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Abstract                   

Few computational approaches exist for abstracting electronic health record (EHR) log files into clinically 

meaningful phenomena like clinician shifts. Because shifts are a fundamental unit of work recognized in clinical 

settings, shifts may serve as a primary unit of analysis in the study of documentation burden. We conducted a proof-

of-concept study to investigate the feasibility of a novel approach using time series clustering to segment and infer 

clinician shifts from EHR log files. From 33,535,585 events captured between April-June 2021, we computationally 

identified 43,911 potential shifts among 2,285 (74.2%) emergency department nurses. On average, computationally-

identified shifts were 10.6±3.1 hours long. Based on data distributions, we classified these shifts based on type: day, 

evening, night; and length: 12-hour, 8-hour, other. We validated our method through manual chart review of 

computationally-identified 12-hour shifts achieving 92.0% accuracy. Preliminary results suggest unsupervised 

clustering methods may be a reasonable approach for rapidly identifying clinician shifts. 

Introduction 

Clinician documentation burden is recognized as a pervasive problem within our health care system and a major driver 

of clinician burnout.1,2 Prior to the broad implementation of electronic health records (EHRs), the primary purpose of 

clinical documentation was to support direct patient care and to communicate clinical decision-making among care 

team members. With the digitization of clinical data capture through information systems and simultaneous motivation 

to enforce regulatory requirements and standards for clinical practice, EHR design and development has 

unintentionally pivoted the focus of clinician documentation to reimbursement and reporting.3 In addition to the 

overall increase of documentation volume and information consumption contributing to documentation burden among 

clinicians, extensive literature has demonstrated that suboptimal EHR system design, usability, and integration of 

EHRs4 in clinical workflows alone are associated with more time spent on clinical documentation and burnout among 

clinicians.5–7 These concerns have become particularly salient during the COVID-19 pandemic, which has been 

accompanied by an exodus of healthcare workers from clinical medicine.8,9 

Mitigating EHR documentation burden will rely on consistent and ongoing evaluation of EHR optimizations10; 

however, suitable, universally agreed upon quantitative and computational methods to examine documentation burden 

and its proxy, clinician work, remain elusive. Concretely, few standardized, cost-effective and scalable approaches 

exist to measure and understand the impact of EHR design and usability on clinician workflows.11,12 Historically, 

research on clinician workflows have employed time-motion studies, but the growing ubiquity of EHRs and 

subsequent exponential growth in actively (e.g., patient care-related) and passively (e.g., EHR metadata) collected 

EHR data have shifted the emphasis from direct observation techniques to secondary data analyses,11 which have 

promoted enormous opportunities for health outcomes, health care and health services research. EHR log files are one 

type of passively collected data which emerged through HIPAA and Meaningful Use mandates requiring that 

healthcare organizations implement procedures to monitor privacy and security (e.g., auditing and access) of protected 

health information in computerized information systems.13 While promising for investigating EHR use and clinician 

workflows in the EHR, EHR log files are exceedingly convoluted and were not intended for use in research,18 and 

insufficient criteria have been established to standardize its data granularity and the breadth of which EHR-related 

behaviors are captured among its users.14  

Currently, no prescriptive guidelines exist to organize EHR log files into readily identifiable, clinically meaningful 

phenomena. Rigorous approaches for abstracting EHR log files into usable, reliable, and actionable abstractions such 

as clinician activities and discrete shifts—a widely applied primary unit of analysis for clinician work—to examine 

clinician behaviors are wanting. While many studies that utilize EHR log files investigate clinician workload and 

workflows at the shift level, limited research has been devoted to developing shift detection methods that singularly 
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rely on EHR log files as a primary data source, can be leveraged to further EHR workflow analyses, and are 

generalizable to a broad range of clinical contexts. Clinician scheduling data typically reside on administrative systems 

and databases that are autonomous from EHRs and often require additional permissions and approvals to access as a 

safeguard for employee privacy. Considerable variation in the sophistication and architecture of these scheduling 

systems across institutions, settings, sites and clinician roles contribute to the overall variability in their data output 

structures, which frequently do not exist in machine computable formats (e.g., word-processing documents and 

portable document format files), and oftentimes require additional data normalization.15–17 Prior EHR log file studies 

on shift level work among clinicians have been small-scale, manually identify shifts,18 rely on auxiliary administrative 

data, employ heuristics19 and/or examine aggregate data over extensive time periods (e.g., year).20 To our best 

knowledge, only one large-scale EHR log file study has been conducted on automated shift detection among pediatric 

in-patient residents using rule-based classification, a technique that classifies data according to explicit, human 

knowledge-based conditions21; no studies have explored unsupervised methods, which uncover underlying patterns 

based on inherent data structures.  

