
  DESY-22-120 
 

 

   

 

Multi-objective Symbolic Regression to Generate Data-driven, Non-fixed 

Structure and Intelligible Mortality Predictors using EHR: Binary 

Classification Methodology and Comparison with State-of-the-art 

Davide Ferrari MSc1, 2, 3, Veronica Guidetti PhD4, 

Yanzhong Wang PhD1,3, Vasa Curcin PhD1, 3 

 

1 School of Population Health and Environmental Sciences, King’s College London, 

London, UK; 2 Centre for Clinical Infection & Diagnostics Research, St. Thomas’ Hospital, 

London, UK; 3 NIHR Biomedical Research Centre, Guy’s and St Thomas’ NHS 

Foundation Trust and King’s College London, London, UK; 4 Deutsches Elektronen-

Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany

Abstract 

Symbolic Regression (SR) is a data-driven methodology based on Genetic Programming, and it is widely used to 

produce arithmetic expressions for modelling learning tasks. Compared to other popular statistical techniques, SR 

outcomes are given by an arbitrary set of mathematical operations, representing arbitrarily complex linear and non-

linear functions without a predefined fixed structure. Another advantage is that, unlike other machine learning 

algorithms, SR produces interpretable results. In this paper, we explore the qualities and limitations of this technique 

in a novel implementation as a binary classifier for in-hospital or short-term mortality prediction in patients with 

Covid-19. Our results highlight that SR provides a competitive alternative to popular statistical and machine learning 

methodologies to model relevant clinical phenomena thanks to good classification performance, stability in 

unbalanced dataset management, and intrinsic interpretability. 

Introduction 

Mortality is one of the most popular clinical outcomes used in medical statistics, both for clinical and methodological 

reasons. On the one hand, it is the most extreme and severe clinical outcome, and there is a huge interest in 

understanding how it can be predicted and prevented. On the other hand, it is one of the most accessible outcomes to 

model from a statistical point of view, as the phenotyping rules determining a patient's death are the most unequivocal. 

In standard applications, mortality is interpreted as a binary classification problem, the simplest classification form. 

In medical applications, the most common approaches used for mortality prediction include Logistic Regression (LR), 

Support Vector Machines (SVM), Decision Trees (DT), and Random Forests (RF).  

In clinical applications, especially those that influence healthcare professionals' decision-making process, 

interpretability is a key element that provides an overview of how the predictive model generates results. This 

transparency became a necessary aspect of all healthcare applications due to the policies introduced by data protection 

regulations, the European1 and the UK GDPR2. Approaches like LR are intrinsically interpretable as they produce a 

fixed-structure explicit mathematical formula, whereas most of the others are not and need dedicated techniques like 

SHAP3 and LIME4 to be interpreted. 

Apart from the clinical interest in mortality risk prediction, this task is de-facto a widespread benchmark for statistical 

learning approaches as it is easily modellable in several clinical databases and can provide a reliable comparison of 

methods' performance. In this manuscript, we propose a novel approach based on Symbolic Regression5 (SR) to 

implement this binary classification and compare it to other popular alternatives using standard predictive performance 

measures, and ease and clarity of model interpretation. Our implementation of SR is open source and available at 

https://github.com/davideferrari92/multiobjective_symbolic_regression. 

1) Symbolic Regression and Genetic Programming 

Genetic Programming (GP) is a technique inspired by biology where a set of programs are subject to mutations and 

alterations like those that the genome undergoes in passing from one generation to the next. The most performing 

individuals are kept in the genetic pool to propagate their qualities, helping new generations to produce better 
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performance. SR is a GP-based approach aiming to find a set of mathematical expressions that best fit a prediction 

task and apply GP alterations to the pool of expressions keeping only the best ones. Unlike other fixed-model 

approaches, such as LR, the shape of the formula in SR is dynamical and can include any desired mathematical 

operator, including non-linear ones. 

The SR algorithm starts generating a population of 𝑛 independent individuals where operators and operands in the 

starting formula are randomly chosen. Internal nodes are given by operations (Operation Nodes, or OpNode), while 

the leaves are terminal nodes with variables or constants (Feature Nodes or FeatNode). Operations are chosen from a 

predefined set based on what possibilities the experiments aim to explore; in our case, the allowed operations are 

addition, subtraction, multiplication, division, natural logarithm, exponential, power, square root, maximum and 

minimum. The terminal nodes can be variables from the training dataset or constants. The constants are initialized 

randomly in each expression, but their value is adjusted using a method we will describe further in the manuscript. At 

each training generation, a pool of 𝑘 individuals are randomly selected from the population and, through a tournament 

selection process, one of the expressions is duplicated and subject to a genetic mutation; we call this new individual 

offspring; this process is repeated 𝑛 times doubling the dimension of the population. Only the 𝑛 best individuals are 

then kept in the pool. 

