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Abstract 

Background  Mosquito seasonal activity is largely driven by weather conditions, most notably temperature, precipi-
tation, and relative humidity. The extent by which these weather variables influence activity is intertwined with the 
animal’s biology and may differ by species. For mosquito vectors, changes in weather can also alter host–pathogen 
interactions thereby increasing or decreasing the burden of disease.

Methods  In this study, we performed weekly mosquito surveillance throughout the active season over a 2-year 
period in Manitoba, Canada. We then used Generalized Linear Mixed Models (GLMMs) to explore the relationships 
between weather variables over the preceding 2 weeks and mosquito trap counts for four of the most prevalent vec-
tor species in this region: Oc. dorsalis, Ae. vexans, Cx. tarsalis, and Cq. perturbans.

Results  More than 265,000 mosquitoes were collected from 17 sampling sites throughout Manitoba in 2020 and 
2021, with Ae. vexans the most commonly collected species followed by Cx. tarsalis. Aedes vexans favored high humid-
ity, intermediate degree days, and low precipitation. Coquillettidia perturbans and Oc. dorsalis activity increased with 
high humidity and high rainfall, respectively. Culex tarsalis favored high degree days, with the relationship between 
number of mosquitoes captured and precipitation showing contrasting patterns between years. Minimum trapping 
temperature only impacted Ae. vexans and Cq. perturbans trap counts.

Conclusions  The activity of all four mosquito vectors was affected by weather conditions recorded in the 2 weeks 
prior to trapping, with each species favoring different conditions. Although some research has been done to explore 
the relationships between temperature/precipitation and Cx. tarsalis in the Canadian Prairies, to our knowledge this 
is the first study to investigate other commonly found vector species in this region. Overall, this study highlights how 
varying weather conditions can impact mosquito activity and in turn species-specific vector potential.
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Background
Global climate change is widespread and affects zoon-
oses by increasing (1) the geographical range and/or 
pervasiveness of animal reservoirs and/or arthropod 
vectors; (2) introductions of competent vectors, and/or 
the occurrence, intensity; and (3) the duration of trans-
mission cycles [1]. Canada continues to show signs of a 
changing climate, including a ~ 2 °C rise in annual surface 
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temperatures since 1948 [2]. The Intergovernmental 
Panel on Climate Change (IPPC, 2018) has indicated that 
mosquito-borne diseases (MBDs) will be particularly 
impacted by climate change. Indeed, seasonal variations 
in the occurrence and abundance of mosquito popula-
tions are intricately tied to climatic factors, which in turn 
impact their vector potential [3]. In Canada, the burden 
of MBDs has increased by 10% in the past 20 years and 
is expected to continue to rise if the impacts of climate 
change are not mitigated [4].

Several studies have shown strong associations 
between mosquito vector abundances and weather fac-
tors [5–8]. Temperature, precipitation, and relative 
humidity are the three major weather variables influenc-
ing mosquito seasonal activity [9–12] and host–patho-
gen interactions [13]. Temperature can impact mosquito 
survival [14–16], development [4, 16, 17], geographical 
range [18, 19], vector competence [20–22], and host-
seeking and other behaviors [23]. Precipitation can alter 
the occurrence of suitable larval habitats [22, 24, 25] and 
the viability of eggs and larvae [26]. Humidity can affect 
the mating, dispersal, longevity, bloodfeeding behaviors, 
and oviposition of mosquitoes [3, 27, 28]. However, there 
are numerous mitigating factors that can drastically alter 
mosquito population dynamics (e.g., forest cover), and 
the combined effects of multiple abiotic and biotic fac-
tors are often challenging to resolve.

