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Abstract 
Electronic health records (EHRs) usage and clinical workflows are intrinsically linked. To accommodate the complex 
care settings (e.g., emergency departments), EHR utilization workflows dynamically change in clinical practice, which 
in turn shapes the clinical workflows. Learning EHR workflows would provide an opportunity for healthcare 
organizations to enhance clinical workflows in the context of EHRs. However, very few studies investigated EHR 
utilization workflows executed in clinical practice. We develop a network analysis framework and apply it to EHR 
audit logs to infer EHR workflows. We then measure the differences in the workflows between patient subgroups 
divided by races via differential network analysis. We apply our framework to trauma patients admitted to the 
emergency department, which is one of the clinical settings that need timely support from EHR utilizations. Our results 
show five core EHR workflows related to Narrator, Navigator, SmartTools, Chart Review, and ED workup activities 
in the ED. We find EHR workflows involving Narrator, SmartTools, and BPA are different when comparing patient 
subgroups.  
 
Introduction 

Over the past decade, electronic health records (EHRs) have been widely deployed across the United States to advance 
health information interoperability and accessibility1. In the meantime, much evidence demonstrated their positive 
impact in quickening diagnosis, reducing medical errors, and supporting better patient outcomes. This is because the 
readily available and accurate data stored in EHRs streamlines the time-intensive processes and contributes to easier 
clinical decision-making2-4. As such, EHR utilization has been indivisibly integrated into care routines. As the major 
component of clinical practice, clinical workflows, which consist of a variety of tasks performed by healthcare 
professionals within and between care settings to deliver care, dictates EHR functions and utilizations5,6; while EHRs, 
as the information hub of the clinical practice, can, in turn, shape clinical workflows and have the potential to enhance 
care efficiency7,8. In other words, EHR usage and clinical workflows are intrinsically linked and impact each other. 

EHR utilization workflows (or EHR workflows) usually start from a set of predefined or recommended processes, 
which are often idealistic, linear, and less likely to accommodate complex healthcare environments7,9. In fact, they are 
subject to dynamic change and evolvement given the diversity brought by multiple important factors, such as patient 
urgency and severeness, whether there are regional or global disease outbreaks (e.g., COVID-19 pandemic), care 
routine upgrades, and insurance policy changes9-11. Understanding how EHRs are utilized in practice can not only 
lighten the dark area in the digital world by uncovering important patterns that are hidden to EHR designers but also 
provide evidence to inspire opportunities for the improvement of their mediated clinical workflows. 

EHR audit logs, which capture all of the detailed events performed by EHR users to patients’ records, are one of the 
perfect data sources for investigating EHR utilization workflows. Notably, this type of data has been widely collected 
by EHR systems and utilized by researchers to support significant learning objectives, including but not limit to health 
process modeling, time-motion study of EHR usages of physicians, and clinical burnout. Process mining, which 
combines data mining and business process management techniques, has been leveraged to analyze EHR audit logs 
to discover EHR workflows and measure their characteristics (e.g., the duration to complete vital signs charting) in 
various care settings (e.g., primary, pediatric, or ophthalmic care)12-22. Process mining has yielded many interesting 
findings such as attending physician, nurse, or resident’s workflows to complete EHR tasks13,14. However, this 
technique provides little information on the structures of the workflow, for instance, which are central events in a 
workflow and what are relationships between the central events and other events. 

This paper aims to explore applying network analysis techniques (which can successfully capture complex 
relationships between events and provide excellent visualizations) to the EHR audit logs data to uncover the 
topological patterns of EHR utilization workflows. Specifically, we develop a network analysis-based framework to 
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learn EHR utilization workflows through community detection algorithms and then measure the workflow structures 
via sociometric factors. Further, we investigate the disparities of EHR utilization workflows between patient racial 
subgroups, which is motivated by findings in previous studies that racial and ethnic biases exist in many EHR 
components, such as laboratory tests and clinical notes23,24. In this study, we focus on the trauma patients admitted to 
the emergency department (ED), which correspond to one of the most fast-paced and demanding clinical settings8,25,26 
that requires the efficient and accurate utilization of EHRs to support fast diagnostics and care delivery.   

