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Abstract 
 

Observational data can be used to conduct drug surveillance and effectiveness studies, investigate treatment 
pathways, and predict patient outcomes. Such studies require developing executable algorithms to find patients of 
interest or phenotype algorithms. Creating reliable and comprehensive phenotype algorithms in data networks is 
especially hard as differences in patient representation and data heterogeneity must be considered. In this paper, we 
discuss a process for creating a comprehensive concept set and a recommender system we built to facilitate it.  
PHenotype Observed Entity Baseline Endorsements (PHOEBE) uses the data on code utilization across 22 
electronic health record and claims datasets mapped to the Observational Health Data Sciences and Informatics 
(OHDSI) Common Data Model from the 6 countries to recommend semantically and lexically similar codes. 
Coupled with Cohort Diagnostics, it is now used in major network OHDSI studies. When used to create patient 
cohorts, PHOEBE identifies more patients and captures them earlier in the course of the disease. 
 

Introduction  
 
Studies using observational data such as electronic health records (EHR) and administrative claims have been shown 
to impact decision-making and improve patient outcomes [1]. While addressing some of the concerns raised 
regarding randomized clinical trials such as limited patient involvement, short follow-up and high cost, they pose 
additional challenges related to the use of observational data. The latter include underlying bias, missing and 
incomplete data and more [2]. One of the main challenges in observational research is the accurate capture of 
patients of interest and their history and diseases. To achieve that, researchers develop computable phenotyping 
algorithms that aim at transforming the raw EHR and claims data into clinically relevant features [3]. 
 
Our ability to create accurate and reliable phenotypes depends on two components: the ability to derive relevant and 
comprehensive sets of codes (or building blocks) that are used to code the corresponding patients in the data and the 
accuracy of the logic applied to those codes. While machine learning approaches have been leveraged to use the data 
in place of human logic (which can be biased), the issue of selecting appropriate codes remains largely unsolved in 
the setting of moving learned phenotypes among disparate institutions without retraining. 
 
Common approaches for code selection include deriving codes from published phenotypes or using local expert 
knowledge [4,5]. Nevertheless, as has been shown, phenotype definitions and code sets are not readily transportable 
to other institutions and are characterized by lower performance when applied to other data sources [6]. 
Another common approach is to use machine learning approaches like multi-view banded spectral clustering [7], 
non-negative tensor-factorization [8], latent Dirichlet allocation [9], embeddings with knowledge graphs and EHR 
[10] to derive the codes from the structured data or supplementing the latter with the extracts from unstructured data 
[11,12]. While it potentially eliminates human subjectivity, learned knowledge is still limited to the institution the 
model was developed in and therefore may not be applicable to other institutions [13]. 
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This challenge becomes especially hard when a study is conducted in a distributed network. Large-scale 
observational studies in distributed networks leverage large patient populations to produce reliable evidence, but 
they require recognition and reconciliation of differences in patient data capture. As we observed previously, data 
sources are highly heterogeneous with a large proportion of the codes being uniquely used in one institution but not 
in the others [14]. Researchers also need to account for variation in the granularity of codes. For example, non-US 
data sources code events using more broad general codes compared to the US data sources [15]. 
 
Recent Observational Health Data Sciences and Informatics (OHDSI) Observational Medical Outcomes Partnership 
(OMOP) studies [4] enable leveraging a shared knowledge base of concepts and their utilization across the network 
to construct comprehensive concept sets and phenotypes. In this work, we will describe a recommender system for 
code selection created based on this knowledge base. 
 
Methods 
 
Concept Prevalence Study 
 
In this study, we used the data set generated in the Concept Prevalence study [15]. There, we collected clinical codes 
(procedures, conditions, laboratory tests, vital signs and other observations) along with the frequency of their use 
from 22 data sources across six countries (US, Japan, Korea, Australia, Germany, France). All data sources were 
transformed into the OMOP Common Data Model version 5 [16] and both the codes used in the source and the 
codes standardized to the OMOP Standardized Vocabularies were collected. The frequency of codes less than 100 
was rounded to 100. Here, we will use the term ‘clinical code’ and ‘concept’ interchangeably as a representation of a 
term and its code in an ontology. 
 
PHOEBE development 
 
The initial set used by our recommender system - PHenotype Observed Entity Baseline Endorsements (PHOEBE) - 
consisted of eleven million unique concepts appearing in at least one source within the network, with 272 billion 
records summarized. Each concept therefore had an aggregated estimate of the frequency of its use across all the 
data sources as well as an aggregated estimate of the frequency of use of all its descendants. The latter was derived 
using the OMOP Standardized Vocabularies and represented the aggregated frequency of all child concepts in a 
corresponding hierarchy (RxNorm, SNOMED, LOINC etc.). For the concepts that do not participate in the OMOP 
Standardized Vocabularies hierarchy (such as ICD10-CM, Read or NDC), the estimate of descendants’ frequency 
was equal to the aggregated frequency of the code itself.  
 
