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Abstract

Few computational approaches exist for abstracting electronic health record (EHR) log files into clinically
meaningful phenomena like clinician shifts. Because shifts are a fundamental unit of work recognized in clinical
settings, shifts may serve as a primary unit of analysis in the study of documentation burden. We conducted a proof-
of-concept study to investigate the feasibility of a novel approach using time series clustering to segment and infer
clinician shifts from EHR log files. From 33,535,585 events captured between April-June 2021, we computationally
identified 43,911 potential shifts among 2,285 (74.2%) emergency department nurses. On average, computationally-
identified shifts were 10.6+3.1 hours long. Based on data distributions, we classified these shifts based on type: day,
evening, night; and length: 12-hour, 8-hour, other. We validated our method through manual chart review of
computationally-identified 12-hour shifis achieving 92.0% accuracy. Preliminary results suggest unsupervised
clustering methods may be a reasonable approach for rapidly identifying clinician shifis.

Introduction

Clinician documentation burden is recognized as a pervasive problem within our health care system and a major driver
of clinician burnout."? Prior to the broad implementation of electronic health records (EHRs), the primary purpose of
clinical documentation was to support direct patient care and to communicate clinical decision-making among care
team members. With the digitization of clinical data capture through information systems and simultaneous motivation
to enforce regulatory requirements and standards for clinical practice, EHR design and development has
unintentionally pivoted the focus of clinician documentation to reimbursement and reporting.® In addition to the
overall increase of documentation volume and information consumption contributing to documentation burden among
clinicians, extensive literature has demonstrated that suboptimal EHR system design, usability, and integration of
EHRs* in clinical workflows alone are associated with more time spent on clinical documentation and burnout among
clinicians.>”’ These concerns have become particularly salient during the COVID-19 pandemic, which has been
accompanied by an exodus of healthcare workers from clinical medicine.®?

Mitigating EHR documentation burden will rely on consistent and ongoing evaluation of EHR optimizations'?;
however, suitable, universally agreed upon quantitative and computational methods to examine documentation burden
and its proxy, clinician work, remain elusive. Concretely, few standardized, cost-effective and scalable approaches
exist to measure and understand the impact of EHR design and usability on clinician workflows.'!!? Historically,
research on clinician workflows have employed time-motion studies, but the growing ubiquity of EHRs and
subsequent exponential growth in actively (e.g., patient care-related) and passively (e.g., EHR metadata) collected
EHR data have shifted the emphasis from direct observation techniques to secondary data analyses,!! which have
promoted enormous opportunities for health outcomes, health care and health services research. EHR log files are one
type of passively collected data which emerged through HIPAA and Meaningful Use mandates requiring that
healthcare organizations implement procedures to monitor privacy and security (e.g., auditing and access) of protected
health information in computerized information systems.'3> While promising for investigating EHR use and clinician
workflows in the EHR, EHR log files are exceedingly convoluted and were not intended for use in research,'® and
insufficient criteria have been established to standardize its data granularity and the breadth of which EHR-related
behaviors are captured among its users.'

Currently, no prescriptive guidelines exist to organize EHR log files into readily identifiable, clinically meaningful
phenomena. Rigorous approaches for abstracting EHR log files into usable, reliable, and actionable abstractions such
as clinician activities and discrete shifts—a widely applied primary unit of analysis for clinician work—to examine
clinician behaviors are wanting. While many studies that utilize EHR log files investigate clinician workload and
workflows at the shift level, limited research has been devoted to developing shift detection methods that singularly
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rely on EHR log files as a primary data source, can be leveraged to further EHR workflow analyses, and are
generalizable to a broad range of clinical contexts. Clinician scheduling data typically reside on administrative systems
and databases that are autonomous from EHRs and often require additional permissions and approvals to access as a
safeguard for employee privacy. Considerable variation in the sophistication and architecture of these scheduling
systems across institutions, settings, sites and clinician roles contribute to the overall variability in their data output
structures, which frequently do not exist in machine computable formats (e.g., word-processing documents and
portable document format files), and oftentimes require additional data normalization.'>"!” Prior EHR log file studies
on shift level work among clinicians have been small-scale, manually identify shifts,'® rely on auxiliary administrative
data, employ heuristics!® and/or examine aggregate data over extensive time periods (e.g., year).”’ To our best
knowledge, only one large-scale EHR log file study has been conducted on automated shift detection among pediatric
in-patient residents using rule-based classification, a technique that classifies data according to explicit, human
knowledge-based conditions?!; no studies have explored unsupervised methods, which uncover underlying patterns
based on inherent data structures.