Mosquitoes typically have species-specific ranges of 
weather conditions for optimal seasonal activity. Higher 
temperatures are generally favored by mosquitoes [29], 
but species can vary in their minimum thresholds. For 
instance, the minimum metabolic threshold for Aedes 
vexans is 12 °C, but is slightly lower (10 °C) for Culex tar-
salis and Coquillettidia perturbans [30–32]. To this end, 
some studies associate mosquito abundance with degree 
days, which is a weather-based indicator that takes into 
account both ambient temperatures and minimum met-
abolic thresholds of a given species [30, 33]. Standing 
water from rainfall creates necessary breeding grounds 
for many species, but too much precipitation can wash 
away larval habitats [34–36]. Thus, species that utilize 
more permanent breeding grounds (e.g., lakes, marshes) 
are likely less susceptible to population fluctuations asso-
ciated with rainfall. The overall relationship between 
mosquito abundance and precipitation is not straightfor-
ward, however, as some species abundances appear most 
influenced by rainfall occurring weeks to even months 
prior [5, 30, 37]. In contrast, high humidity conditions 
are typically preferred by mosquitoes, as sustained bouts 
of low moisture can impact their survival, behaviors, and 
development [38].

There are several species of mosquitoes found in 
the Canadian Prairies that can potentially harbor and 
transmit viruses of public health concern. Aedes vexans 
Meigen, the inland floodwater mosquito, is a cosmo-
politan nuisance mosquito with broad vector potential. 
It is capable of transmitting West Nile virus (WNV), 
California serogroup viruses (CSGVs), Rift Valley fever 
virus, and Zika virus [39–42]. Ochlerotatus dorsa-
lis Meigen, the summer saltmarsh mosquito, is found 
throughout North America and is a competent vector 
of Western equine encephalitis virus (WEEV), CSGVs, 
and WNV [43]. The cattail mosquito, Coquillettidia 
perturbans Walker, is found throughout the Prairies, 
breeding in permanent swamps containing cattails 
and aquatic plants [43]. This species is associated with 
the transmission of Eastern equine encephalitis virus 
(EEEV), WNV, and CSGVs [43, 44]. The geographical 
range of Culex tarsalis Coquillett extends from north-
ern Mexico into Canada and from the west coast to the 
Mississippi River [45, 46]. The species is the primary 
vector of WNV in the Prairies and also capable of trans-
mitting WEEV and CSGVs [43, 47]. Other mosquito 
vector species occurring in the Prairies include Aedes 
canadensis (CSGVs, WNV, EEEV), Ochlerotatus trise-
riatus (La Crosse virus, EEEV, WEEV), and Ochlero-
tatus trivittatus (CSGVs) [19, 43, 47–49]. Although 
these vectors presumably have varying optimal ranges 
for temperature, humidity, and precipitation, little 
information is presently available on the relationships 
between weather factors and mosquito seasonal activity 
in the Canadian Prairies.

Two Canadian Prairie provinces (Manitoba and Sas-
katchewan) carry out annual mosquito surveillance 
to detect the causal agents of MBDs at the provincial 
level. However, these programs focus their monitor-
ing activities on Culex species capable of transmitting 
WNV, most notably Cx. tarsalis. To our knowledge no 
other mosquito vector species are identified or tested 
for human pathogens in these programs. Consequently, 
we carried out weekly surveillance during the active 
season over a 2-year period in Manitoba to characterize 
the population dynamics of nine commonly found mos-
quito species. We then used Generalized Linear Mixed 
Models to determine the relationships (if any) between 
mosquito trap counts and weather variables (tempera-
ture, precipitation, and relative humidity) for the four 
most abundant vector species. Since the life cycle (egg-
to-adult) of most species is between 8 and 14 days, the 
combination of weather conditions over this period is 
likely to affect development and thus mosquito abun-
dance and activity [32, 43]. Consequently, our analyses 
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investigated how the 14  days preceding the trapping 
date impacted the number of mosquitoes captured.

Material and methods
Mosquito trapping and identification
Host-seeking mosquitoes were trapped using CDC Min-
iature Light Traps (Model 1012, John W. Hock, Gaines-
ville, FL) with carbon dioxide (CO2) regulators set to 
15 psi and the light disabled (to minimize non-mosquito 
collections). We placed traps on tree limbs ~ 1.5 m from 
the ground and activated them from dusk until dawn. 
Traps were operated twice weekly (Monday and Tuesday) 
in 2020 and 2021, from June to August (CDC weeks 23 
to 36). A total of 24 traps were deployed in eight West-
ern Manitoba communities in 2020, with one trap setup 
in each community in 2021 (Additional files 1 and 2). In 
2020, collections from one-time satellite traps from nine 
additional locations in Central and Eastern Manitoba 
were provided to us by the City of Winnipeg Insect Con-
trol Branch with Culex species removed (Additional files 
1 and 2). All mosquitoes were stored at − 80 °C in Petri 
dishes coded by date and collection site.