Genetic operations are always applied to a random node of the offspring. Our list of genetic operations include point 

mutation (an OpNode, and its sub-tree are replaced by a newly generated sub-tree), crossover (an OpNode and its sub-

tree is replaced by an OpNode and its sub-tree from another individual of the pool), node insertion (an new OpNode 

is inserted at a randomly selected point in the tree making it deeper of one level), node deletion (a random OpNode is 

deleted and its operators are shifted one level above), leaf mutation (a random FeatNode is replaced by another from 

the allowed ones), operator mutation (a random OpNode operation is replaced by another with the same number of 

operators, i.e., arity) and simplification (the individual can be a non-minimal representation of an expression and 

therefore, although being numerically equivalent, a reorganized and simplified tree is considered in place of the 

selected one). In our setup, all operations happen with the same probability. 

1.1) Related Works 

In recent years, evolutionary approaches, and SR in particular, have proven to be competitive methodologies in the 

data science scenario. Clinical applications can be found in metabolic medicine6–11, oncology12,13, cardiology 14, and 

others15–19. Mortality prediction is of wide interest, and multiple approaches have been developed to predict this 

outcome: in intensive care, there are commonly used scoring systems like APACHE20, SAPS21, and SOFA22. Besides 

the most common machine learning techniques, the search for effective predictive tools using GP is conducted using 

approaches like those presented in 13,23–25. 

The interpretability of SR expressions may be easier than other ML techniques as the mathematical formula is 

explicitly defined. Nevertheless, understanding its clinical meaning is a complicated and open challenge. This is a 

relatively unexplored topic, and a further joint effort by both the computing and the clinical experts is required. To the 

best of our knowledge, this is the first time an SR is explicitly implemented and trained as a binary classifier for 

mortality prediction on structured electronic health records. 

1.2) Binary Classification in Symbolic Regression 

For the optimization of a binary classification task, we used the Binary Cross-Entropy (BCE) evaluated on all 𝑚 

datapoints of the training dataset as fitness function to be minimized. In Equation 1 we report the BCE definition (�̂� 

is the ground truth and 𝑦 is the predicted probability for the 𝑖-th data point in a dataset of 𝑚 samples), in Equation 2 

the logistic (sigmoid) function used to scale the expression result between 0 and 1 for the binary classification and in  

Figure 1 is depicted one example of expression. Given the remarkable imbalance of the dataset, described in detail in 

the next section, all the training procedures need to be weighted on the prevalence of the two classes to have a more 

appropriate behaviour of the predictive model. We therefore adopted a Weighted Binary Cross-Entropy (WBCE) in 

both our experiments. For the sake of simplicity, for the rest of the manuscript we will refer to WBCE just as BCE. 
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𝐵𝐶𝐸 = −
1

𝑚
∑[𝑦𝑖 ∙ 𝑙𝑜𝑔(�̂�𝑖) + (1 − 𝑦𝑖) ∙ 𝑙𝑜𝑔(1 − �̂�𝑖)]

𝑚

𝑖=1

 

Equation 1 Binary Cross-Entropy 

 

Figure 1 Expression with sigmoid function as root node 

 

𝜎(𝑧) =
1

1 + 𝑒−𝑧
 

Equation 2 Logistic (sigmoid) function 

1.3) Multi-objective training with Pareto optimality 

Symbolic Regression is an algorithm that rewards the best individuals and propagates them over the generations. In 

single-objective optimization, individuals are sorted from lowest to highest fitness function values, e.g., BCE, at the 

end of each generation. Instead, in multi-objective optimization, population ranking is implemented in such a way as 

to support more than one fitness function at a time. Therefore, program ranking cannot be based on a single fitness 

function (or objectives) and must rely on more complex criteria. We implemented the Non-dominated Sorting Genetic 