It has become increasingly apparent that clinician workflows and work patterns (and subsequently, the experience of
documentation burden) vary individually as well as across roles, settings, and institutions; thus, more versatile methods
to identify shifts and other clinically meaningful constructs in its study may be warranted.> This proof-of-concept
study is aimed at investigating the feasibility and scalability of a novel two-step approach for automatically segmenting
and inferring clinician shifts from EHR log files (hereinafter referred to as “computationally-identified shifts”) using
density-based spatial clustering of applications with noise (DBSCAN). DBSCAN is one type of time series clustering
method that has been used in a variety of healthcare contexts for medical image segmentation,??~>> recommender
systems?® and anomaly detection.?”” DBSCAN groups interesting subsequences of dynamic, time-dependent data?®—
operationalized as "EHR log file timestamps” in this study—of varying time periods and cadences into similar clusters
which we define as “shifts”. Given the paucity of research in more advanced EHR log file analyses, and variable
nature of shift types and lengths among clinicians, the overall motivation of this study is to determine whether time
series clustering (i.e., data-driven) approaches are worthwhile to explore for the large-scale automated detection of
clinician shifts using EHR log file data. Prior studies on shift level EHR work and clinician workflows using EHR log
files have primarily focused on physicians in inpatient and ambulatory settings;'>'%?2! few have examined the
emergency department (ED).!” To our knowledge, the majority of research examining shift level nursing work have
been undertaken in intensive and acute care units,'>* whereas none have investigated ED nursing shifts. Contrasting
traditional ambulatory and inpatient settings, ED environments (and shifts) are highly dynamic and largely driven by
patient census and acuity.*° In this paper, we describe our automated shift detection approach, share the results of our
algorithm’s findings, and validate our methodology using manual chart review. And while we focus on automatically
detecting shifts among nurses in the ED in this analysis, we envision further extending our methodology to shifts that
are more irregular and difficult to segment, such as ED resident and attending shifts in the future.

Methods

We conducted a large-scale retrospective cohort analysis to automatically detect ED nurse shifts using an unsupervised
clustering approach to segment EHR log files and infer shifts based on the “similarity” of EHR log file timestamps
for our proof-of-concept study. We extracted raw EHR log files between September 1, 2020 to August 31, 2021
generated from one ED site of a large academic medical center in the northeastern United States for all registered
nurses who worked in the ED. This ED site is a large, quaternary care center with over 100,000 patient encounters
annually. The institution uses the Epic Systems EHR (Verona, WI, Epic Systems), which was implemented in
February 2020. EHR log files were extracted from the Epic Clarity database and contained information on the
following five data elements: process id (i.e., unique cache process per user login instance), clinician identification
number (i.e., individual clinician interacting with the EHR), patient identification number (i.e., medical record
accessed), event name (i.e., action performed in the EHR and captured in the EHR log files, such as “Flowsheets
viewed”, “Storyboard viewed”, and “MAR administration accepted”), and timestamp of when an event was
performed. Our final analytical dataset comprised of three months of data (April to June 2021). For completeness, all
log events associated with both a patient identification number and an encounter number were included in the analysis
regardless of whether they were user- or system-generated. All data were deidentified prior to initiating analysis.

Clustering Algorithms and DBSCAN

Clustering is an unsupervised machine learning task employed for uncovering natural groupings among similar data
objects.?? Based on the distribution of a dataset and grouping strategy, various categories of clustering algorithms can
be employed: partitioning, hierarchical, density-based, model-based and grid-based.”? Traditionally, clustering
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algorithms have been applied on static data (i.e., features with values that remain constant or change marginally over
time)?2; however, exponential growth of time series data (defined as “a series of data points in similar time spaces”??)
in last decade has led to increased attention to time series clustering. According to Zolhavarieh et al., time series
clustering partitions “interesting subsequence[s] of time series data in[to] the same cluster”?? to explore underlying
patterns and structures.?> Three categories of time series clustering exist: whole time series clustering, subsequence
time series clustering, and time point clustering.?