It has become increasingly apparent that clinician workflows and work patterns (and subsequently, the experience of 

documentation burden) vary individually as well as across roles, settings, and institutions; thus, more versatile methods 

to identify shifts and other clinically meaningful constructs in its study may be warranted.2 This proof-of-concept 

study is aimed at investigating the feasibility and scalability of a novel two-step approach for automatically segmenting 

and inferring clinician shifts from EHR log files (hereinafter referred to as “computationally-identified shifts”) using 

density-based spatial clustering of applications with noise (DBSCAN). DBSCAN is one type of time series clustering 

method that has been used in a variety of healthcare contexts for medical image segmentation,22-,25 recommender 

systems26 and anomaly detection.27 DBSCAN groups interesting subsequences of dynamic, time-dependent data28—

operationalized as "EHR log file timestamps” in this study—of varying time periods and cadences into similar clusters 

which we define as “shifts”. Given the paucity of research in more advanced EHR log file analyses, and variable 

nature of shift types and lengths among clinicians, the overall motivation of this study is to determine whether time 

series clustering (i.e., data-driven) approaches are worthwhile to explore for the large-scale automated detection of 

clinician shifts using EHR log file data. Prior studies on shift level EHR work and clinician workflows using EHR log 

files have primarily focused on physicians in inpatient and ambulatory settings;15,16,20,21 few have examined the 

emergency department (ED).17 To our knowledge, the majority of research examining shift level nursing work have 

been undertaken in intensive and acute care units,19,29 whereas none have investigated ED nursing shifts. Contrasting 

traditional ambulatory and inpatient settings, ED environments (and shifts) are highly dynamic and largely driven by 

patient census and acuity.30 In this paper, we describe our automated shift detection approach, share the results of our 

algorithm’s findings, and validate our methodology using manual chart review. And while we focus on automatically 

detecting shifts among nurses in the ED in this analysis, we envision further extending our methodology to shifts that 

are more irregular and difficult to segment, such as ED resident and attending shifts in the future. 

Methods 

We conducted a large-scale retrospective cohort analysis to automatically detect ED nurse shifts using an unsupervised 

clustering approach to segment EHR log files and infer shifts based on the “similarity” of EHR log file timestamps 

for our proof-of-concept study. We extracted raw EHR log files between September 1, 2020 to August 31, 2021 

generated from one ED site of a large academic medical center in the northeastern United States for all registered 

nurses who worked in the ED. This ED site is a large, quaternary care center with over 100,000 patient encounters 

annually. The institution uses the Epic Systems EHR (Verona, WI, Epic Systems), which was implemented in 

February 2020. EHR log files were extracted from the Epic Clarity database and contained information on the 

following five data elements: process id (i.e., unique cache process per user login instance), clinician identification 

number (i.e., individual clinician interacting with the EHR), patient identification number (i.e., medical record 

accessed), event name (i.e., action performed in the EHR and captured in the EHR log files, such as “Flowsheets 

viewed”, “Storyboard viewed”,  and “MAR administration accepted”), and timestamp of when an event was 

performed. Our final analytical dataset comprised of three months of data (April to June 2021). For completeness, all 

log events associated with both a patient identification number and an encounter number were included in the analysis 

regardless of whether they were user- or system-generated. All data were deidentified prior to initiating analysis. 