Aggregated frequencies were used to pre-compute a set of recommended terms for all standard concepts in the 
OMOP Standardized Vocabularies. First, string matching (for concepts and their synonyms) was used to select all 
lexically similar concepts for each standard concept. Then, semantically similar concepts were added by selecting 
the most proximal concepts within an ontology and through the crosswalks between the adjacent ontologies. These 
included both the concepts proximal and distal to the common ancestor as well as those belonging to a different 
hierarchy sub-tree (no common ancestor).   
 
The concepts were subsequently filtered to those that provide an adequate data source capture. That was achieved by 
eliminating the concepts from those ontologies that cover less than half of the data sources (either directly or 
through mapping from the source ontologies) in a given domain. We also removed the concepts not used in any data 
source. Finally, we removed the broad terms that are not likely to contribute to a phenotype definition (such as 
‘Disorder’ or ‘Family History of Disease’). 
 
PHOEBE application 
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We created an R Shiny-based application available publicly (https://data.ohdsi.org/PHOEBE). It has two parts: 
initial concept recommender and concept set recommender (Figure 1). 

 
Figure 1. PHOEBE R Shiny application: initial concept and concept set recommender. 
 
For the initial concept, a user inputs a string that specifies her clinical idea (such as diabetes mellitus type 2) and 
PHOEBE outputs the best match for a code that represents this clinical idea prioritized based on the number of data 
sources covered and an aggregated frequency of both the code itself and its descendants. The user can then use this 
code with all its descendants as a starting place for developing the concept set. 
 
Concept set recommender takes a string of codes (obtained in the previous step) and outputs a set of codes divided 
into the following groups: 
- included codes  
- not included concepts (parent and child codes of the codes included in the concept set) 
- recommended codes (recommended through matching in source vocabularies or standard vocabularies). 
 
The output is again prioritized based on the aggregated frequency to focus decision-making on the concepts that 
provide the largest gain in record count.  
 
Evaluation 
 
For validation, we used an electronic health record data source (Columbia University Irving Medical Center EHR) 
and two administrative claims data sources (IBM MarketScan® Multi-State Medicaid Database and IBM 
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MarketScan® Medicare Supplemental Database) translated to OMOP Common Data Model. We selected diabetes 
mellitus type II, diabetes mellitus type I, heart failure and attention deficit hyperactivity disorder (ADHD) – 
common conditions that were extensively studied in the observational literature and for which drug treatment exists. 
For each of the conditions, PHOEBE was used to create concept sets following the steps outlined above.  
 
As a reference, we selected two eMERGE network phenotypes representing the same clinical ideas [17]. eMERGE 
is a national network for high-throughput genetic research that developed and deployed numerous electronic 
phenotype algorithms. Phenotypes have been created by highly qualified multidisciplinary teams and often been 
taking up to 6–8 months to develop and validate. For each eMERGE phenotype, we extracted ICD9-CM concept 
sets used in the original implementation and translated them to SNOMED-CT concepts [6]. We then created patient 
cohorts by selecting patients with at least one occurrence of a diagnosis code from corresponding concept sets and 
with at least 365 days of prior observation to ensure data coverage. For each cohort, we followed patients to look for 
a specific treatment, which included any occurrence of insulin products for type I diabetes mellitus; oral antidiabetic 
drugs (metformin, sulfonylureas, thiazolidinediones, dipeptidyl peptidase IV inhibitors and glucagon-like peptide-1 
agonists) for type II diabetes mellitus; beta blockers, angiotensin-converting enzyme inhibitors and diuretics for 
heart failure and viloxazine, atomoxetine, amphetamine methylphenidate and guanfacine for ADHD [19–22]. 
 
We computed the positive predictive value (PPV) of each phenotype, which was defined as a proportion of people 
with a diagnostic code who also had subsequent treatment with corresponding drugs. Additionally, for patients with 
subsequent treatment identified by both PHOEBE and eMERGE concept set-based algorithms, condition index dates 
(the date a disease was first observed in a patient) were extracted and compared. 
 
Results 
 
Over the past year, PHOEBE has been used in all major network studies conducted in the OHDSI Network. They 
include clinical studies such as characterizing patients with COVID-19 [23–28] and methodological studies such as 
investigating the sensitivity of background rates or validation of prediction models [29,30]. PHOEBE is 
continuously used for new studies such as Large-scale Evidence Generation and Evaluation across a Network of 
Databases (LEGEND) for type 2 diabetes mellitus [31]. The studies were published in high-impact journals like 
BMJ, Nature Communications, Lancet Rheumatology, Rheumatology and others. 
 