DBSCAN is one type of clustering algorithm which is: (a) density-based (i.e., defines clusters as contiguously dense
regions in space separated by low-density regions), and (b) relies on time point clustering (i.e., groups time points
based on temporal proximity and similarity of their corresponding values).?? Specifically, DBSCAN efficiently utilizes
the density of data points in space (i.e., neighboring points) to form clusters of arbitrary shapes (i.e., different sizes
and densities),?® and effectively processes outliers that lie in low-density regions. Unlike other clustering algorithms,
such as k-means, DBSCAN works well with low dimensional data and is a non-parametric algorithm (i.e., does not
require an a priori determination of cluster numbers).?

The DBSCAN algorithm requires two parameters: (a) epsilon (€), the furthest distance at which a point will select a
neighboring point to form a cluster, and (b) minimum points (ny,), the threshold number of neighboring points required
to be considered a valid cluster (i.e., dense region) or alternatively, an outlier (i.e., a data point that statistically differs
significantly from other points).”> While adjusting € is driven by the distribution of the points in a dataset, n,, is
determined by expert knowledge of the domain problem.

Data Preprocessing

. o , 000 000 000 000000 0
Given prior evidence that nurse experience

impacts their EHR documentation habits,3! we time

assume individual nurse EHR behaviors and -
workflow patterns were unique and performed 00 @ ® & 00
independent of other nurses; therefore, we Step 1
implemented the DBSCAN algorithm at the o0 000 @ O @
individual-nurse level. As such, among each — -
individual nurse, DBSCAN may identify one or o

more clusters of “similar” timestamps, with l Y J \ Y J
each uni.que timestamp clgster potentiqlly Day Shift Night Shift ] step2
representing what we conventionally recognize

as individual shifts. Partitioning DBSCAN
clustering based on this natural separability
(i.e., clinician identification number) between
successive timestamps in raw EHR log files
among individuals additionally accounted for
DBSCAN implementation requiring that
feature values be continuous (Figure 1). We

Figure 1. Schematic of our two-step time series clustering approach to
automatically identify shifts using raw EHR log files. In this scenario,
EHR event timestamps for two nurses, depicted as spheres (teal and
red respectively), are subsetted at the individual-nurse level and
clustered into shifts based on timestamp density using DBSCAN (gray
boxes) in Step 1. In Step 2, rule-based logic conditioned on the first
timestamp identified in the time series is applied to classify clusters

preprocessed raw EHR log file data by info day, evening and night shifis.

converting all event timestamps to integers

which represented total seconds after elapsed UNIX epoch time (i.e., January 1, 1970). We standardized these integers
by subtracting the mean and scaling the unit variance such that the data followed a normal distribution N(0,1); these
data were normalized so that all feature values resided on the same scale.?? The data were then sorted by ascending
clinician identification number and timestamp.

Time Series Clustering of EHR Event Timestamps

We selected one month of data (April 2021) to establish baseline values for parameters € and n,, and to benchmark
the algorithm’s runtime. Initial parameters were determined iteratively using a combination of the following three
methods: plots, model diagnostics and manual review.

We explored the optimal £ by assessing elbow plots®® and executing DBSCAN at the individual-nurse level on a
random 1.0% subset of nurses (n=30); elbow plots did not yield practical results with increasing granularity of €. In
addition, we examined individual-nurse level DBSCAN model diagnostics: number of clusters identified, number of
outliers (i.e., noise points) and the silhouette index (SI). The S/ is a measure of cluster cohesion and separation (i.e.,
space between clusters) and represents a mean of all instances i of silhouette indices and is calculated using the
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Figure 2. Distribution of EHR events that nurses logged per day,
April 2021 (M=median,; Q=quartile; Min=minimum;
Max=maximum)

proximity to cluster boundaries, and negative
one indicating the potential presence of
misclustering;3® naturally, calculation of S/

requires that identified cluster counts are >2 and
less than the total number of samples i in the
dataset.*® Specifically, we manually assessed the
quality of clusters by investigating all individual-
nurse level model diagnostics for clusters with a
S7<0.5. We adjusted ¢ based on the overall S/
(i.e., mean S7 among all individual-nurse level
SIs) as well domain knowledge on nurse
workflows from three co-authors (SC, KC, JW)
who are also nurse informacists. This tuning
process continued until there was a less than
50.0% improvement among S/ scores that
changed. We selected the algorithm with the
optimal overall SI. Lastly, we generalized the
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0.015.

