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Abstract

Most biomedical information extraction (IE) approaches focus on entity types such as diseases, drugs, and genes,
and relations such as gene-disease associations. In this paper, we introduce the task of methodological IE to support
fine-grained quality assessment of randomized controlled trial (RCT) publications. We draw from the Ontology of
Clinical Research (OCRe) and the CONSORT reporting guidelines for RCTs to create a categorization of relevant
methodological characteristics. In a pilot annotation study, we annotate a corpus of 70 full-text publications with
these characteristics. We also train baseline named entity recognition (NER) models to recognize these items in RCT
publications using several training sets with different negative sampling strategies. We evaluate the models at span
and document levels. Our results show that it is feasible to use natural language processing (NLP) and machine
learning for fine-grained extraction of methodological information. We propose that our models, after improvements,
can support assessment of methodological quality in RCT publications. Our annotated corpus, models, and code are
publicly available at https://github.com/kellyhoang0610/RCTMethodologyIE.

Introduction

Evidence-based medicine (EBM) brings together research evidence, clinical judgment, and patient values/preferences
to support decision-making in patient care1. A core component of EBM is the evidence synthesis process, which
aims to retrieve, assess, and synthesize research evidence from the scientific literature for translation to bedside2.
Methodological quality assessment of clinical studies (i.e., the rigor of the study design and conduct) is a critical yet
challenging step in evidence synthesis3.

Randomized controlled trials (RCTs) are a cornerstone of EBM. A properly designed and rigorously conducted RCT
is the most robust method to determine the effectiveness of a therapeutic intervention4. Despite their advantages,
RCTs are often poorly designed and executed, rendering their findings unreliable, potentially harming patients, and
wasting research investment5. Evidence synthesis from RCT publications relies on “risk of bias” assessment, a type
of methodological quality assessment that focuses on the internal validity of the study6. The primary tool used for risk
of bias assessment, the Cochrane Risk of Bias tool6, considers study characteristics such as randomization, blinding,
and allocation concealment in determining the risk of bias for a given study (low, high, unclear risk). While some
automated tools have been developed for risk of bias assessment (e.g., RobotReviewer7), the process remains mostly
manual in practice.

While biomedical natural language processing (NLP) is increasingly used for extracting information from scientific
publications (most frequently topical information including diseases, drugs, and genes, as well as their relationships,
such as adverse drug events)8, research focusing on extraction of methodological aspects remains scarce. Methodolog-
ical weaknesses and inconsistencies of a study can render its claims questionable, even invalid. With the increasing use
of literature mining in downstream applications, such as pharmacovigilance9, it becomes important to link the claims
extracted via literature mining with the underlying methodology. Otherwise, the findings from low-quality studies
can mislead, as we witnessed with the methodologically suspect studies recommending drugs such as ivermectin for
COVID-1910 during the pandemic. Most NLP research that has considered methodological aspects has focused on
PICO elements (Participants, Interventions, Comparison, Outcomes)11–13 or text classification for risk of bias7, 14, 15. A
comprehensive and fine-grained characterization and extraction of methodological information can improve the utility
of the IE models focusing on claims by providing context for their interpretation.

In this study, we propose a fine-grained view of methodological IE focusing on RCT publications. We illustrate
methodological IE with an example sentence below taken from the abstract of an RCT publication.
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(1) The randomisation sequence was computer-generated by blocks, stratified by centre, disease severity (ALSFRS-
R cut-off score of 33) and onset (spinal or bulbar).

(2) Sequence Generation Method: computer generated
Randomization Type: {block, stratified}
Stratification Criteria: {centre, disease severity (ALSFRS-R cut-off score of 33), disease onset (spinal or bulbar)}

A methodological IE model can extract the template shown in (2) from (1), indicating, for example, that two types of
randomization techniques were used in the study: block randomization and stratified randomization. This information
can be used to summarize the methodology of the study in a structured format.

Toward this objective, we report a pilot annotation study in which methodological characteristics from RCT publica-
tions were captured at fine granularity. We also trained baseline named entity recognition (NER) models based on the
annotated corpus. Our results demonstrate the feasibility of capturing and extracting such information at a granular
level. We propose that, with additional training data and further performance improvements, our models could help
contextualize the claims made in a publication and support evidence synthesis pipelines.