Clustering Algorithms and DBSCAN 

Clustering is an unsupervised machine learning task employed for uncovering natural groupings among similar data 

objects.22 Based on the distribution of a dataset and grouping strategy, various categories of clustering algorithms can 

be employed: partitioning, hierarchical, density-based, model-based and grid-based.23 Traditionally, clustering 

806



algorithms have been applied on static data (i.e., features with values that remain constant or change marginally over 

time)22; however, exponential growth of time series data (defined as “a series of data points in similar time spaces”22) 

in last decade has led to increased attention to time series clustering. According to Zolhavarieh et al., time series 

clustering partitions “interesting subsequence[s] of time series data in[to] the same cluster”22 to explore underlying 

patterns and structures.23 Three categories of time series clustering exist: whole time series clustering, subsequence 

time series clustering, and time point clustering.22  

DBSCAN is one type of clustering algorithm which is: (a) density-based (i.e., defines clusters as contiguously dense 

regions in space separated by low-density regions), and (b) relies on time point clustering (i.e., groups time points 

based on temporal proximity and similarity of their corresponding values).22 Specifically, DBSCAN efficiently utilizes 

the density of data points in space (i.e., neighboring points) to form clusters of arbitrary shapes (i.e., different sizes 

and densities),23 and effectively processes outliers that lie in low-density regions. Unlike other clustering algorithms, 

such as k-means, DBSCAN works well with low dimensional data and is a non-parametric algorithm (i.e., does not 

require an a priori determination of cluster numbers).28  

The DBSCAN algorithm requires two parameters: (a) epsilon (ε), the furthest distance at which a point will select a 

neighboring point to form a cluster, and (b) minimum points (np), the threshold number of neighboring points required 

to be considered a valid cluster (i.e., dense region) or alternatively, an outlier (i.e., a data point that statistically differs 

significantly from other points).33 While adjusting ε is driven by the distribution of the points in a dataset, 𝑛𝑝 is 

determined by expert knowledge of the domain problem. 

Data Preprocessing 

Given prior evidence that nurse experience 

impacts their EHR documentation habits,31 we 

assume individual nurse EHR behaviors and 

workflow patterns were unique and performed 

independent of other nurses; therefore, we 

implemented the DBSCAN algorithm at the 

individual-nurse level. As such, among each 

individual nurse, DBSCAN may identify one or 

more clusters of “similar” timestamps, with 

each unique timestamp cluster potentially 

representing what we conventionally recognize 

as individual shifts. Partitioning DBSCAN 

clustering based on this natural separability 

(i.e., clinician identification number) between 

successive timestamps in raw EHR log files 

among individuals additionally accounted for 

DBSCAN implementation requiring that 

feature values be continuous (Figure 1). We 

preprocessed raw EHR log file data by 

converting all event timestamps to integers 

which represented total seconds after elapsed UNIX epoch time (i.e., January 1, 1970). We standardized these integers 

by subtracting the mean and scaling the unit variance such that the data followed a normal distribution N(0,1); these 

data were normalized so that all feature values resided on the same scale.32 The data were then sorted by ascending 

clinician identification number and timestamp. 

Time Series Clustering of EHR Event Timestamps 

We selected one month of data (April 2021) to establish baseline values for parameters ε and 𝑛𝑝, and to benchmark 

the algorithm’s runtime. Initial parameters were determined iteratively using a combination of the following three 

methods: plots, model diagnostics and manual review.  

We explored the optimal ε by assessing elbow plots25 and executing DBSCAN at the individual-nurse level on a 

random 1.0% subset of nurses (n=30); elbow plots did not yield practical results with increasing granularity of ε. In 

addition, we examined individual-nurse level DBSCAN model diagnostics: number of clusters identified, number of 

outliers (i.e., noise points) and the silhouette index (SI). The SI is a measure of cluster cohesion and separation (i.e., 

space between clusters) and represents a mean of all instances i of silhouette indices and is calculated using the 