Figure 3. Distribution of time intervals between EHR events
logged among nurses in hours, April 2021%*

In this study, n, is operationalized as the

minimum number of EHR events that a nurse must engage in to qualify as a shift. We roughly approximated the
number of EHR events nurses engaged in per shift by generating boxplots to examine the distribution of EHR events
logged among nurses per day at the individual level (Figure 2). Longitudinally, we examined EHR event trends by
plotting volume of EHR events per hour over time for each nurse. Based on the distributions of these plots (see Q1),
we fixed n, at 50 EHR events (Median=297; x=500; SD=554.2). Lastly, we plotted a histogram of the between-event
intervals (i.e., duration between sequential event timestamps) to understand trends of activity and inactivity among
nurses throughout their day. We found that most EHR events were logged within two hours of the previous event,
which exponentially decreases until 11 to 13 hours later when EHR events peak again indicating activity in their next
shift (Figure 3). As described previously, the final DBSCAN algorithm (e= 0.015, n,= 50) was executed on a for-loop
at the individual-nurse level, with k-dimensional (k-d) tree optimization.

Rule-based Classification of EHR Event Timestamp
Sequence Clusters

20K
18K
After individual nurse EHR event timestamps were | i«
computationally segmented into discrete clusters
(i.e., shifts), we calculated shift length (i.e., duration)
by sorting within-cluster EHR event timestamps in
ascending order and computing the difference
between the first (i.e., shift start time) and last
timestamps (i.e., shift end time) identified in the
timestamp sequences for all clusters identified
among each nurse (Figure 1). We plotted histograms
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respectively for all clusters identified. Based on the

distribution of durations (Figure 4a), we classified
computationally-identified nurse shifts into shift
lengths using rule-based logic according the
following cut-offs: (a) =11hrs and <16hrs (/2-hour

Figure 4a. Distribution of shift duration among
computationally-identified nurse shifts*

shift); (b) =7hrs and <11hrs (8-hour shift); and (c) <7hrs or
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>16hrs (other). The majority of computationally-identified
shifts were between 10 to 13 hours long (74.2%). Based on the
results of shift start times (Figure 4b), we also classified day,
evening, and night shifts using rule-based logic according to
the following start hours: (a) =4am and <2pm (day); (b) =2pm
and <6pm (evening); (¢) =6pm and <4am (night). Among
computationally-identified shifts, most start times fell between
7AM and 9AM (44.4%) as well as between 7PM and 9PM
(39.3%).

Validation of Results

Frequency

Presently, no gold standard approach exists for validating
clinician shifts identified through raw EHR log files; however,
prior studies have utilized clinician self-reported shifts'> and
manual chart review.?! We validated our computationally-
identified nurse shifts through a manual chart review of EHR
data by one co-author (KC) of a random 10.0% sample of all nurses with at least one computationally-identified, 12-
hour shift (n=179). Among each of those nurses, we randomly sampled two computationally-identified, 12-hour shifts
for review (n=358); if fewer than two computationally-identified, 12-hour shifts were present in that nurse, we
continued sampling nurses until our sample size was achieved. We employed this approach as a large proportion of
nurses working at this ED site were travel nurses, float nurses and/or nurse consultants who did not have a primary
appointment in the ED, but whose EHR log file data were indistinguishable from permanent ED staff nurses. This
sample size has been used in studies of similar context.?! We assessed the accuracy of our approach by dividing the
overall number of computationally-identified, 12-hour shifts that were deemed correct based on chart review by the
total number of computationally-identified, 12-hour shifts sampled. All analyses were implemented using Python
version 3.8.5 with scikit-learn.*

01 2 3 4 5 6 7

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24|
Shift Start Time (hour)

Figure 4b. Distribution of shift start times among
computationally-identified nurse shifts

Results

Between April 1, 2021 and June 30, 2022, EHR log files captured 33,535,585 events and their associated timestamps
among 3,079 ED nurses who interacted with the EHR. Among those event timestamps, we computationally identified
43,911 potential shifts among 2,285 (74.2%) nurses using DBSCAN. The optimal parameters (¢ = 0.015, n,= 50)
yielded the best overall S7 (0.820). Over 80.0% of nurses had at least one event timestamp classified as an outlier
(86.1£125.0 timestamp points; Median = 44.0); however, outliers represented a small proportion (0.6%) of the overall
data (Table 1).