Algorithm II (NSGA-II) 26,27, an elitist multi-objective genetic algorithm technique where program ranking is based on 

non-dominance criterium and crowding distance between individuals belonging to the same optimality ranking. Given 

n fitness functions, each individual is represented by an n-dimensional vector whose coordinates are given by its 

fitness function values. In NSGAII, one individual is said to dominate another one if all fitness values of the former 

are smaller than or equal to those of the latter and at least one is strictly smaller.  Following the Pareto optimality 

principle 28, non-dominated individuals are attributed to rank 1, which is indeed called “first Pareto front”. To identify 

rank 2 (second Pareto front) individuals, the first Pareto front is subtracted from the population and the non-dominated 

individuals are sought; every rank gathers individuals not dominating each other. The process is repeated until all 

individuals are attributed to a Pareto front. In a Pareto optimality ranking algorithm, individuals belonging to the same 

rank 𝑹𝒊 are considered equally optimal although their different behaviour needs to be critically evaluated to choose 

the desired expression or set of expressions. Therefore, to further discriminate between individuals of the same rank, 

NSGA-II leverages the concept of crowding distance according to which the more "isolated" individuals, that is, the 

one belonging to a less dense portion of the Pareto front, should be privileged among other non-dominating individuals 

of the same rank. Figure 2 depicts one generation of the training process. 

 

Figure 2 NSGA-II and Crowding distance algorithm schema 
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1.4) Neuron-based constants optimization 

All terminal nodes in an expression can be either features from the training dataset or numerical constants. As for the 

constants, even assuming that the structural form of the expression is already the best one to fit the learning task, it is 

rather unlikely that the random values provided by the GP algorithm are the best ones. Therefore, we use an 

optimization process to update the numerical values inside each expression. To do so, we create a one-neuron neural 

network in which the activation function is the expression itself (hence the need for a differentiable method), and the 

trainable parameters are the constants to be optimized. The parameters are initialized to the same value as the constants 

inside the expression. Before evaluating the fitness of the expression on the training set, we train the neuron for 10 

epochs at every generation using weighted BCE loss function and ADAM optimizer29, i.e., a stochastic gradient 

descent method based on adaptive estimation of first order and second order moments. At the end of training, the 

neuron parameters represent the optimized constant values that are then replaced inside each expression. Iterating this 

process among consecutive generations will eventually converge to the best possible values for all the constants in 

each expression. 

2) The learning task, inclusion criteria, and the dataset selection 

The experimental dataset we used is constituted of a population of 2400 individual patients admitted to St. Thomas’ 

Hospital in London with a laboratory-confirmed diagnosis of Covid-19. Each data point reports only the first collected 

clinical data of each patient as the goal of this task is to predict the short term in-hospital mortality risk of patients at 

hospital admission. The variables available in the dataset include demographics, signs and symptoms, laboratory 

results, and past medical history. 

One of the main drawbacks of SR is that it tends to perform poorly on very high-dimensional data, for this reason we 

pre-process our dataset using non-linear feature selection methods to improve the model efficiency and increase its 

generalization 30. We focus on two well-known methods that use both input-output and input-input relevance, i.e., 

Hilbert-Schmidt Independence Criterion Lasso (HSIC Lasso)31,32. It aims to find the minimal and optimal subset of 

features to explain a given phenomenon. The HSIC Lasso method finds the global optimal features subset solving a 

feature-wise kernelized Lasso optimization problem with a non-negative constraint. With this process we selected 10 

features among the 25 available; they are described in Table 1. 

Table 1 Description of the 10 selected features 

Feature Total Class 0 (survived) Class 1 (dead) p-value 

Population (%) 2400 (100%) 2105 (87.71 %) 295 (12.29 %)  

Demographic 
(continuous) 

Age, mean (± SD) [No.] 59.77 (20.58) [2400] 57.75 (20.42) [2105] 74.14 (15.36) [295] < 0.001 

Laboratory 

Data 
(continuous) 

C-Reactive Protein, mean (± SD) [No.] 82.08 (81.53) [2400] 76.89 (78.1) [2105] 119.09 (94.99) [295] < 0.001 

Creatinine, mean (± SD) [No.] 121.76 (145.7) [2400] 116.37 (144.42) [2105] 160.26 (149.19) [295] < 0.001 

D-Dimer, mean (± SD) [No.] 3.66 (9.0) [2400] 3.39 (8.39) [2105] 5.66 (12.39) [295] < 0.001 

Neutrophils, mean (± SD) [No.] 6.0 (3.8) [2400] 5.8 (3.62) [2105] 7.41 (4.69) [295] < 0.001 