 
Materials and Methodologies 
 
Patients and Audit logs 

This study focuses on trauma patient care in the ED and uses a two-year cohort (2018-2019) of a trauma registry 
repository, which was fully anonymized and routinely collected from Vanderbilt University Medical Center (VUMC) 
between January 2017 and May 2021. The EHR audit logs (which characterize the EHR utilization details of EHR 
users, who provide healthcare service to patients) for each included patient in the period between their ED admission 
and ED discharge were collected from the Epic EHR system deployed at VUMC. Specifically, EHR utilization on 
each patient is logged as a sequence of time-stamped events (i.e., user-EHR interactions), each corresponding to a 
record containing four domains: user ID, patient ID, timestamp, and user-EHR interaction type (Figure 1A). The last 
domain is designed to describe the semantics of user-EHR interactions made by EHR users, including hundreds of 
types under the categories of view, modify, export, and system27.  

Summary statistics of patient demographics and the patient-level user-EHR interactions (and their types) extracted 
from the EHR audit logs are depicted in Table 1. A total of 3,946 patients were included in this study (1446 female 
[36.6%]; median age 56.1 [IQR: 35.1-72.7]; 3,332 White patients [84.4%], 452 Black patients [11.4%], 33 Asian 
patients [0.8%], and 162 patients with other races [4.1%]). Accordingly, we collected ~2,306,000 user-EHR 
interactions, which correspond to 677 unique types. 

 
Figure 1. Two examples to illustrate (A) a user-EHR interaction sequence on a single patient and (B) the process of 
creating sessions from a sequence of user-EHR interactions performed by one user to a patient’s EHR, respectively. 
 
Transform sequences of user-EHR interactions into sessions 

Clinical practitioners utilize EHRs to support the completion of clinical tasks. The EHR systems are highly 
modularized in design and the functions or components associated with the same clinical task are clustered such that 
clinicians can finish a sequence of user-EHR interactions within a continuous period of time that is relatively short, 
leading to a temporal EHR usage pattern–the alternation of dense-event period and idle period. This phenomenon 
naturally separates different semantics in care delivery and has been validated in the literature13. We first organize the 
sequence of user-EHR interactions of each patient at the user level (leading to multiple subsequences) and then split 
each subsequence into multiple sessions (Figure 1B). We assume that each subsequence represents a specific EHR 
task and such a sessionized process can help discover the EHR task-oriented workflows (weakening relationships 
between events belonging to two sessions). Following our previous findings in the same insititution13, we set a 
threshold of 2 minutes between two consecutive events as a cutoff criterion to extract sessions from the sequence of 
user-EHR interactions. 
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Table 1: Summary of the dataset used in this study. 𝑎, 𝑏, 𝑐 represents the first quartile, median, and third quartile. 𝑥 
±𝑦 represents the mean and one standard deviation. 𝑥%  𝑦 represents that the percentage of 𝑦 patients (in a given 
category) is	𝑥% among all patients. 
Characteristic Distribution 
Race   
    White 84.4% 3,332 
    Black 11.4% 452 
    Asian 0.8% 33 
    Others 4.1% 162 
Age at admission 35.1, 56.1, 72.7 54.5 ± 21.9 
 White patient Non-White patient  
Age at admission 38.8, 58.7, 74.7 56.6 ± 21.6 27.2, 40.6, 60.0 44.7 ± 20.5 
Gender     
    Male 61.7% 2,055 72.5% 445 
    Female 38.3% 1,277 27.5% 169 
ED duration(hour) 2.2, 4.3, 6.6 5.0 ± 4.4 1.4, 3.8, 6.1 4.4 ± 3.8 
Local Injury Severity Score (ISS) 10, 14, 18 15.4 ± 7.0 9, 13, 18 15.2 ± 7.8 
User-EHR interactions (in ED visit-level)     
    Number of interactions  237, 534, 838 597.0 ± 475.4 150, 459, 767 516.7 ± 448.2 
    Number of unique interactions  55, 82, 105 78.8 ± 38.7 43, 79, 104 74.3 ± 40.8 

 
Create a directed network from sessions 

Next, we build directed networks based on the extracted sessions from the study cohort. Each node in the network 
represents a semantic type of user-EHR interactions. If two user-EHR interactions with different types are consecutive 
in the same session (i.e., “A→B”), the corresponding nodes are connected with the edge direction indicating the order 
of appearing. The pattern of “A→A” is excluded in network construction to avoid self-looping in the directed network. 
The weight of an edge is defined to be the count of the two user-EHR interaction types consecutively appearing in all 
sessions. Following this network construction pipeline, we build one weighted directed network describing the 
relationships of user-EHR interaction types across all sessions and ED trauma patients performed by EHR users. 
Figure 2 illustrates the process of constructing a single directed network from multiple sessions.  