Table 1. Aggregate summary of DBSCAN model diagnostics among 3,091 RNs, April-June 2021

Model 1 Model 2 Model 3

[£=0.010,n,=50] | [¢=0.0125,n,=50] | [¢=0.015, n,=50]
Diagnostic n (%) n (%) n (%)
Number of nurses with =1 computationally-
identified shifs 2,284 (74.2) 2,284 (74.2) 2,285 (74.2)
Number of shifts computationally-identified 43,971 (na) 43,983 (na) 43,911 (na)
I(:Ili?il;esr of event timestamps identified as 225,375 (0.7) 216,165 (0.6) 212,645 (0.6)

Mean (SD) | Range | Mean (SD) | Range | Mean (SD) | Range

Average silhouette index across all nurses 0.817 [-0.443, 0.819 [-0.408, 0.820 [-0.406,

(0.161) 0.999] (0.159) 0.999] (0.159) ] 0.999]

As demonstrated in Figure 4a, the durations

Table 2. Frequency table of shift type by shift length (duration)
among computationally-identified shifts were

among computationally-identified shifts.

left sk§wed with large outliers on the right Total Shifts EHR Log Events (per Shift)
hand.s1de. O.n average, computationally- Shift Type n (%) Mean (SD) |Median| Range
“;;“s.ﬁed_s?llﬂg_‘jer; 101'67%”‘“ 18“55 ] Day 15,089 (51.3) | 989.7 (571.3) | 929 | [50, 4235]
(Median = 11.6; IOR = 1.7 Range[0, 85.6]). Night 14,337 (48.7) | 928.0 (553.8) | 848 | [50, 3980]
After applying rule-based shift classification =5 70 456 100.0)] 959.6 (563.7) | 890 | [50. 4235]
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logic to computationally-identified shifts (see Methods), we found that the majority of ED nurse shifts were 12 hours
in length (67.1%) followed by 8 hours (20.5%) (Table 2). While 12-hour shifts were largely uniformly distributed
between day (51.2%) and night (48.6%) shifts, nearly two-thirds of 8-hour shifts were day shifts. On average, more
EHR events were captured per shift among day (989.7+571.3) compared to night (928.0+553.8) shift nurses (Table
3).

Validation Results Table 3. Distribution of the frequency of EHR events that nurses

Based on our sampling strategy, we ultimately [0gged per shift, day and night shift only

extracted 276 computationally-identified, 12- [Shift Shift Length

hour shifts from 179 ED nurses for manual [TYpe 12-hour 8-hour Other Total
review. Among the 276 computationally- n (%) n (%) n (%) n (%)
identified day and night shifts, 92.0% were | Day  |15,089 (63.7)]5,720 (24.2)|2,871 (12.1) 23,680 (100.0)
correctly classified as 12-hour day and night | Evening| 50 (3.7) 125(9.3) |1,172(87.0)| 1,347 (100.0)
shifts. Twenty computationally-identified | Night [14,337(75.9)|3,144 (16.4)| 1,403 (7.4) [18,884 (100.0)
shifts appeared to have shift start and end | Overall |29,476 (67.1) 8,989 (20.5)|5,446 (12.4)[43,911 (100.0)

times that were shifted by 12 hours (i.e.,

misclassification of night and day shifts based on events in EHR log files). The status of two computationally-
identified shifts from one nurse could not be verified as not enough information was available among individual patient
charts to determine clinician EHR activity; however, based on the EHR log files, over 1,000 events were logged for
each of those computationally-identified shifts.

Discussion

To our best knowledge, this is the second study investigating automated approaches for detecting clinician shifts
using EHR log files,?' and the first to implement an unsupervised time series clustering method. In this study, we
computationally identified 43,911 potential shifts among 2,285 (74.2%) ED nurses using DBSCAN. On average,
computationally-identified shifts were 10.6+3.1 hours long. Validation of computationally-identified, 12-hour day
and night shifts (n=276) among ED nurses through retrospective chart review demonstrated that our two-step
approach detected 12-hour shifts at a 92.0% accuracy; however, this may be higher as retrospective chart reviews
are complex and prone to error (~10.0%).3” For example, among two computationally-identified, 12-hour shifts that
could not be ascertained and validated in the EHR charts, both consistently logged event timestamps (n >1,000) over
the course of 12 hours, suggesting high volume clinician EHR activity. In contrast, Dziorny et al.?! found no
mismatches between scheduled shifts and “EHR-calculated” shifts using their rule-based classification method. It is
worthwhile to note that Dziorny and colleagues?! obtained EHR log files using trainee names, whereas we
inclusively examined all available data for the specified time period. Further investigation is needed to discern the
source of the incongruity between EHR log files and EHR charts in our study (e.g., data access issues or system
bugs).