Platelets, mean (± SD) [No.] 232.39 (103.85) [2400] 235.03 (103.45) [2105] 213.54 (104.91) [295] < 0.001 

Urea, mean (± SD) [No.] 7.94 (6.44) [2400] 7.2 (5.62) [2105] 13.28 (8.92) [295] < 0.001 

Past medical 

history 
(binary) 

Cardiovascular Diseases, False (%) 1651 [68.79 %] 1528 [72.59 %] 123 [41.69 %] 
< 0.001 

Cardiovascular Disease, True (%) 749 [31.21 %] 577 [27.41 %] 172 [58.31 %] 

COPD*, False (%) 2223 [92.62 %] 1970 [93.59 %] 253 [85.76 %] 
< 0.001 

COPD*, True (%) 177 [7.38 %] 135 [6.41 %] 42 [14.24 %] 

Signs 
(continuous) 

Respiratory Rate, mean (± SD) [No.] 20.64 (5.0) [2400] 20.41 (4.8) [2105] 22.24 (6.04) [295] < 0.001 

*COPD - Chronic obstructive pulmonary disease 

The available dataset includes one record for each of the 2400 patients and has been split with an 80/20 ratio into a 

training (1920) and a test (480) dataset; we stratified the split on the target variable to preserve class proportion. To 
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limit the negative effects of the imbalance on the predictive models, we assigned a weight to all the samples 

proportional to the prevalence of the other class whenever the algorithm allowed. 

 

3) Generation of the binary classifiers with Symbolic Regression 

The binary classification task is trained to minimize the BCE on the training set, although we also leveraged the 

possibility of a multi-objective training process for SR and conducted a second experiment with an additional 

objective: the maximization of the average precision score on the training set. In the following section, we will 

introduce the optimal expressions coming from the two approaches and present their performance. We train both 

models on a population of 200 randomly generated expressions that are evolved through 1000 generations without 

early stopping conditions. 

3.1) Two new mortality predictors 

The two resulting expressions are reported in Equation 3 and Equation 4. Both must be post-processed with the logistic 

function to generate the classification probability. 

 
Equation 3 Expression generated by single-objective SR 

0.719 + 𝐶𝑎𝑟𝑑𝑖𝑜𝑣𝑎𝑠𝑐𝑢𝑙𝑎𝑟𝐷𝑖𝑠𝑒𝑎𝑠𝑒𝑠

+ 𝑚𝑖𝑛 (2 ∙ 𝑙𝑜𝑔(𝑈𝑟𝑒𝑎) − 𝑙𝑜𝑔 (𝐶𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒 ∙ 𝑈𝑟𝑒𝑎 + √2 ∙ 𝑃𝑙𝑎𝑡𝑒𝑙𝑒𝑡𝑠 ∙ (𝐶𝑅𝑃 + 𝑁𝑒𝑢𝑡𝑟𝑜𝑝ℎ𝑖𝑙𝑠)) , 1.623) 

 

Equation 4 Expression generated by multi-objective SR 

−3.094 + 𝐶𝑎𝑟𝑑𝑖𝑜𝑣𝑎𝑠𝑐𝑢𝑙𝑎𝑟𝐷𝑖𝑠𝑒𝑎𝑠𝑒𝑠 + 1.630 ∙ 𝑚𝑖𝑛(𝑙𝑜𝑔( 0.7 ∙ 𝑈𝑟𝑒𝑎), 𝑙𝑜𝑔(𝐶𝑅𝑃)) 

 

The multi-objective approach based on Pareto optimality produces a set of equally optimal individuals; this implies 

that choosing the final model is a nontrivial task, as the expressions show different behaviour. We decided to represent 

here only the expression with the lowest BCE but, depending on the goal of the learning task, a different expression 

could be preferred. Many factors can influence this decision, and the number of variables used can be one of them: in 

real-world scenarios where collecting variables can be expensive and technically complicated, choosing a model with 

few variables, or with cheaper ones, or both, but with equal or comparable optimality towards the learning task can 

favour its daily clinical use. Moreover, the complexity of the expression can make the model clinically hard to 

interpret, regardless of its performance. Therefore, choosing a simpler formula, like Equation 4 over Equation 3, leads 

to a more straightforward clinical interpretation, increasing the final user's trust. Finally, the analysis of equally 

optimal expressions can also be used to identify recurrent (and thus potentially meaningful) sub-expression; the same 

structure (e.g., 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + 𝐶𝑎𝑟𝑑𝑖𝑜𝑣𝑎𝑠𝑐𝑢𝑙𝑎𝑟𝐷𝑖𝑠𝑒𝑎𝑠𝑒𝑠) found in multiple expressions could lead to the discovery of 

“first principle” mechanisms underlying a physiological behaviour that will help to unlock new clinical knowledge. 