As the abovementioned studies involved analyzing the data from up to 25 US and international data sources, 
PHOEBE was required to generate comprehensive concept sets that would reflect the codes used in all of the data 
sources.  
 
Coupled with the tools for examining patient cohorts (Cohort Diagnostics, Figure 2), it provided an opportunity to 
systematically examine and refine phenotype definitions used for defining target, comparator groups or outcomes of 
interest. 
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Figure 2. OHDSI pipeline for developing, evaluating and storing phenotypes, including PHOEBE, ATLAS, Cohort 
Diagnostics and Phenotype Library. 
 
Evaluation 
 
While the main benefit of PHOEBE is providing the data to support researchers’ decision making, we also formally 
evaluated its impact on patient selection. 
 
When looking at the cohorts created using the concept sets provided by PHOEBE and used in the eMERGE 
phenotypes, we found that on average PHOEBE identified more patients while preserving similar positive predictive 
value (Table 1). We observed high heterogeneity in the magnitude of patient gain among data sources and 
conditions. For example, for type I diabetes, the algorithm created with PHOEBE identified approximately the same 
set of patients as the algorithm that used well-curated concept set from eMERGE. Notably, the cohort of type II 
diabetes patients created using PHOEBE had more than 5 times more patients and had a higher positive predictive 
value. 
 
Table 1. Comparison of eMERGE and PHOEBE concept set-based algorithms’ performance. 
PPV – positive predictive value, CUIMC – Columbia University Irving Medical Center EHR, MDCR - IBM 
MarketScan® Medicare Supplemental Database, MDCD - IBM MarketScan® Multi-State Medicaid Database. 
 

 
 
  

eMERGE cohort PHOEBE cohort Cohort overlap 
Patients with 
subsequent 
treatment 

Total PPV Patients with 
subsequent 
treatment 

Total PPV  

Diabetes 
mellitus 
type I 

CUIMC 7,599  25,701  0.34 7,659  25,884  0.34 25,635 
MDCD 25,954  191,710 0.13 26,240 194,100 0.13 189,810 
MDCR 19,274 185,874 0.10 18,684 181,712 0.11 179,236 

Diabetes 
mellitus 
type II 

CUIMC 42,200 211,904 0.20 44,828 218,127 0.21 211,903 
MDCD 342,975  1,807,688 0.19 383,435 1,849,177 0.21 1,807,019 
MDCR 105,449 386,265 0.27 804,415 2,172,925 0.37 386,237 

ADHD CUIMC 5,922 29,890 0.20 7,002 35,291 0.20 29,890 
MDCD 722,485 1,471,559 0.49 809,093 1,657,347 0.49 1,471,542 
MDCR 7,158 17,065 0.42 7,875 18,535 0.43 17,065 
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Heart 
Failure 

CUIMC 71,281 162,297 0.44 74,121 168,111 0.44 162,281 
MDCD 332,929 870,080 0.38 342,112 893,807 0.38 869,500 
MDCR 892,689 1,166,980 0.76 919,077 1,204,488 0.76 1,165,900 

 
In general, patient gain was less notable in CUIMC, which can be explained by the fact that eMERGE phenotypes 
were partially developed on CUIMC data. Even when there was no significant difference in PPV, PHOEBE’s 
algorithm identified more patients with subsequent treatment. 
 We obtained similar performance upon repeating the procedure for other randomly selected versions of these 
phenotypes found in the literature. 
 
Aside from evaluating the ability of PHOEBE to identify patients of interest, we also examined differences in the 
index dates (date of first observation of a disease in a data source) for the patients identified by both PHOEBE and 
eMERGE concept set-based algorithms. We observed that PHOEBE can identify patients earlier on in the course of 
the disease (Table 2). 
 
 
Table 2. Comparison of condition onset date (index date) in patients with different index dates identified by both 
eMERGE and PHOEBE concept set-based algorithms.  
CUIMC – Columbia University Irving Medical Center EHR, MDCR - IBM MarketScan® Medicare Supplemental 
Database, MDCD - IBM MarketScan® Multi-State Medicaid Database. 
 

 MDCD MCDR CUMC 
 Patients, 

n 
Difference in 
days, median 
(IQR) 

Patients, 
n 

Difference in 
days, median 
(IQR) 

Patients, n Difference in 
days, median 
(IQR) 

Diabetes mellitus 
type I 

2,243 371 (139-795) 2,807 407 (176 - 894) 206 1,001 (206-1,915) 

Diabetes mellitus 
type II 

253,728 77 (22-226) 957 122 (13-417) 11,536 189 (28-873) 

ADHD 165,590 201 (59-525) 203 175 (61-318) 1,801 146 (35-532) 
Heart Failure 16,941 49 (3-298) 25,294 107 (6-472) 2,242 78 (6-724) 

 
 
For example, patients with different onset dates, on average, presented with diabetes mellitus type I more than two 
years earlier when using the PHOEBE algorithm in CUMC and more than one year earlier in MDCD and MDCR. 
This can be explained by multiple patients having unspecified diabetes mellitus codes prior to being treated by 
endocrinologists. This pattern was consistently observed in all conditions and data sources, which may reflect that 
the use of broad non-specific codes by clinicians is common in early stages of disease. This finding suggests that the 
use of concept sets consisting of only narrow specific codes may introduce index even misspecification as such 
codes may capture patients not at the first observation of the disease but later on in the course. 