Related Work
Models of RCT study characteristics

Several models to represent RCT study characteristics have been proposed. The PICO framework (Participants, In-
tervention, Comparison, Outcomes)16 is widely used in EBM and by the systematic review community to formulate
clinical questions11, 17. Variations of PICO, such as PICOT (T for timeframe)18, have also been proposed.

RCT Schema19 goes beyond the PICO framework and captures details about the administration, design, execution,
and results of a trial in a hierarchical model. A follow-up ontology, the Ontology of Clinical Research (OCRe)20,
attempts to develop a more comprehensive model for clinical research, including classes such as interventional and
observational study design and various randomization types (e.g., block randomization, minimization).

To improve reporting quality and transparency of RCT publications, CONSORT reporting guidelines have been pro-
posed4, 21. CONSORT consists of a 25-item checklist, some of which focus on methodological information (e.g., study
design, blinding, randomization, statistical methods).

Corpora of RCT methodology

Several corpora based on PICO or similar characterizations have been reported11–13, 22–24, differing in their granularity
(sentence vs. phrases), focus (abstract vs. full-text), the categories considered, and how they are generated (manual,
crowdsourcing, automatic). We recently reported the CONSORT-TM corpus, in which 37 fine-grained CONSORT
checklist items were manually annotated in full-text RCT papers25.

NLP for methodological information extraction

NLP for methodological information often takes the form of sentence classification or data extraction (i.e., text snip-
pets)26. As might be expected, most methodological IE research has focused on PICO elements using the available
corpora. Some studies explored types beyond PICO, such as study design and sample size27, 28. Depending on the
corpora and PICO elements considered, rule-based methods11, text classification12, 24, 29 or NER models13, 30, as well
as hybrid approaches have been reported11, 27, 28, 31. Multi-task learning has been used to develop automatic risk of
bias assessment models which classify the publication as low or high risk for a bias category and simultaneously ex-
tract supporting sentences7. We reported BERT-based sentence classification models for classification of CONSORT
methodology sentences25, 32.

To a large extent, these approaches are coarse-grained (sentence level) and address a limited range of methodological
quality characteristics. PICO elements do not focus on methodological quality. Automatic risk of bias assessment
models7, 14 ultimately make quality judgments but their predictions are opaque as they do not explicitly focus on IE.
Extracting granular methodological information and accounting for the diversity of expressions (e.g., “open label”
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and “no blinding” are synonymous) not only can help create more transparent evidence quality assessment tools but
also can help computers reason about the strength of evidence and risk of bias in a study and identify methodological
weaknesses and inconsistencies20. In this pilot study, we aimed to fill this gap by creating a data model, an annotated
corpus, and NLP models to identify fine-grained methodological quality information from RCT publications.

Methods

In this section, we first describe the data model that we developed for annotation. Next, we report the annotation
process. Lastly, we describe the baseline NLP models we developed and our evaluation scheme.

Data Model

Our data model was largely drawn from OCRe20, an ontology that was designed to represent planning, execution,
and analysis steps of clinical research. OCRe provides relevant definitions and categorizations for methodological
aspects of clinical research studies, including but not limited to RCTs. We also used CONSORT reporting guidelines
to identify additional characteristics that are relevant to assessing methodological quality.

In OCRe, we primarily focused on subclasses of Interventional Study Design and Study Design Characteristic classes,
including Blinding Type and Randomization Type. Some relevant characteristics were derived from data properties
(e.g., Planned Sample Size and Actual Sample Size). Additional characteristics relevant for methodological quality
were drawn from the CONSORT methodology checklist. For example, fine-grained information related to Sample
Size Calculation (CONSORT item 7a) and Trial Settings (4b) were included, such as Power and Alpha values, and
Multicenter vs. Single-center distinction. The main criterion for inclusion was whether the characteristic provides
any information about methodological quality, which we ensured through literature review, and whether they can be
identified in RCT publications. We also noted that some characteristics have properties whose values can be important
in interpreting them (e.g., Block Size for Block Randomization). These properties were included in the data model, as
well. The resulting data model is provided in Figure 1.