Figure 1. Schematic of our two-step time series clustering approach to 

automatically identify shifts using raw EHR log files. In this scenario, 

EHR event timestamps for two nurses, depicted as spheres (teal and 

red respectively), are subsetted at the individual-nurse level and  

clustered into shifts based on timestamp density using DBSCAN (gray 

boxes) in Step 1. In Step 2, rule-based logic conditioned on the first 

timestamp identified in the time series is applied to classify clusters 

into day, evening and night shifts. 
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mean intra-cluster distance (a), and the mean 

nearest-cluster distance (b) for each sample i or 

[𝑏𝑖  − 𝑎𝑖/𝑚𝑎𝑥(𝑎𝑖 , 𝑏)].34 The SI ranges between 

-1 and +1, positive one indicating that within 

cluster samples are closer to each other and 

further from other clusters, zero indicating 

proximity to cluster boundaries, and negative 

one indicating the potential presence of 

misclustering;35 naturally, calculation of SI 

requires that identified cluster counts are ≥2 and 

less than the total number of samples i in the 

dataset.36 Specifically, we manually assessed the 

quality of clusters by investigating all individual-

nurse level model diagnostics for clusters with a 

SI <0.5. We adjusted 𝜀 based on the overall SI 

(i.e., mean SI among all individual-nurse level 

SIs) as well domain knowledge on nurse 

workflows from three co-authors (SC, KC, JW) 

who are also nurse informacists. This tuning 

process continued until there was a less than 

50.0% improvement among SI scores that 

changed. We selected the algorithm with the 

optimal overall SI. Lastly, we generalized the 

selection of 𝜀 to the full 3-month analytical 

dataset. The optimal model was fixed at 𝜀 = 

0.015.  

In this study, np is operationalized as the 

minimum number of EHR events that a nurse must engage in to qualify as a shift. We roughly approximated the 

number of EHR events nurses engaged in per shift by generating boxplots to examine the distribution of EHR events 

logged among nurses per day at the individual level (Figure 2). Longitudinally, we examined EHR event trends by 

plotting volume of EHR events per hour over time for each nurse. Based on the distributions of these plots (see Q1), 

we fixed 𝑛𝑝 at 50 EHR events (Median=297; �̅�=500; SD=554.2). Lastly, we plotted a histogram of the between-event 

intervals (i.e., duration between sequential event timestamps) to understand trends of activity and inactivity among 

nurses throughout their day. We found that most EHR events were logged within two hours of the previous event, 

which exponentially decreases until 11 to 13 hours later when EHR events peak again indicating activity in their next 

shift (Figure 3). As described previously, the final DBSCAN algorithm (𝜀= 0.015, 𝑛𝑝= 50) was executed on a for-loop 

at the individual-nurse level, with k-dimensional (k-d) tree optimization.  

Rule-based Classification of EHR Event Timestamp 

Sequence Clusters  

After individual nurse EHR event timestamps were 

computationally segmented into discrete clusters 

(i.e., shifts), we calculated shift length (i.e., duration) 

by sorting within-cluster EHR event timestamps in 

ascending order and computing the difference 

between the first (i.e., shift start time) and last 

timestamps (i.e., shift end time) identified in the 

timestamp sequences for all clusters identified 

among each nurse (Figure 1). We plotted histograms 

for shift duration and shift start time in hours (hrs) 

respectively for all clusters identified. Based on the 

distribution of durations (Figure 4a), we classified 

computationally-identified nurse shifts into shift 

lengths using rule-based logic according the 

following cut-offs: (a) ≥11hrs and <16hrs (12-hour shift); (b) ≥7hrs and <11hrs (8-hour shift); and (c) <7hrs or 

Figure 2. Distribution of EHR events that nurses logged per day, 

April 2021 (M=median; Q=quartile; Min=minimum; 

Max=maximum) 

Q1=47 Q2=787 

M=297 Max=3,655 Min=1 
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Figure 4a. Distribution of shift duration among 

computationally-identified nurse shifts* 

 

 

Figure 3. Distribution of time intervals between EHR events 

logged among nurses in hours, April 2021* 
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≥16hrs (other). The majority of computationally-identified 

shifts were between 10 to 13 hours long (74.2%). Based on the 

results of shift start times (Figure 4b), we also classified day, 

evening, and night shifts using rule-based logic according to 

the following start hours: (a) ≥4am and <2pm (day); (b) ≥2pm 

and <6pm (evening); (c) ≥6pm and <4am (night). Among 

computationally-identified shifts, most start times fell between 

7AM and 9AM (44.4%) as well as between 7PM and 9PM 

(39.3%). 