Examples of the codes recommended through PHOEBE included SNOMED-CT codes “Hyperosmolar coma due to 
type 1 diabetes mellitus”, “Type 1 diabetes mellitus uncontrolled “, “Peripheral circulatory disorder due to type 1 
diabetes mellitus”, “Disorder of nervous system due to type 1 diabetes mellitus” and other complications for 
diabetes mellitus type I. For diabetes mellitus type II, PHOEBE also recommended complications of diabetes along 
with broad terms such as “Diabetic - poor control”. While the latter concept is broad, it accounts for 833,654 records 
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in the Network. Given higher prevalence of type II diabetes compared to type I and high utilization of this code, 
researchers may want to use this code in their phenotype with additional restrictions like older age, absence of codes 
for type I diabetes or others. 

 
Discussion 
 
Selecting of relevant codes for a phenotype is not a trivial task, especially when conducting a study on multiple data 
sources. One of the most common approaches is borrowing concept sets from the previously published studies. Yet, 
as widely acknowledged, the performance on one data source does not guarantee similar performance on another. 
For single-center studies, the researchers can get away with leveraging local data or expert knowledge to produce 
concept sets. The former approach was also advertised for organizing data models that do not involve semantic 
standardization, such as Sentinel or PCORNet [4,32]. While expert knowledge is critical in both phenotype 
development and evaluation, clinicians are oftentimes not familiar with the data or code use patterns [33]. While 
they may tend to extrapolate their practices to the other clinicians, real-world patterns of treatment are highly 
heterogeneous and variable [34].  
 
Moreover, for published observational research the choices made for concept sets are rarely described. The readers 
can assess neither how the concept sets were arrived at, nor the implications of the choices made. We have no reason 
to believe that different institutions or individuals have the same approach to concept set selection, which means that 
a concept set, phenotype and, in turn, study results can be different when another researcher performs a selection for 
a given study. Using purely data-driven approaches with sufficient performance eliminates variability induced by an 
individual but provides little help when a study needs to be executed in a network. Moreover, the current large-scale 
initiatives that have a potential to impact decision-making are limited to specific domains or conditions and take 
years to develop and implement locally [35,36].  
 
An intermediate between expert-based and data-driven approaches is a data-augmented expert-based approach, 
which uses the data to guide decision-making. There are several studies on describing how the data was used to 
learn the patterns for code use and guide clinicians and informaticians in concept set selection [37,38]. While 
providing important insights, they are limited to a single center or condition of interest and do not provide general 
guidance on how to create a concept set. Moreover, they do not describe the process for international networks that 
use disjoint ontologies to code their data.  
 
This work benefits from the OHDSI Common Data Model that standardizes both the format and the content. The 
standards for computable phenotypes like Desiderata highlight the importance of the standardization of 
representation, use of common terminologies and data models for reproducible and reliable phenotypes [39,40]. In 
federated networks, their use is critical for timely execution, quality assurance and reproducibility. 
 
Yet, it requires recognition and reconciliation of differences in patient representations across the network. PHOEBE 
leverages the code usage patterns to provide clinicians and informaticians with the data to ground their code 
selection decisions. While the final choice of including or excluding a code in the concept set is left to the 
researchers’ discretion, having the data allows them to both inspect the included codes and browse excluded yet 
relevant codes. Moreover, it allows prioritizing the inspection of the most used codes among hundreds of similar 
codes in the US and international ontologies.  

Limitations 
 
One of the limitations of this work is using only the US data sources for evaluation. As PHOEBE leverages data 
from a large network, it may show better performance on non-US data sources, which is yet to be shown. We used 
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specific treatment as a proxy for patients being a true positive case. While imperfect, it allows comparing algorithm 
performance in absence of reliable methods to validate phenotypes in administrative claims data. 

Conclusion 
 
Patient phenotyping in network studies is time-consuming and oftentimes produces inconsistent results due to 
different patient representations in disparate data sources. We developed a recommender system that facilitates 
phenotype development standardization and comprehensive concept set creation. When PHOEBE is used, 
phenotyping algorithms identify more patients and capture them earlier in the course of disease. 
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