Overall, our findings are consistent with our knowledge of ED nursing shift structures at the study site, which are
typically 12 hours long and implements staggered start times centered at 7AM and 7PM, respectively (see Figures
4a & 4b). This suggests data-driven methods may be a reasonable approach to examine shifts—and more generally,
clinician workflows—in EHR log files as an alternative to traditional rule-based algorithms (RBAs) for some
research questions. For example, although RBAs are human interpretable, manual generation of rules are often
difficult and time-consuming to perform, and may lack generalizability and scalability to other contexts (e.g.,
distinct clinician roles and types, practice settings and institutions) including evolving contexts (e.g., changes in the
EHR design or business process requirements). Frequently, RBAs are specialized for a specific problem and require
extensive domain knowledge. This lack of portability among RBAs is readily apparent in their fixed thresholds,
rendering them incapable of independently learning “new” rules, which must be incrementally added or removed,
and requiring continuous data (e.g., time) to be discretized. As a result, RBAs may not be appropriate for some tasks
involving highly dynamic and continuously generated data, such as EHR log files. For instance, among the 254
computationally-identified, 12-shifts that we correctly validated, nearly 40.0% were longer than 12 hours and none
were exactly 12 hours long. Strict RBAs may artificially truncate these actual durations spent in the EHR within one
scheduled shift depending on the rules established for the algorithm, and therefore, underrepresent and
underestimate actual clinician interactions and work in the EHR (i.e., natural clinician behaviors), and ultimately,
level of documentation burden. While typical shift types are day, evening and night, and shift lengths are 12 and 8
hours long, individual clinician shifts may vary across days and lengths—not accounting for overtime shifts. Given
this mutability, machine learning algorithms may be a suitable alternative for detecting clinician shifts as they
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optimally solve “general questions,” are simple to use and implement, and update automatically when presented
with novel data.

In the context of automated shift detection, DBSCAN specifically, may be a superior approach compared to alternative
clustering algorithms (e.g., k-means) as it does not require a priori knowledge of cluster numbers and is capable of
efficiently grouping data points with arbitrary shapes and sizes.?* This flexibility represents a key advantage in the
domain of shift detection as: (a) actual clinician shifts are indiscernible based on raw EHR log files alone, and (b)
actual clinician shifts may not abide by customary scheduled shift lengths (e.g., 12-hour, 8-hour, etc.) which (in reality)
may be longer or shorter depending on whether EHR documentation was completed before the end of a scheduled
nursing shift, or after the change of shift handover. Additionally, because density-based algorithms like DBSCAN
partition high-density data regions from low-density data regions, they can detect (and flag) outliers within a task,
such as sporadic interactions in the EHR not associated with work during a scheduled shift.> Longitudinal examination
of individual EHR event trends among nurses over time (i.e., volume of EHR events per hour) in our study
demonstrates that some nurses document voluminously over short time periods (e.g., two hours) and then abruptly
stop for several hours; these documentation habits may represent nurses that hold managerial positions in the ED.
Based on the results of our algorithm, a marginal proportion of outliers (0.6%) were identified in our dataset,
suggesting that ED nurses rarely engage in work outside their scheduled shift. While consistent with the results of our
ongoing qualitative study on ED nurse documentation burden in the EHR,* further investigation is required to ensure
that these outlier EHR event timestamps were not misclassified and that algorithm parameters were not misspecified
as adjusting parameters € and n, would determine whether those EHR event timestamps are included or excluded in
the analysis; as such, there are tradeoffs to DBSCAN. For example, too stringent parameters may lead to valid EHR
interactions within a shift being divided into distinct shifts or recognized as outliers (and therefore missed), whereas
too lax parameters may lead to the agglomeration of EHR interactions among multiple independent shifts into a single
broad shift.