The interpretation of the presented expression is still an open challenge and will not be discussed further in this 

manuscript. 

The performance measures are expressed by means of the Area Under the Receiver Operating Characteristics 

(AUROC), Accuracy, Precision, Sensitivity, and F-score defined in Table 2. All the performances presented in this 

manuscript are calculated for each model on the same test dataset. 

 
Table 2 Classification performance definition 

Accuracy Precision 

(Positive Predicted Values) 

Sensitivity 

(True Positives Rate) 

F-score 

𝑻𝑷 + 𝑻𝑵

𝑻𝑷 + 𝑻𝑵 + 𝑭𝑷 + 𝑭𝑵
 

𝑻𝑷

𝑻𝑷 + 𝑭𝑷
 

𝑻𝑷

𝑻𝑷 + 𝑭𝑵
 

𝑻𝑷

𝑻𝑷 +
𝑭𝑷 + 𝑭𝑵

𝟐

 

𝑻𝑷 - True Positives 𝑻𝑵 - True Negative 𝑭𝑷 - False Positive 𝑭𝑵 - False Negative 
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3.2) Comparison with machine learning algorithms 

To contextualize our implementation of a mortality predictor, we implemented other known machine learning 

algorithms with the ambition of comparing their predictive performance and assessing the validity of our proposal. 

All the models have been trained on the same training dataset and validated on the same test dataset we used for the 

SR. Each algorithm has been tuned by means of a standard grid search on its hyperparameters and has been evaluated 

with a 10-fold cross-validation method. We report the average predictive performance measures on the test dataset in 

Table 3. The ROC curves for all the models are shown in Figure 3. 

 
Table 3 Classification performance comparison with machine learning algorithms 

Model AUROC Accuracy Precision 

(PPV) 

Sensitivity 

(TPR) 

F-score 

Symbolic Regression 0.84 0.77 0.32 0.77 0.45 

Multi-objective 

Symbolic Regression *  
0.82 0.72 0.27 0.76 0.40 

Decision Tree 0.50 0.16 0.12 0.93 0.21 

Random Forest 0.75 0.71 0.26 0.72 0.38 

Gradient Boosting 0.45 0.79 0.06 0.05 0.05 

Light Gradient Boosting 0.70 0.83 0.30 0.25 0.27 

Extreme Gradient Boosting 0.69 0.84 0.29 0.20 0.24 

Ada Boost 0.76 0.87 - - - 

Linear Discriminant Analysis 0.56 0.87 - - - 

* Trained minimizing BCE and maximizing the average precision score in a multi-objective approach 

 
Figure 3 ROC Curve for SR and ML models 

In healthcare, not all misclassifications are equally wrong; in this case, an FN (a patient classified as safe, but who 

will die) is a much more dangerous prediction than an FP (a patient classified as high risk, but who will survive). In a 

preventive medicine mindset, we believe predictive models should be more conservative on FNs and avoid this 

clinically dangerous error. Therefore, maximization of sensitivity should be preferred over accuracy or precision. The 

most evident behaviour is the poor handling of data imbalance: standard tree-based algorithms tend to produce better 

accuracy, but the few samples belonging to class 1 were systematically misclassified (low precision and, especially, 

low sensitivity) regardless of sample weighting. AdaBoost and LDA did not handle data imbalance at all and only 

learned to predict class 0 (the percentage of samples in that class is indeed about 0.87, as their accuracy). On the other 

hand, both SR models provide the best AUROC and sensitivity measures demonstrating better handling of this 

phenomenon.  

An alternative approach for the comparison could have been to use data augmentation (such as SMOTE33) to balance 

the classes; however, we have chosen not to do so to avoid the risk of adding spurious information to the data. In fact, 
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this exploratory work aims to compare the benchmarks of various algorithms on real clinical data as it is collected in 

hospital wards. We have not discussed data imputation techniques in SR as the dataset under study was complete; 

nonetheless, we want to emphasize that the topic has been addressed in the literature, comparing the effect of various 

existing techniques, and developing new ones34. 

We can conclude that our implementation of SR, single-objective and multi-objective, is a valid and competitive 

alternative to standard ML algorithms. Most importantly, SR can handle data imbalances much better, provides an 

improved sensitivity measure, and grants better care for the few samples belonging to the most critical clinical group. 