To investigate whether there exist disparities in EHR utilization patterns between patient subgroups, we select patient 
race as the grouping factor and apply the aforementioned pipeline to create two sub-networks–one based on the White 
patients (race majority), and the other based on the Non-White patients (race minority).  

 
Figure 2. Illustration of the process of creating a directed network of user-EHR interaction types from sessions. 

 
Identify cores and bottlenecks from the networks 

We propose to use three sociometric to characterize networks. We use degree and PageRank score28 to quantify the 
local and global centrality of a node in the network, respectively. Meanwhile, betweenness centrality is leveraged to 
measure the efficiency and effectiveness of a node connecting pairs of other nodes in the network. The degree 
centrality indicates the strength of a node to its one nearest neighbor, which characterizes the local influence of this 
node. PageRank score characterizes the strength of a node connected to other nodes that are also strongly connected 
to others (hubs connected to other hubs) across the whole network. A user-EHR interaction type with a high PageRank 
score is likely to be a core event in an EHR workflow. The betweenness centrality characterizes the number of shortest 
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paths between two other nodes that pass through a specific node. A node with a high betweenness centrality, i.e., the 
bottlenecks of the network, enables more efficient connections/interactions (shortest path) in EHR workflows.  

For each of the three networks, Whole, White, and Non-White, we use NetworkX29, an open-source network analysis 
tool to calculate the degree, PageRank, and betweenness centrality of each node. Further, we investigate whether 
differences in degree, PageRank, and betweenness centrality of the networks between White and Non-White patients 
are statistically significant. The degree is normalized by the number of patients in the corresponding patient group. 
We use a Mann-Whitney U test with a significant level of 0.05 since sociometric factors are not Gaussian distribution. 

Infer EHR workflows through community detections 

To detect high-quality communities from the constructed network, we filter weak relationships by the following steps. 
We first normalize the edge weights to [0, 1] by dividing the maximum weight in the network and then filter out those 
whose weights are less than a predefined threshold 𝜏. After the adjustment, the size and complexity of network 𝐺  are 
reduced, whereas more significant nodes and their relationships are maintained. In this study, we focus on the largest 
connected component 𝐶!" in each network because they dominate the corresponding networks in our settings. We 
select a threshold 𝜏 from a continuous range that can yield a stable 𝐶!" for all of the three networks by detecting the 
continuous range candidates of 𝜏 (if any) such that in each range changing the value of 𝜏 does not change the size of 
𝐶!".  

We then perform the Louvain algorithm on 𝐶!" of each network to obtain the clusters and visualize them via Gephi30 
(open-source network analysis and visualization software). Louvain algorithm is an unsupervised community 
detection algorithm31, which detects clusters from a network via iterative modularity optimization and community 
aggregation. We use the Louvain algorithm over other community detection algorithms, such as DBSCAN32, as it 
does not require prior assumptions on the network, which could introduce implicit bias. Further analysis is conducted 
to align clusters learned from the three networks and measure differences in the clusters between White and Non-
White patients.  

Differential network analysis: compare differences in topologies between networks  

The differential network analysis (DiNA)33 focuses on the differences in the topologies between networks. Our usage 
of DiNA is originally motivated by its common use in Bioinformatics studies. For example, cells from healthy people 
and patients could be in different states. DiNA could identify key cells from two cell networks of two biological 
processes. In this study, we measure differences in connection structures of user-EHR interaction types in networks 
built from White vs Non-White trauma ED patients.  

We employ two algorithms to measure network difference as introduced by Lichtblau et al33: 

● Differential Degree Centrality (DDC). Assume 𝐴 and 𝐵 are two networks. Let 𝑑#(𝑣) and 𝑑$(𝑣) denote the 
degrees of a node 𝑣 in network 𝐴 and 𝐵, respectively, 𝑑#(𝑚𝑎𝑥) and 𝑑$(𝑚𝑎𝑥) denote the maximum degrees 
in network 𝐴 and 𝐵, respectively. The degree of each node is first normalized by the maximum degree value 
in the corresponding network. DDC of a given node is defined as the absolute difference of the normalized 
degree of this node in network 𝐴 and 𝐵.  