Inferring clinician shifts from raw EHR log files remains a difficult undertaking. In this study we classified
computationally-identified shifts into shifts and types using expert knowledge-driven heuristics for descriptive
purposes; however, our intention is to holistically and longitudinally examine computationally-identified shifts
without these ascribed labels with the goal of understanding factors that drive unusually longer than expected time in
the EHR (e.g., nature and type of work conducted). As described previously, EHR interactions outside a scheduled
shift may have led to the misclassification of these ascribed shift types and lengths, and may have resulted in the
detection of extraneous shifts or the agglomeration of several shifts. Additionally, it is possible that valid EHR event
timestamps within a shift may have been misidentified as outliers. These scenarios are conceivable as over 12.0% of
computationally-identified shifts were classified as other (i.e., <7hrs or >16hrs long). These are known challenges
that are intrinsic to the use of EHR log files for understanding clinical activity.!!!# It is likely that location information
would improve our algorithm’s overall performance by improving the resolution of high-density areas (i.e., shifts) and
reducing the presence of noise (i.e., interaction with the EHR outside the ED) so we can differentiate onsite EHR work
performed outside normally scheduled shift time with worked performed at home. Ideally, these location data would
be integrated with existing EHR systems and databases; however, interoperability among distinct vendor proprietary
systems and tools is slow to evolve, and presently, an unrealistic endeavor. For instance, administrative data on nurse
and physician scheduled shifts at this ED site reside on two independent web-based scheduling, timekeeping and
attendance systems, Kronos Workforce Timekeeper (Kronos) (New York, NY, Ultimate Kronos Group) and Shift
Admin (Atlanta, GA, Qgenda) respectively, which are not jointly integrated nor integrated with the EHR. Meanwhile,
resident scheduling data reside on Google sheets and portable document files, which are not machine computable.
These scheduling data are not always up-to-date and/or accurate; and while administrative systems data may provide
information on shift scheduling, they may be difficult to access due to privacy concerns. For these reasons, we
advocate for the development of standardized, quantitative and computational methods (to investigate clinically
meaningful constructs associated with clinical workflows) that do not require data that are not integrated in the EHR.

Future Directions

Validation of our results using shift scheduling data is still in process and will be complete by the end of 2022; these
results will be included in future revisions and presentations. Most recently, we randomly sampled 10.0% of all nurses
with at least one computationally-identified shift (independent of shift length) detected in the raw data extract (n=230)
for validation against data captured in Kronos. Our comprehensive two-step process is summarized in Figure 5.
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documentation burden and data.

burnout,?® these shift structures

are critical to examine as irregular shift work are associated with reduced performance® and increased risk of
error.** Moreover, we are beginning to explore whether computationally-identified shifts can be grouped into similar
shift types and lengths as well as EHR engagement patterns in an unsupervised fashion (i.e., without the use of rule-
based logic); the premise of this exploratory analysis is to help lay the groundwork for methods in EHR workflow
analyses, as well as in the phenotyping of clinicians based on EHR interaction habits so that targets to reduce
documentation burden can be identified.

Limitations

This study has several limitations. Because existing EHR log files do not provide information on the location at which
nurses interacted with the EHR (e.g., workstation or IP address), we are unable to distinguish whether EHR
interactions captured outside of conventional scheduled shift hours occurred contemporaneous to their scheduled shift
(i.e., after they clocked out but in the ED) or outside their shift (i.e., in their residence); however, our study team’s
ongoing qualitative research on EHR documentation burden among ED nurses reveal that few nurses access the EHR
and/or document outside the ED setting.*! While broad variability may exist in EHR interaction habits within and
across nurses, °' we set algorithm parameters (g, n,,) identically across all individual-nurse level data; those fixed
parameter values may not have been generalizable to all nurses. In addition, validation of our method was conducted
by only one study team member and for computationally-identified shifts of 12 hours only. These results may be
biased towards nurses who engage frequently and predictably within the EHR during their shifts, and therefore, may
be nonrepresentative of all nurses and/or shifts. Lastly, we examined three months of data which may be
nonrepresentative of all potential shifts that exist.

Conclusion

Developing standardized, novel approaches to abstract clinically meaningful constructs and actionable information
from EHR log files will be foundational to impactful analysis on clinician workflows in the EHR, and ultimately,
documentation burden. In this study, we implemented and validated a two-step approach that applies time series
clustering to automatically segment and infer ED nurse shifts from EHR log files, which yielded a 92.0% accuracy
among computationally-identified, 12-hour shifts. Our work is significant as it demonstrates that data-driven methods
(as opposed to expert knowledge driven methods) may be utilized to extract meaning (i.e., shift level EHR work) from
EHR log files.
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