Validation of Results 

Presently, no gold standard approach exists for validating 

clinician shifts identified through raw EHR log files; however, 

prior studies have utilized clinician self-reported shifts15 and 

manual chart review.21 We validated our computationally-

identified nurse shifts through a manual chart review of EHR 

data by one co-author (KC) of a random 10.0% sample of all nurses with at least one computationally-identified, 12-

hour shift (n=179). Among each of those nurses, we randomly sampled two computationally-identified, 12-hour shifts 

for review (n=358); if fewer than two computationally-identified, 12-hour shifts were present in that nurse, we 

continued sampling nurses until our sample size was achieved. We employed this approach as a large proportion of 

nurses working at this ED site were travel nurses, float nurses and/or nurse consultants who did not have a primary 

appointment in the ED, but whose EHR log file data were indistinguishable from permanent ED staff nurses. This 

sample size has been used in studies of similar context.21 We assessed the accuracy of our approach by dividing the 

overall number of computationally-identified, 12-hour shifts that were deemed correct based on chart review by the 

total number of computationally-identified, 12-hour shifts sampled. All analyses were implemented using Python 

version 3.8.5 with scikit-learn.36 

Results 

Between April 1, 2021 and June 30, 2022, EHR log files captured 33,535,585 events and their associated timestamps 

among 3,079 ED nurses who interacted with the EHR. Among those event timestamps, we computationally identified 

43,911 potential shifts among 2,285 (74.2%) nurses using DBSCAN. The optimal parameters (ε = 0.015, 𝑛𝑝= 50) 

yielded the best overall SI (0.820). Over 80.0% of nurses had at least one event timestamp classified as an outlier 

(86.1±125.0 timestamp points; Median = 44.0); however, outliers represented a small proportion (0.6%) of the overall 

data (Table 1).  

Table 1. Aggregate summary of DBSCAN model diagnostics among 3,091 RNs, April-June 2021 

 Model 1 

[ = 0.010, np= 50] 

Model 2 

[ = 0.0125, np= 50] 

Model 3 

[ = 0.015, np= 50] 

Diagnostic n (%) n (%) n (%) 

Number of nurses with ≥1 computationally-

identified shifts 
2,284 (74.2) 2,284 (74.2) 2,285 (74.2) 

Number of shifts computationally-identified  43,971 (na) 43,983 (na) 43,911 (na) 

Number of event timestamps identified as 

outliers 
225,375 (0.7) 216,165 (0.6) 212,645 (0.6) 

 Mean (SD) Range Mean (SD) Range Mean (SD) Range 

Average silhouette index across all nurses 0.817 

(0.161) 

[-0.443, 

0.999] 

0.819 

(0.159) 

[-0.408, 

0.999] 

0.820 

(0.159) 

[-0.406, 

0.999] 

As demonstrated in Figure 4a, the durations 

among computationally-identified shifts were 

left skewed with large outliers on the right 

hand side. On average, computationally-

identified shifts were 10.6±3.1hrs long 

(Median = 11.6; IQR = 1.7; Range[0, 85.6]). 

After applying rule-based shift classification 

 
Total Shifts EHR Log Events (per Shift) 

Shift Type n (%) Mean (SD) Median Range 

Day 15,089 (51.3) 989.7 (571.3) 929 [50, 4235] 

Night 14,337 (48.7) 928.0 (553.8) 848 [50, 3980] 

   Overall 29,426 (100.0) 959.6 (563.7) 890 [50, 4235] 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Shift Start Time (hour)

0K

1K

2K

3K

4K

5K

6K

7K

8K

9K

10K

11K

12K

F
re

q
u
en

cy

1
0

,7
6
3

1
,3

4
7

9
,5

4
3

2
,5

8
2

5
,8

6
3

5
,1

2
8

2
,8

6
3

2
0

9 6
4
6

2
7

17
1

6

1
9
76

1
2

3
8

6

3
6
1

3
9

2

3
1

7

2
7

7

2
9
6

8
7

1

5
08
1

6
3

7
7

Figure 4b. Distribution of shift start times among 

computationally-identified nurse shifts 

 