                                                           𝐷𝐷𝐶(𝑣) = 	 4 %!(')
%!()*+)		

− %"(')
%"()*+)		

4                                                                   (1) 
● Differential PageRank Centrality (DPC). Let 𝑆-.# (𝑣) and 𝑆-.$ (𝑣) denote the PageRank score of node 𝑣 in 

network 𝐴  and 𝐵 , respectively, 𝑆-.# (𝑚𝑎𝑥)  and 𝑆-.$ (𝑚𝑎𝑥)  denote the maximum PageRank scores from 
network 𝐴 and 𝐵, respectively. Similar to DDC, DPC of a given node is defined as the absolute difference of 
the normalized PageRank scores of this node in network 𝐴 and 𝐵.  
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Results 
 
Constructed Networks: Whole, White, and Non-White 

Using the 2-minute threshold as the cutoff criterion to create sessions, we obtain approximately 236K sessions with 
an average length of 5 events and a standard derivation (STD) of 6.1. In the constructed Whole network, there are 677 
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nodes with 16,319 directed edges. The average degree, PageRank, and betweenness centrality are 33.6 with an STD 
of 45.9, 0.001 with an STD of 0.003, and 0.001 with an STD of 0.006, respectively. We observe that “Visit Navigator 
template loaded”, “A SmartText used in SmartTools or reports”, and “A SmartLink used in SmartTools or reports” are 
the top-3 user-EHR-interaction types in all three metrics (i.e., degree, PageRank, and betweenness scores). This 
indicates that these user-EHR interaction types correspond to the core events in both the local and global EHR 
workflows, and meanwhile act as the bridge for information transfer along with EHR workflows. 

There are 666 and 530 nodes, and 15,458 and 8,136 edges in the White and Non-White patients’ networks, 
respectively. 519 nodes appear in both networks from White patients and Non-White patients. For comparing the 
differences between these two networks, we only analyze the sociometric on the common nodes. Table 2 summarizes 
the sociometric calculated from three networks. We observed that the average normalized degrees are significantly 
different between the White patient network and the Non-White patient network. It indicates that there are fewer user-
interaction type transitions per patient for White patients than Non-White patients.  

Table 2. Summary of the sociometric on the whole network and the sub-networks. 𝑥 ±𝑦 represents the mean and one 
standard deviation. P-value denotes the two-sided Mann-Whitney U test with a significant level of 0.05 comparing 
the sociometric between the White and Non-White networks. 

Sociometric Distribution 

 Whole network White  
patient network 

Non-White 
patient network P-value 

Degree 33.6 ± 45.9 0.012 ± 0.013 0.036 ± 0.049 < 0.001 
PageRank 0.001 ± 0.003 0.001 ± 0.004 0.001 ± 0.004 0.128 
Betweenness 0.001 ± 0.006 0.002 ± 0.007 0.002 ± 0.009 0.177 

 
 
EHR workflows 

Figure 3 shows the size of 𝐶!" as a function of the threshold 𝜏, where we observe three plateaus in terms of 𝐶!" size. 
The middle points of the three areas in the rectangles are selected as candidate values of 𝜏. Since using the two larger 
thresholds will lead to an excessive loss of information, we use 𝜏 = 0.08, which results in 24 nodes in the Whole 
network and the White network, and 25 nodes in the Non-White network, respectively. 

 

 
Figure 3. The effect of threshold values on the size of 𝐶!". 

 
By applying the Louvain algorithm, we detected five clusters as shown in Figure 4 for the Whole network.  

Users’ interactions with ED Narrator. Users can use the ED Narrator to jump from toolbox to toolbox, documenting 
assessments or completing tasks as needed. The Narrators are designed to be used in any order. There are three sections 
in the Narrator: the toolbox on the left and right and the event log in the center. “Event log was loaded in Narrator” 
has the highest local influence in this cluster, while also being a core event in the overall EHR workflows. 

Users’ interactions with ED Navigator. ED Navigators are designed to match the order of a workflow and users will 
typically work from the top section to the bottom section. “Visit Navigator template loaded” has the most connections 
with other user-interaction types in this cluster. This type is also one of the top-3 user-EHR-interaction types in degree, 
PageRank, and betweenness centrality, indicating its local and global impact and its role as a bridge in the workflows.  

1251



 

Users’ interactions with SmartTools in handoff data. SmartTools include SmartTexts, which are templates or 
blocks of text, SmartPhrases, which are long words, phrases, or paragraphs, SmartLinks, which pull information from 
another part of the chart, and SmartLists, which are a predefined list of choices. SmartLinks help ED professionals 
write notes quickly by pulling or linking information from the patient's chart directly into the notes. SmartTexts are 
standard templates or blocks of text used to write notes for ED visits or problems a healthcare professional treats. 
There are strong connections between “A SmartText used in SmartTools or reports”, and “A SmartLink used in 
SmartTools or reports”, indicating these two user-interaction types are often utilized sequentially.  