Figure 1: Our proposed data model to capture methodological characteristics from RCT publications. Domains (Trial
Design, Blinding, etc.) are shown in gray boxes. Top-level characteristics are shown in blue rectangles. Their subtypes
are shown in yellow, and properties relevant to the subtypes are shown in green.
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Corpus Annotation

After the preliminary data model was developed, we annotated several articles to assess the feasibility of annotating
the items in the model and to draft annotation guidelines. As a result, the data model was also refined. Next, we con-
ducted a pilot study to annotate 70 RCT articles in three phases. First, 10 articles were annotated by three annotators.
Disagreements and inconsistencies were discussed and resolved. Data model and annotation guidelines were refined.
In the second phase, three annotators annotated 20 articles. Next, inter-annotator agreement was calculated, annotation
guidelines were further revised for clarity, and disagreements were resolved. In the final phase, two annotators with the
highest agreement in the previous phase individually labeled 25 and 15 articles each. The annotators are the authors of
this paper, two PhD students and a biomedical NLP expert with experience with biomedical literature. We used brat
annotation tool for annotation33.

For annotation, we collected a set of RCT publications from PubMed Central Open Access Subset. 25 publications
came from the CONSORT-TM corpus25. We collected another set of 45 articles by issuing a search query that lim-
ited by the publication type “Randomized Controlled Trials” and full-text availabilitya. We eliminated publications
reporting study protocols or multiple RCT studies from the search results. From the remaining articles, we randomly
selected 45 articles, for a total of 70 articles.

We adopted a minimal annotation approach, focusing on annotating the shortest meaningful text spans for a given
item, often a clause. The categories that have subclasses (e.g., Patient, Investigator, etc. for Blinding Object) were
annotated at the finest granularity justified by the text span. We focused primarily on abstracts and Methods sections,
as they were most likely to contain methodological information. Some categories, particularly those related to Sample
Size, were also annotated in the Results sections, where they were often reported. During the annotation process, the
annotators were instructed to annotate a mention only once for a particular characteristic in a given section, although
different mentions corresponding to the same concept (e.g., no blinding and open label for the Open Label category)
were expected to be annotated. This helped reduce annotation burden while generating a diverse set of examples. After
the manual annotation was completed, we generated additional annotations by automatically labeling all instances of
the mentions that already appear in the same section of the document in the manually annotated set. Some of these
automatic annotations were incorrect and we manually removed them (e.g., not all instances of the mention blind are
about the blinding type of the study). Automatic annotation helped us increase the number of examples in the dataset.

Inter-annotator Agreement

We calculated inter-annotator agreement at the span and document levels. For span level agreement, we used exact
match for all categories considered. Following earlier work, we used F1 score for span level agreement, considering
annotations from one annotator to be the ground truth and those from the other as predictions34. Document level
agreement was calculated for items with subcategories: Trial Design Type, Phase, Comparative Intent, Blinding Type,
Randomization Type, and Setting. In this case, we examined whether two annotators agreed on whether the publication
reported a particular study characteristic (e.g., Double-Blind as the Blinding Type). We used both Cohen’s κ and F1

score for inter-annotator agreement at the document level.

NER models

The task of extracting methodological information at the span level can be formulated as a typical NER task. In this
study, we experimented with NER models based on current baseline neural network architectures. We applied BIO
tag scheme to represent token labels in sentences. We used PubMedBERT (base-uncased-abstract-fulltext model)35 as
the sentence encoder and experimented with two different classification layers: a fully-connected token classification
layer and a a classification layer based on conditional random field (CRF)36 that captures the dependencies between
the labels in a sequence. The following experimental settings were used: batch size of 4, Adam optimizer, learning
rates of 1e-5, 2e-5, 3e-5. and 5e-5, and number of epochs of 10, 20, 30. For final training, we used the learning rate
of 5e-5 for the token classification model and 3e-5 for the CRF-based model and 20 epochs for both models, which
yielded the best performances.

Methodological information that we model generally occurs over a handful of sentences in a RCT publication. Includ-
aPubMed search query: ”randomized controlled trial”[Publication Type]) AND (fft[Filter])
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ing all sentences of the publication in training leads to a very imbalanced dataset. To address this problem, we adopted
four strategies to sample sentences for inclusion in training:

• Positive sentences only: Only sentences that include at least one annotated span are included.