 

Table 2. Frequency table of shift type by shift length (duration) 

among computationally-identified shifts. 
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logic to computationally-identified shifts (see Methods), we found that the majority of ED nurse shifts were 12 hours 

in length (67.1%) followed by 8 hours (20.5%) (Table 2). While 12-hour shifts were largely uniformly distributed 

between day (51.2%) and night (48.6%) shifts, nearly two-thirds of 8-hour shifts were day shifts. On average, more 

EHR events were captured per shift among day (989.7±571.3) compared to night (928.0±553.8) shift nurses (Table 

3).  

Validation Results 

Based on our sampling strategy, we ultimately 

extracted 276 computationally-identified, 12-

hour shifts from 179 ED nurses for manual 

review. Among the 276 computationally-

identified day and night shifts, 92.0% were 

correctly classified as 12-hour day and night 

shifts. Twenty computationally-identified 

shifts appeared to have shift start and end 

times that were shifted by 12 hours (i.e., 

misclassification of night and day shifts based on events in EHR log files). The status of two computationally-

identified shifts from one nurse could not be verified as not enough information was available among individual patient 

charts to determine clinician EHR activity; however, based on the EHR log files, over 1,000 events were logged for 

each of those computationally-identified shifts. 

Discussion 

To our best knowledge, this is the second study investigating automated approaches for detecting clinician shifts 

using EHR log files,21 and the first to implement an unsupervised time series clustering method. In this study, we 

computationally identified 43,911 potential shifts among 2,285 (74.2%) ED nurses using DBSCAN. On average, 

computationally-identified shifts were 10.6±3.1 hours long. Validation of computationally-identified, 12-hour day 

and night shifts (n=276) among ED nurses through retrospective chart review demonstrated that our two-step 

approach detected 12-hour shifts at a 92.0% accuracy; however, this may be higher as retrospective chart reviews 

are complex and prone to error (~10.0%).37 For example, among two computationally-identified, 12-hour shifts that 

could not be ascertained and validated in the EHR charts, both consistently logged event timestamps (n >1,000) over 

the course of 12 hours, suggesting high volume clinician EHR activity. In contrast, Dziorny et al.21 found no 

mismatches between scheduled shifts and “EHR-calculated” shifts using their rule-based classification method. It is 

worthwhile to note that Dziorny and colleagues21 obtained EHR log files using trainee names, whereas we 

inclusively examined all available data for the specified time period. Further investigation is needed to discern the 

source of the incongruity between EHR log files and EHR charts in our study (e.g., data access issues or system 

bugs).  

Overall, our findings are consistent with our knowledge of ED nursing shift structures at the study site, which are 

typically 12 hours long and implements staggered start times centered at 7AM and 7PM, respectively (see Figures 

4a & 4b). This suggests data-driven methods may be a reasonable approach to examine shifts—and more generally, 

clinician workflows—in EHR log files as an alternative to traditional rule-based algorithms (RBAs) for some 

research questions. For example, although RBAs are human interpretable, manual generation of rules are often 

difficult and time-consuming to perform, and may lack generalizability and scalability to other contexts (e.g., 

distinct clinician roles and types, practice settings and institutions) including evolving contexts (e.g., changes in the 

EHR design or business process requirements). Frequently, RBAs are specialized for a specific problem and require 

extensive domain knowledge. This lack of portability among RBAs is readily apparent in their fixed thresholds, 

rendering them incapable of independently learning “new” rules, which must be incrementally added or removed, 

and requiring continuous data (e.g., time) to be discretized. As a result, RBAs may not be appropriate for some tasks 

involving highly dynamic and continuously generated data, such as EHR log files. For instance, among the 254 

computationally-identified, 12-shifts that we correctly validated, nearly 40.0% were longer than 12 hours and none 

were exactly 12 hours long. Strict RBAs may artificially truncate these actual durations spent in the EHR within one 

scheduled shift depending on the rules established for the algorithm, and therefore, underrepresent and 

underestimate actual clinician interactions and work in the EHR (i.e., natural clinician behaviors), and ultimately, 

level of documentation burden. While typical shift types are day, evening and night, and shift lengths are 12 and 8 

hours long, individual clinician shifts may vary across days and lengths—not accounting for overtime shifts. Given 

this mutability, machine learning algorithms may be a suitable alternative for detecting clinician shifts as they 

