Skip to main content
. 2023 Apr 29;2022:542–551.

Table 5:

Performance of the best model (CRF-based model trained with Similarity Sampling) at the span level. Characteristics with * next to their name are fine-grained items, while others have subtypes. For characteristics with subtypes, the results are aggregated for brevity. For example, Trial Design:Type results include predictions for Parallel Group, Factorial, etc. Similarly, Sample Size:Type aggregates the results for different sample size calculations: Required, Targeted, Actual at Enrollment, and Actual at Outcome Analysis.

Domain Characteristics Strict Partial
P R F1 P R F1
Trial Design Type 0.43 0.46 0.44 0.41 0.87 0.55
Phase 1.00 1.00 1.00 1.00 1.00 1.00
Comparative Intent 0.33 0.60 0.63 0.33 0.60 0.63
*Crossover Period/Treatment 0.67 1.00 0.80 0.67 1.00 0.80
*Factorial Factor/Treatment 0.43 0.60 0.50 0.43 0.60 0.50
Blinding Type 0.72 0.75 0.73 0.76 0.80 0.78
Objects 0.32 0.50 0.39 0.35 0.54 0.43
Randomization Type 0.64 0.38 0.48 0.79 0.49 0.62
*Block Size 0.20 0.33 0.25 0.40 0.67 0.50
*Minimization Criteria 0.67 0.50 0.57 0.83 0.63 0.71
*Stratification Criteria 0.71 0.83 0.77 0.75 0.88 0.81
*Personnel 0.00 0.00 0.00 0.13 0.40 0.20
*Ratio 0.93 0.88 0.90 1.00 0.94 0.97
*Sequence Generation 0.32 0.43 0.36 0.68 0.89 0.77
Sample Size Type 0.42 0.65 0.51 0.52 0.81 0.63
*Alpha 0.42 0.50 0.45 0.79 0.95 0.86
*Dropout Rate 0.27 0.43 0.33 0.45 0.71 0.56
*Power 0.91 1.00 0.95 0.91 1.00 0.95
Settings Type 0.61 0.69 0.65 0.69 0.78 0.74
*Location 0.37 0.69 0.48 0.45 0.85 0.59
Allocation Concealment *Allocation Concealment Methods 0.00 0.00 0.00 0.00 0.00 0.00
OVERALL 0.48 0.64 0.55 0.57 0.78 0.66