• Random sampling: Positive sentences + a random sentence with no annotations (i.e., negative sentence) for each
positive sentence

• Similarity sampling: Positive sentences + negative sentence with the highest cosine similarity with positive
sentence

• Random+Similarity sampling: Positive sentences + random sampling for half of the positive sentences + simi-
larity sampling for the other half.

For cosine similarity calculation, we generated vector representations of the sentences using PubMedBERT. The
dataset was split into training and test sets (55 articles/15 articles). We report the results on the test set.

Evaluation

The PubMedBERT-based NER models were evaluated at the span and document levels. In all cases, we used precision,
recall, and their harmonic mean, F1 score, as the evaluation metrics. We performed two types of evaluation at the span
level: strict and partial. In strict evaluation, for a prediction to count as a true positive, its span and category needs
to exactly match a ground truth annotation. In partial evaluation, the predicted span and the ground truth span can
overlap but a type match is still required. Document level evaluation is only applied to items with subtypes (Blinding
Type, Phase, etc.).

Results

In this section, we first provide descriptive statistics about the annotated corpus. Next, we present inter-annotator
agreement results. Lastly, we report the performance of NER models trained on the corpus.

Annotated Corpus

We annotated a total of 70 RCT articles in this pilot study. Table 1 shows the descriptive statistics of the annotated
corpus. Among the top level categories, Sample Size had the highest number of annotations (426) followed by Ran-
domization (384), Blinding (302), Trial Design (339), and Settings (145). Allocation Concealment Method was rarely
discussed (12 instances). At the fine-grained level, Parallel Group (179), Actual Sample Size (135), and Double-Blind
(117) were annotated most frequently. Although we represented some characteristics in the data model to maintain
consistency with OCRe, we did not find any instances of these in the corpus: N-of-1, Factorial Factor/Treatment,
Triple-Blind, Quadruple-Blind.

Table 1: Statistical information of the annotated corpus.

Statistics Complete Corpus Train Set Test Set
Number of articles 70 55 15
Number of sentences 10,225 8,715 1,510
Number of sentences with annotations 837 658 179
Number of tokens 312,361 262,647 49,714
Number of annotated tokens 5,758 4,317 1,441
Number of annotations 1,734 1,356 378

Inter-annotator agreement

Table 2 shows pair-wise inter-annotator agreement results obtained on 20 articles at span and document levels using
Cohen’s κ and F1 score. The results show overall high agreement. Our Cohen’s κ scores indicate substantial to perfect
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agreement between the annotators (0.74-0.83)37. F1 score agreement is over 0.9 in all cases. Overall, annotators 1 and
2 achieved higher agreement at both span and document levels. These two annotators annotated the last 40 articles.

Table 2: Pair-wise agreement at span and document levels. Document level agreement is calculated for categories
with sub-classes only.

Ann1 vs. Ann2 Ann2 vs. Ann 3 Ann1 vs. Ann3
Cohen’s κ F1 Cohen’s κ F1 Cohen’s κ F1

Span level 0.94 0.90 0.90
Document level 0.83 0.95 0.74 0.92 0.79 0.93

NER models

For each NER approach (token classification vs. CRF-based), we developed four models each corresponding to a
sampling strategy for training: Positive Sentences, Random Sampling, Similarity Sampling, and Random+Similarity
Sampling. Table 3 shows the performances of the NER models at the span level. In both strict and partial evaluation,
CRF-based classification using Similarity Sampling achieved the best F1 scores. The results with token classification
are similar to CRF-based results. While using Positive Sentences only for training yields lowest F1 results, its recall is
the highest. Sampling strategy has a more significant effect on precision than on recall. Token-level evaluation results
(data not shown due to limited space) show the same patterns as the entity-level results shown here.

Table 3: Model performances at the span level with four sampling strategies for training. Best precision, recall, and
F1 score for strict and partial evaluation scenarios are in bold.