Shift 

Type 

Shift Length 

12-hour 8-hour Other Total 

n (%) n (%) n (%) n (%) 

Day 15,089 (63.7) 5,720 (24.2) 2,871 (12.1) 23,680 (100.0) 

Evening 50 (3.7) 125 (9.3) 1,172 (87.0) 1,347 (100.0) 

Night 14,337 (75.9) 3,144 (16.4) 1,403 (7.4) 18,884 (100.0) 

Overall 29,476 (67.1) 8,989 (20.5) 5,446 (12.4) 43,911 (100.0) 

Table 3. Distribution of the frequency of EHR events that nurses 

logged per shift, day and night shift only 
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optimally solve “general questions,” are simple to use and implement, and update automatically when presented 

with novel data.  

In the context of automated shift detection, DBSCAN specifically, may be a superior approach compared to alternative 

clustering algorithms (e.g., k-means) as it does not require a priori knowledge of cluster numbers and is capable of 

efficiently grouping data points with arbitrary shapes and sizes.23 This flexibility represents a key advantage in the 

domain of shift detection as: (a) actual clinician shifts are indiscernible based on raw EHR log files alone, and (b) 

actual clinician shifts may not abide by customary scheduled shift lengths (e.g., 12-hour, 8-hour, etc.) which (in reality) 

may be longer or shorter depending on whether EHR documentation was completed before the end of a scheduled 

nursing shift, or after the change of shift handover. Additionally, because density-based algorithms like DBSCAN 

partition high-density data regions from low-density data regions, they can detect (and flag) outliers within a task, 

such as sporadic interactions in the EHR not associated with work during a scheduled shift.3 Longitudinal examination 

of individual EHR event trends among nurses over time (i.e., volume of EHR events per hour) in our study 

demonstrates that some nurses document voluminously over short time periods (e.g., two hours) and then abruptly 

stop for several hours; these documentation habits may represent nurses that hold managerial positions in the ED. 

Based on the results of our algorithm, a marginal proportion of outliers (0.6%) were identified in our dataset, 

suggesting that ED nurses rarely engage in work outside their scheduled shift. While consistent with the results of our 

ongoing qualitative study on ED nurse documentation burden in the EHR,41 further investigation is required to ensure 

that these outlier EHR event timestamps were not misclassified and that algorithm parameters were not misspecified 

as adjusting parameters ε and np would determine whether those EHR event timestamps are included or excluded in 

the analysis; as such, there are tradeoffs to DBSCAN. For example, too stringent parameters may lead to valid EHR 

interactions within a shift being divided into distinct shifts or recognized as outliers (and therefore missed), whereas 

too lax parameters may lead to the agglomeration of EHR interactions among multiple independent shifts into a single 

broad shift.  

Inferring clinician shifts from raw EHR log files remains a difficult undertaking. In this study we classified 

computationally-identified shifts into shifts and types using expert knowledge-driven heuristics for descriptive 

purposes; however, our intention is to holistically and longitudinally examine computationally-identified shifts 

without these ascribed labels with the goal of understanding factors that drive unusually longer than expected time in 

the EHR (e.g., nature and type of work conducted). As described previously, EHR interactions outside a scheduled 

shift may have led to the misclassification of these ascribed shift types and lengths, and may have resulted in the 

detection of extraneous shifts or the agglomeration of several shifts. Additionally, it is possible that valid EHR event 

timestamps within a shift may have been misidentified as outliers. These scenarios are conceivable as over 12.0% of 

computationally-identified shifts were classified as other (i.e., <7hrs or ≥16hrs long). These are known challenges 

that are intrinsic to the use of EHR log files for understanding clinical activity.11,14 It is likely that location information 

would improve our algorithm’s overall performance by improving the resolution of high-density areas (i.e., shifts) and 

reducing the presence of noise (i.e., interaction with the EHR outside the ED) so we can differentiate onsite EHR work 

performed outside normally scheduled shift time with worked performed at home. Ideally, these location data would 

be integrated with existing EHR systems and databases; however, interoperability among distinct vendor proprietary 

systems and tools is slow to evolve, and presently, an unrealistic endeavor. For instance, administrative data on nurse 

and physician scheduled shifts at this ED site reside on two independent web-based scheduling, timekeeping and 

attendance systems, Kronos Workforce Timekeeper (Kronos) (New York, NY, Ultimate Kronos Group) and Shift 

