computed with the
default threshold of 0.5. The gradient boosting model achieved an AUROC of 0.81, AUPRC of 0.33, and F1-score
of 0.04 on validation data and an AUROC of 0.79, AUPRC of 0.28, and F1-score of 0.11 during evaluation on the
held-out test set. Meanwhile, the lasso logistic regression model achieved slightly lower AUROC, AUPRC, and
F1-scores during validation of 0.79, 0.29, and 0.13, respectively. During evaluation on the held-out test set, the lasso
regression model achieved an AUROC of 0.76, AUPRC of 0.27, and F1-score of 0.06.

The models using manually constructed features generated a mix of favorable and unfavorable results. Again, all
metrics were computed with the default threshold of 0.5. We opted to run both a logistic regression CV model and a
logistic regression model with L1 regularization as they would be most comparable to CLMBR and OHDSI lasso
logistic regression, respectively. The best logistic regression model was the logistic regression CV model with an
AUROC of 0.73, an AUPRC of 0.23, and an F1-score of 0.0. Both logistic regression models displayed weaker
performance compared to their counterparts of OHDSI and CLMBR. The highest performing model leveraging
domain expertise was the baseline gradient boosting machine model with default hyperparameters with an AUROC
of 0.72, an AUPROC of 0.10, and an F1-score of 0.05. As the random forest was the lowest performing model, we
also explored if this model might perform better on data with oversampling performed on the minority class, using
SMOTE. The results proved relatively similar with an AUROC of 0.63, AUPRC of 0.10, and F1-score of 0.05 and
indicated that model performance was not significantly altered even with data augmentation to address class

imbalance.

Results of learning a model using a learned feature space.
The model trained and tuned using CLMBR also had superior
performance to the manually constructed model, and
ultimately had the highest performance in terms of metrics we
considered across all models learned. All metrics were
computed with the default threshold of 0.5. For the validation
dataset, CLMBR’s logistic regression had an AUROC of 0.83,
AUPRC of 0.30, and F1-score of 0.08. For the evaluation on
the held-out test set, CLMBR ran with an AUROC of 0.80,
AUPRC of 0.30, and F1-score of 0.15. See Figure 2 for
details. A comparison of the three models and their
performance in model validation and evaluation is seen in
Table 3.

Figure 2. CLMBR performance on internal validation dataset and held-out test set.

Discussion
Systemic lupus erythematosus can lead to several irreversible health complications, a decreased quality of life, and
an increased risk of death. Lupus nephritis is one such complication that could benefit from targeted prevention of
more tailored treatments at a more optimal time of intervention. Preventing ESRD and the need for dialysis or
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kidney transplant has the potential to save both exorbitant costs and high quality life years. To date, there has been
substantial research into the causes of ESRD but there exists no prediction model within the lupus community for
lupus nephritis prediction. The recent discovery of a potential genetic biomarker that can confirm early diagnosis of
SLE (thus improving the timing of the cohort selected for this model), and the recent approvals of novel therapeutics
for treatment of lupus nephritis, makes anticipatory treatment more plausible without as dire adverse effects -
illustrating the great potential for the implementation of one such model as a step towards precision medicine6.

The promising results from the CLMBR-based model argue for the use of learned representations for building
prediction models for clinical outcomes. The method to learn the representation was created without knowledge of
the lupus nephritis prediction as a use case, and has now been successfully used for predicting other low prevalence
outcomes with similar positive results. Likewise, the results using models developed using the OHDSI framework
further endorse OHDSI’s mission to generalize models for multi-site testing and collaboration. There is an
opportunity for future work to evaluate this model across other health care systems that support the OMOP CDM.
We could test this specific clinical prediction model with minimal, if any additional data manipulation or
augmentation. The entire methodology of the OHDSI model, from cohort definition using ATLAS, feature
extraction using the Feature Extraction package, and outcome prediction using Patient Level Prediction can be easily
reproduced given the standardization and structure OHDSI has implemented. Our code is available from github at
https://github.com/bechlerk/ln_prediction.

Despite these areas for promise, there is additional work that should be done to validate the results and contribute to
future research. We must consider that these models were trained and tested on a relatively small sample size with a
high class imbalance, which can often have misleading results. Specifically, this was exemplified in the manually
constructed model and its more unfavorable results, despite the domain expertise leveraged and curation that went
into feature engineering. While we cannot determine the exact nuances that led to the lower performance on this
particular model, we can hypothesize it is due to the limited selection of features included that provided only sparse
data to leverage in the model. It could be beneficial to identify the features of high importance in the other models as
these could be features that either might not be visible to a physician or might be overlooked. Moreover, with
observational data, and specifically electronic health record data, there is always discretion in a phenotype
identification, which comes with the possibility of index misspecification of the target or outcome. This, in turn,
could make a patient’s timeline more vague in regards to timepoints of particular feature values, and risk
recapitulating the diagnostic process. A future model might consider removing the features specifically used to
screen for lupus nephritis from consideration to see what other latent features we can learn to form a representation
of risk. A deeper manual chart review into patients defined into a cohort would be best, though not necessarily
reasonable, nor ideal with standardized applications and tools such as OHDSI’s ATLAS.

Finally, there is a need to establish clinical utility of the model and to assess the feasibility of its implementation in
clinical workflow. Some of this could be accomplished through physician interviews and stakeholder consults,
where we could discuss particular nuances of what thresholds might be sufficient for utility and a cost-benefit
analysis of potential implementation and integration into the physician workflow.  For this particular indication, we
focused on optimizing the F1-score, which takes into consideration both precision and recall. From a clinical
perspective, we wanted to avoid 1) false negatives, and not monitoring patients close enough or not giving
pre-emptive treatment that could save both future cost and high quality life years, and 2) false positives, and
performing unnecessary biopsies and burden the patient with unnecessary costs. We argue, however, that false
positives would be preferred to other outcomes. Performing additional screenings and closer monitoring for patients
of high risk would be relatively inexpensive and yet could have tangible health implications.

To establish clinical utility a model must be actionable, usable and safe19. Given a prediction time of five years, this
algorithm is actionable as physicians can make appropriate treatment decisions and perform closer monitoring with

228



ample time to be of consequence. This model is also usable - the actionable decisions are not time-sensitive and it
would be sufficient to identify high-risk patients on a weekly or even monthly basis and then direct this information
to physicians. In this scenario, it is also important to address the question of cost and methodology of model
implementation20. Given the nature of prediction and time horizons involved, it can be easily deployed on a research
data warehouse without disruption to clinical workflow. The workflow burden is restricted to a patient and
rheumatologist. The safety, alluded to above when describing the impact of false positives and false negatives, will
be proven over time as the model is utilized.

Conclusion
In conclusion, the CLMBR and OHDSI based models show promise for identifying future occurrence of lupus
nephritis for patients with SLE. Specifically, these models have potential to accurately predict which patients are at
high risk to develop lupus nephritis in the next five years at time of diagnosis. This ability could help shift lupus
nephritis treatment from management to prevention, as additional screenings performed at more optimal times of
intervention could save patients costs and quality life years. Before this model can become a part of routine care, it is
necessary to address the applicable thresholds of clinical utility, identify the best path forward for implementation
based on a cost-benefit analysis, and assess the long-term safety of the model.
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