Chart review activities, including reviewing notes, encounters, orders, diagnoses, rooming plans, etc. In Chart 
Review Activity, ED professionals can find patient health information that’s been documented in the EHR from past 
hospital encounters as well as the current hospitalization. This cluster does not have strong connections with user-
interaction types from other clusters.  

ED workup activities. The workup activity has results, vital signs, and the ED course. For instance, when results 
(labs or vital signs) are returned, there will be an icon that identifies there are new results in the lab or vital sign widget. 

The results show that there are five relatively independent EHR workflows, while those workflows are also connected 
through several user-interaction types. For instance, ED workup activity is connected to Narrator, Navigator, and 
SmartTools through SmartText, Navigator template, and Narrator event log. Chart review is connected to SmartTools 
through orders.  

 
Figure 4. Five clusters detected for the Whole network. The width of the edge illustrates edge weight, and the size 

of a node illustrates a node’s PageRank score.  
 

 
EHR workflows differences 

Based on the White patients’ network and Non-White patients’ network, we observe that nodes in the 𝐶!01234 are the 
same as the nodes in 𝐶!015!4 and 24 of 25 nodes in 𝐶!657801234 are the same. It indicates that these user-interaction 
types are the most frequently associated with all patients. The one extra node in 𝐶!657801234 is “The chart review notes 
report was viewed”. This user-interaction type has a similar meaning to another user-interaction type: “A report for a 
note in the chart review notes tab was viewed”. We obtain five clusters from 𝐶!01234 and 𝐶!657801234 , similar to the 
results from 𝐶!015!4  after applying the Louvain algorithm. This verifies that our algorithm finds meaningful and 
general workflow patterns in ED trauma patient care using user-interaction types. The Narrator cluster and the 
SmartTools workflow cluster are different for White patients and Non-White patients. Figure 5 shows these two 
clusters specifically. We observe that “Automatic actions performed by a best practice advisory” (BPA) is often 
performed with the Narrator workflow for White patients while being performed with the SmartTools workflow for 
Non-White patients.  
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Figure 5. The Narrator and SmartTools workflow differences on patient groups. The width of the edge illustrates 

edge weight, and the size of a node illustrates a node’s PageRank score. 
 
Differential network analysis is conducted on the 24 intersected nodes between 𝐶!01234 and 𝐶!657801234. From the 
differential degree centrality (DDC) measure between White and Non-White patients’ networks, five user-interaction 
types have non-negative DDC values: “Event log was loaded in Narrator”, “A SmartLink used in SmartTools or 
reports” (SL), “Automatic actions performed by a best practice advisory” (BPA), “Chart review notes/transaction 
tab selected”, and “Report for an order in a chart review orders tab was viewed”. Except for “Chart review 
notes/transaction tab selected”, the other four user-interaction types have higher degrees in the White patients’ 
network than those in the Non-White patients’ network.  

Figure 6 shows the visualization of the differential network. The user-interaction types that have the top-4 DPC values 
are related to the Narrator workflow. These Narrator-related user-interaction types have higher PageRank values in 
the Non-White patients’ network. We observe that BPA has the 5th highest DPC value and SL has the 9th highest DPC 
value. Both user-interaction types have higher PageRank values in the White network. It is noted that SL and BPA 
have both higher global (higher PageRank value) and local impacts (higher degree) on the EHR workflows in the 
White patients’ network than that in the Non-White.  

 
Figure 6. Differential PageRank centrality. The node size to represent the absolute difference of the values of DPC. 
The pink color shows that the Non-White patients’ network has the higher DPC values. The green color shows that 

the White patients’ network has higher DPC values. 
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Discussion 

The ED is one of the most fast-paced and demanding medical specialties that admit trauma patients of various ages, 
diagnoses, and treatment plans. Our study’s focus on ED trauma patient care is an attempt to capture EHR workflows 
in such a diverse and complex environment. We apply network analysis and community detection algorithm to learn 
EHR workflow patterns and measure differences in the content (e.g., Narrator, Navigator, SmartText, SmartLink, 
BPA) and structure (user-interaction types with degree, PageRank, and betweenness scores) of the workflow pattern 
between White and Non-White patients in systematic ways.  