Admin (Atlanta, GA, Qgenda) respectively, which are not jointly integrated nor integrated with the EHR. Meanwhile, 

resident scheduling data reside on Google sheets and portable document files, which are not machine computable. 

These scheduling data are not always up-to-date and/or accurate; and while administrative systems data may provide 

information on shift scheduling, they may be difficult to access due to privacy concerns. For these reasons, we 

advocate for the development of standardized, quantitative and computational methods (to investigate clinically 

meaningful constructs associated with clinical workflows) that do not require data that are not integrated in the EHR. 

Future Directions 

Validation of our results using shift scheduling data is still in process and will be complete by the end of 2022; these 

results will be included in future revisions and presentations. Most recently, we randomly sampled 10.0% of all nurses 

with at least one computationally-identified shift (independent of shift length) detected in the raw data extract (n=230) 

for validation against data captured in Kronos. Our comprehensive two-step process is summarized in Figure 5. 
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Because shift length has been 

used as an objective 

organizational metric to 

examine clinician work in the 

past, future efforts will focus on 

extending our two-step 

approach to more irregular 

shifts and schedules (e.g., 

overtime)—such as resident and 

attending shifts—in addition to 

larger data volumes, which may 

be more challenging to segment 

and infer using traditional 

RBAs. In the context of 

documentation burden and 

burnout,38 these shift structures 

are critical to examine as irregular shift work are associated with reduced performance39 and increased risk of 

error.40 Moreover, we are beginning to explore whether computationally-identified shifts can be grouped into similar 

shift types and lengths as well as EHR engagement patterns in an unsupervised fashion (i.e., without the use of rule-

based logic); the premise of this exploratory analysis is to help lay the groundwork for methods in EHR workflow 

analyses, as well as in the phenotyping of clinicians based on EHR interaction habits so that targets to reduce 

documentation burden can be identified.   

Limitations 

This study has several limitations. Because existing EHR log files do not provide information on the location at which 

nurses interacted with the EHR (e.g., workstation or IP address), we are unable to distinguish whether EHR 

interactions captured outside of conventional scheduled shift hours occurred contemporaneous to their scheduled shift 

(i.e., after they clocked out but in the ED) or outside their shift (i.e., in their residence); however, our study team’s 

ongoing qualitative research on EHR documentation burden among ED nurses reveal that few nurses access the EHR 

and/or document outside the ED setting.41 While broad variability may exist in EHR interaction habits within and 

across nurses, 31 we set algorithm parameters (ε, np) identically across all individual-nurse level data; those fixed 

parameter values may not have been generalizable to all nurses. In addition, validation of our method was conducted 

by only one study team member and for computationally-identified shifts of 12 hours only. These results may be 

biased towards nurses who engage frequently and predictably within the EHR during their shifts, and therefore, may 

be nonrepresentative of all nurses and/or shifts. Lastly, we examined three months of data which may be 

nonrepresentative of all potential shifts that exist. 

Conclusion 

Developing standardized, novel approaches to abstract clinically meaningful constructs and actionable information 

from EHR log files will be foundational to impactful analysis on clinician workflows in the EHR, and ultimately, 

documentation burden. In this study, we implemented and validated a two-step approach that applies time series 

clustering to automatically segment and infer ED nurse shifts from EHR log files, which yielded a 92.0% accuracy 

among computationally-identified, 12-hour shifts. Our work is significant as it demonstrates that data-driven methods 

(as opposed to expert knowledge driven methods) may be utilized to extract meaning (i.e., shift level EHR work) from 

EHR log files. 
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