Sampling Strategy
Token classification CRF-based

Strict Partial Strict Partial
P R F1 P R F1 P R F1 P R F1

Positive Sentences 0.24 0.65 0.36 0.29 0.78 0.42 0.22 0.64 0.33 0.27 0.80 0.42
Random Sampling 0.44 0.62 0.51 0.54 0.77 0.63 0.41 0.62 0.49 0.52 0.78 0.63
Similarity Sampling 0.49 0.62 0.55 0.56 0.75 0.65 0.48 0.64 0.55 0.57 0.78 0.66
Random
+ Similarity Sampling 0.48 0.59 0.53 0.59 0.72 0.65 0.46 0.61 0.53 0.57 0.76 0.65

Table 4 shows the performances of the NER models at the document level, which are largely consistent with the
results at the span level. CRF-based models consistently outperform the token classification counterparts. Similarity
Sampling yields highest F1 score and precision performance, while its recall is lower than of the Positive Sentence
sampling. Since we are ultimately interested in summarizing methodological characteristics of a study at the document
level, we consider document-level evaluation results as the main results for this study.

Table 4: Document-level performances of four models using different classification layers. Best precision, recall, and
F1 score are in bold.

Sampling Strategy Token classification CRF-based
P R F1 P R F1

Positive Sentences 0.65 0.89 0.76 0.80 0.84 0.82
Random Sampling 0.82 0.89 0.85 0.88 0.82 0.85
Similarity Sampling 0.89 0.86 0.88 0.95 0.85 0.90
Random + Similarity Sampling 0.94 0.83 0.88 0.89 0.81 0.88

We analyzed the results of the best-performing model (PubMedBERT with CRF layer trained with Similarity Sampling
strategy) in more detail. These results, obtained with span level evaluation, are shown in Table 5. The results show
that the results vary widely among different characteristics. Trial Phase can be recognized perfectly, which is not
surprising given that it is often indicated using exact phrases, such as Phase 1 or Phase IIb. Other characteristics
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recognized relatively well are randomization Ratio (0.97 F1), Power and Alpha for sample size calculation (0.95
and 0.86 F1, respectively), Stratification Criteria for stratified randomization (0.81 F1), and Blinding Type (0.78 F1).
Except Stratification Criteria, these characteristics are generally expressed in a small number of ways in publications,
which may explain the higher performance. Another factor is that these characteristics are relatively frequent in
the dataset. The model fails on several characteristics, such as Allocation Concealment Method which only had a
few examples in the dataset. In contrast, the model had more success with some other characteristics, which also
had few examples, such as Comparative Intent. This can also be attributed to the fact that the expressions for these
characteristics are less diverse than those for, say, Randomization Personnel, which include a wide range of expressions
such as individuals not associated with study conduct or separate unblinded statistical team. For some items, strict vs.
partial evaluation results are the same (e.g., Comparative Intent), while there is a significant different for others that
involve numbers, which merits further investigation (e.g., Block Size, randomization Sequence Generation).

Table 5: Performance of the best model (CRF-based model trained with Similarity Sampling) at the span level.
Characteristics with * next to their name are fine-grained items, while others have subtypes. For characteristics with
subtypes, the results are aggregated for brevity. For example, Trial Design:Type results include predictions for Par-
allel Group, Factorial, etc. Similarly, Sample Size:Type aggregates the results for different sample size calculations:
Required, Targeted, Actual at Enrollment, and Actual at Outcome Analysis.

Strict PartialDomain Characteristics P R F1 P R F1

Type 0.43 0.46 0.44 0.41 0.87 0.55
Phase 1.00 1.00 1.00 1.00 1.00 1.00
Comparative Intent 0.33 0.60 0.63 0.33 0.60 0.63
*Crossover Period/Treatment 0.67 1.00 0.80 0.67 1.00 0.80

Trial Design

*Factorial Factor/Treatment 0.43 0.60 0.50 0.43 0.60 0.50
Type 0.72 0.75 0.73 0.76 0.80 0.78Blinding Objects 0.32 0.50 0.39 0.35 0.54 0.43
Type 0.64 0.38 0.48 0.79 0.49 0.62
*Block Size 0.20 0.33 0.25 0.40 0.67 0.50
*Minimization Criteria 0.67 0.50 0.57 0.83 0.63 0.71
*Stratification Criteria 0.71 0.83 0.77 0.75 0.88 0.81
*Personnel 0.00 0.00 0.00 0.13 0.40 0.20
*Ratio 0.93 0.88 0.90 1.00 0.94 0.97