Network analysis results show that user-interaction types related to Narrator, Navigator, SmartText, and SmartLink 
have the highest values of sociometric factors (degree, PageRank, and betweenness centrality), which demonstrate 
their critical roles in ED EHR workflows of taking care of trauma patients. In such a fast-paced setting, ED 
professionals check trauma patients’ health status, laboratory test results, vital signs, and medication orders frequently 
and quickly. Narrator, Navigator, and SmartTools provide strong support to speed up those tasks in the EHR. The 
analysis gives us more micro-level understandings of how EHRs are utilized in ED trauma patient care and provides 
an opportunity to analyze EHR efficiency. For instance, we found BPA is one of the core user-interaction types in 
Narrator (switches between toolboxes) and Navigator (BPA displayed and then got accepted or canceled). BPA can 
increase the efficiency and effectiveness of evidence-based medical practice; however, alert fatigue leads users to 
begin to ignore them34. ED users heavily rely on the Narrator to manage patients’ health status and medical needs 
through various tools. If BPA's number is not well controlled for those tools, then ED users may be disrupted by the 
flags and would raise issues related to care quality and patient safety. Community detection gives us macro-level 
insights into the EHR. The results on the whole network show that there are five core EHR workflows related to 
Narrator, Navigator, SmartTools, Chart Review, and ED workup activities. Regardless of clustering on the whole 
network or networks divided by White and Non-White patients, the five core EHR workflows are similar, suggesting 
the detected workflow patterns are stable. As shown in Figure 4, the 5 core EHR workflows are connected by user-
interaction types, including orders and workup activities. Orders such as medication, laboratory tests, diet, and workup 
activities (safety) are critical tasks for ED patients. Our analysis uncovered their relationships, which may provide 
evidence for systematically optimizing EHR workflows as a whole rather than refining each individually.   

The differential network analysis provides a comparative perspective into EHR workflow patterns in ED trauma 
patient care between White and Non-White patients. SmartLink, BPA, and Narrator play different roles in the EHR 
workflow between patient groups. SmartLink and BPA have both higher global impact (higher PageRank scores) and 
local impact (higher degrees) on White patients than Non-White patients, which indicates the two user-interaction 
types may be frequently utilized across the five core EHR workflows for White patients. The user-interaction type 
associated with the Narrator has a more local impact on the White patients, while a more global impact on the Non-
White patients, which indicates Narrator is utilized differently for White and Non-White patients. However, the impact 
of such utilization behaviors on the EHR workflows, related clinical workflows, and health outcomes is unknown.  It 
is unclear why EHR utilization differences existed in the ED EHR workflows between White and Non-White trauma 
patients. Further investigation on EHR workflow through other approaches such as focus group interviews with ED 
professionals or observations in the ED would provide more evidence to illustrate the differences. 

Our study should acknowledge several limitations. First, the audit log data has been recognized as one of the most 
informative resources to study EHR workflows, however, our learned EHR workflow patterns have not been 
systematically evaluated. A previous study35 investigated the capability of the audit log data in capturing clinician 
activities in EHRs shows that the log-generated breadcrumbs encounter summary can capture all interactions 
documented in clinical notes, with the exception of physical exams. Based on their observations, there is a high chance 
that the EHR workflows can be reflected in the audit log data. Second, our study only uses trauma patients' data from 
VUMC ED. The results might not be generalizable for other hospitals when the patients’ demographic distribution is 
different from that in VUMC, or they use different EHR systems such as Allscripts or Cerner. Third, EHR workflow 
patterns are identified from the audit log data, however, it is not connected to clinical workflow, and thus its impact 
on clinical workflow is unknown. Further investigations are required to align EHR workflow and clinical workflow 
and identify EHR system usability issues to improve care quality and patient safety. Fourth, due to the complexity of 
associations between EHR workflows and health outcomes and page limit, this study did not measure the relationships 
between EHR workflows with outcomes such as length of stay, morbidity, and mortality. Fifth, our study only 
compares the networks built from White and Non-White patients. Further analysis could investigate the differences 
between patients grouped by other factors, such as genders or categories of diseases.  
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Conclusion 

Our study develops an informatics framework to infer EHR workflows in ED trauma patient care. We analyze the 
content (user-interaction types) and the structure of ED EHR workflows through community detection and network 
analysis. Furthermore, we conduct a differential network analysis to identify differences in the EHR workflow patterns 
between White and Non-White patients. Our framework detects 5 core EHR workflows and their differences in user-
interaction types and corresponding values of sociometric factors between White and Non-White trauma patients. 
Future studies can be conducted to measure the relationships of core user-interaction types in EHR workflows with 
health outcomes.  
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