From these results, it seems that the training purely based on BCE minimization could be a better choice than a multi-

objective one, which also aims to maximize the average precision score. However, suppose a marginal decrease in 

performance is bearable for the final application. In that case, multi-objective SR can be preferred as it produces a set 

of optimal solutions from which to choose. Comparing the formulas presented in this work, the one arising from multi-

objective optimization is simpler. This may be preferable as it favours clinical interpretation at the cost of slightly 

lower performance. This experiment highlights the existence of more than one suitable solution with comparable 

performance, introducing the possibility (and responsibility) of choosing the most suitable approach for each 

application 

3.3) Comparison with other known predictive scores 

This manuscript aims to support the competitiveness of SR as a methodology for creating interpretable and performing 

mortality classifiers. Much more than the clinical interpretation of the compared indices, this section focuses on the 

performance of our approach against the more common LR odds ratios. Also, we used a systematic literature review35 

and related exvalidation study36 of predictive models for Covid-19 to identify known risk scores for predicting short-

term mortality in hospitalized patients. We included models developed on patient data that used variables available to 

us, so to validate these approaches on our test dataset. The performance measures can be found in Table 4. In Figure 

4 we show the ROC curves for all the scores. 

Table 4 Classification performance comparison with other mortality risk scores 

Model AUROC Accuracy Precision 

(PPV) 

Sensitivity 

(TPR) 

F-score 

Symbolic Regression § 0.84 0.77 0.32 0.77 0.45 

Multi-objective 

Symbolic Regression § 
0.82 0.72 0.27 0.76 0.40 

Logistic Regression 

Odds Ratios § 
0.85 0.89 0.75 0.20 0.32 

Bello-Chavolla Model 37  Φ  0.65 0.63 0.22 0.48 0.30 

Hu Model 38  0.65 0.64 0.33 0.65 0.44 

Zhang DCS Model 39  0.72 0.82 0.33 0.05 0.09 

Zhang DCSL Model 39  0.66 0.80 0.10 0.02 0.04 

Wang Model 40  0.76 0.74 0.33 0.56 0.42 

Knights 4C Model 41  0.81 0.86 0.70 0.32 0.44 

§ Trained on our training dataset and validated on our test dataset 
Φ Post-processing: scaled between 0 and 1 

 

Using our dataset alone undoubtedly biases our evaluation of existing risk scores. Indeed, our training and test datasets 

are more similar to each other than to the dataset on which other scores have been created. For this reason, it is not 

surprising to find better performances. Nevertheless, as happened with ML models, our SR model produces better 

overall performance in AUROC, sensitivity, and F-score and comparable accuracy and precision. The LR Odds Ratio 

approach still performs better in classifying the most prevalent class, but it also shows poor sensitivity. Given the 

importance of its maximisation, we can safely say that SR is a preferable alternative to other more traditional 

approaches for high-stake domains like medicine. 
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Figure 4 ROC Curve for SR and the other mortality risk scores 

4) Conclusions and future developments 

This paper presented a way to use SR as a binary classifier for mortality prediction in patients with Covid-19. We 

proposed two alternative implementations, one trained to minimize the BCE and another using multi-objective 

optimization to minimize the BCE and maximize the average precision score. This manuscript successfully shows the 

potential of SR as a competitive learning methodology to be used in clinical scenarios thanks to its good performance, 

intrinsic interpretability, and its ability to model arbitrarily complex expressions. Further research should be devoted 

to the model interpretation process. Indeed, the generated expressions do not have a fixed structure and can contain 

non-linearities; this requires an additional joint effort from clinicians and data scientists to contextualize each 

expression in the clinical environment properly. Furthermore, some studies in the literature confirm that the use of a 

multi-objective approach largely prevents premature convergence of the algorithm, ensuring that the search for 

optimal solutions does not stop too soon42. A major limitation of this study is its single-hospital design. This implies 

that the population examined is relatively homogeneous, and the overfitting risk increases. A relevant improvement 

would be given by a multi-centre application, especially if equipped with a distributed training process for improved 

privacy preservation. In addition, further analysis should be done to better understand the behaviour of SR, especially 

when trained on unbalanced datasets. Finally, the choice of the best expression, or set of expressions, is an important 

challenge that needs to be studied case by case, depending on the desired behaviour of the model at any given time. 
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