Randomization

*Sequence Generation 0.32 0.43 0.36 0.68 0.89 0.77
Type 0.42 0.65 0.51 0.52 0.81 0.63
*Alpha 0.42 0.50 0.45 0.79 0.95 0.86
*Dropout Rate 0.27 0.43 0.33 0.45 0.71 0.56Sample Size

*Power 0.91 1.00 0.95 0.91 1.00 0.95
Type 0.61 0.69 0.65 0.69 0.78 0.74Settings *Location 0.37 0.69 0.48 0.45 0.85 0.59

Allocation
Concealment

*Allocation Concealment
Methods 0.00 0.00 0.00 0.00 0.00 0.00

OVERALL 0.48 0.64 0.55 0.57 0.78 0.66

Discussion

We presented a pilot annotation study and baseline NER models for recognizing methodological characteristics in RCT
publications. We focused on characteristics that may affect the methodological quality of and strength of evidence
from a RCT study. To our knowledge, this is the first study to focus on representing, annotating, and extracting these
methodological characteristics at a fine-grained level and in a comprehensive manner. Our work complements the
PICO-based characterizations which, while very important, do not address methodological quality, and automated risk
of bias assessment models, which focus on classification rather than IE and thus, do not provide granular information.
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Our data model was adopted from OCRe and CONSORT. OCRe, by formalizing various aspects of clinical studies, and
CONSORT, by detailing the characteristics of a RCT study that needs to be reported in a publication for transparency,
provide a solid foundation for methodological IE.

Our annotation study showed that annotating RCT methodological items at the span level was feasible. We obtained
high inter-annotator agreement, indicating that these characteristics can be more or less reliably annotated. Several
items were challenging. For example, Parallel Group is easy to annotate when it is explicit (e.g., parallel-group).
However, it is often implicit and can only be determined from the description of the intervention (e.g., intravenous
rhEPO 40 000 IU or placebo fortnightly). While annotators were instructed to annotate such implicit cases in the
annotation guidelines, their annotations were less consistent for these cases.

CRF-based models performed comparatively better than token classification models in NER, indicating that capturing
label sequences is important for methodological IE. This is not surprising, since sentences where many methodological
characteristics of the RCT are mentioned together are common (e.g., This phase 2b, double-blind, placebo-controlled,
parallel-group, dose-ranging randomized clinical trial. . . ) and capturing such patterns may benefit the models. Since
only a small number of sentences in each article was annotated, we sampled unannotated sentences to increase the
training set size. Similarity-based sampling yielded the best results overall, indicating that providing more difficult
negative examples to the training procedure is beneficial. We observed that some characteristics appear easy to identify
using simple lexical rules (e.g., Comparative Intent types such as Superiority, Non-inferiority). We created a set of 16
lexical rules based on regular expressions for characteristics that can be categorized into subtypes (e.g., Blinding or
Randomization Types). Although it covers only a subset of the items, this method yielded comparable results to token
classification model for the characteristics that it covered (results not shown). This indicates that an expanded set of
such rules may be effective in methodological IE, although this involves some manual effort and requires expertise.

Limitations and Future Work

Our study has limitations. First, the annotated corpus is small and needs to be expanded to be more broadly useful. We
anticipate that NER models would benefit from additional training data, as well. This study showed the feasibility of
reliably annotating methodological characteristics at the span level and we plan to expand our corpus in future work. It
would be particularly important to capture a larger number of infrequently discussed characteristics, such as allocation
concealment methods, since the current models fail at recognizing them.

We only experimented with baseline NER models. While they yield promising results, more advanced NER methods
can be applied (e.g., BERT with BiLSTM+CRF layers38). We experimented with the learning rate hyperparameter, but
tuning other hyperparameters could also be beneficial. A simple rule-based approach seems adequate for some items
and it may be worthwhile to use them, especially for the items that do not have sufficient training examples.

Conclusion

In this study, we proposed a data model that captures methodological characteristics of RCTs at fine-grained level,
annotated a corpus of 70 RCT articles with these characteristics, and demonstrated the feasibility of using NER meth-
ods to automatically extract them from these publications. While there is much room for NER model improvement,
we believe that the methodological IE is promising in providing methodological context for the interpretation of study
findings/claims and the basis for reasoning about methodological weaknesses and inconsistencies.
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