Five mosquito vector species were visually identified 
using dissecting microscopes in 2020: Ochlerotatus fla-
vescens Muller, Oc. dorsalis, Ae. vexans, Cx. tarsalis, and 
Cq. perturbans. We expanded our identification efforts to 
include four less common and/or non-vector species in 
2021: Aedes canadensis Thebald, Ochlerotatus trivittatus 
Coquillett, Ochlerotatus triseriatus Say, and Anopheles 
earlei Vargus. Specimens were identified to species using 
relevant mosquito identification keys [43, 50, 51]. For 
traps with high numbers of specimens (> 1000), we sub-
sampled by counting a randomized ¼ sample of the trap 
and then extrapolated the numbers by a factor of four.

Weather factors associated with mosquito counts
For each trapping location over the 2-year surveillance 
period, we recorded three variables that may be con-
nected to mosquito trap catch: temperature (°C), precipi-
tation (mm), and relative humidity (%). These data were 
obtained from the Environment Canada weather station 
closest to each trapping location. Weather data was col-
lected daily from each location between May and August 
in both years. The distances between trapping site and 
the closest servicing weather station ranged from < 1 to 
63 km. The reason some of the stations are farther away 
than others is they service multiple towns that have had 
historically comparable weather indices (Environment 
Canada, personal communication).

We focused our analyses (see below) on the four most 
commonly found vector species: Oc. dorsalis, Ae. vex-
ans, Cx. tarsalis, and Cq. perturbans. The specific vari-
ables explored were: (1) mean rainfall (mm) over the 

14  days preceding the trapping date (ppm14); (2) mean 
relative humidity (%) 14  days prior to the trapping date 
(rhm14); and mean degree days 14  days preceding the 
trapping date (ddm14). The latter incorporated mean 
daily temperatures (Tmean; °C) and baseline metabolic 
temperature (Tb; °C) for each mosquito species [30–32], 
where ddm14 represents the number of degrees above 
Tbase over the 14  d period; thus if dd1: Tmean > Tbase, 
then dd1 = Tmean − Tbase, but if dd1: Tmean ≤ Tbase, then 
dd1 = 0 °C [30]. Since Tb is not published for Oc. dorsa-
lis, we used the same value (12 °C) as Ae. vexans, which 
is also a floodwater species. Preliminary exploration 
suggested that trap count differences with local weather 
variation were species-specific. We therefore modelled 
weather variables separately for each species. Finally, 
as low temperatures can inhibit mosquito activity and 
therefore influence trap counts we included trapping day 
minimum temperature as a covariate to account for this 
effect.

Statistical analyses
Relationships among environmental variables and mos-
quito counts over 2 years (2020 and 2021) were assessed 
for each species (Oc. dorsalis, Ae. vexans, Cx. tarsalis, 
and Cq. perturbans) using R statistical software (v4.2.1; 
[52]). We explored two sets of models: (1) a single model 
exploring the effect of mosquito species on trap counts; 
and (2) four species-specific models exploring the effects 
of time (CDC week) and weather variables (ppm14, rhm14, 
ddm14) on trap counts. All models were Generalized Lin-
ear Mixed Models (GLMMs; glmmTMB package v1.1.2.3; 
[53]). To control for spatial, site-level effects we included 
trap location nested within site as a random intercept. To 
control for temporal, week-level effects we also included 
a categorical week-by-year variable as a random inter-
cept. We used a negative binomial distribution because 
while we have count data, they were over-dispersed and 
did not match a Poisson distribution.

For the species model, trap counts were modelled using 
the complete data set with species, year, and their inter-
action as explanatory variables. Each trap count was rep-
resented by a row in the data with no pooling of counts 
within or between weeks/sites. Minimum temperature 
of the trap-day was included as a covariate. Because this 
full dataset showed significant temporal autocorrelation, 
we added an AR(1) covariance structure to week grouped 
by unique site (across years). We conducted Post-Hoc 
analyses to compare species differences among years 
(emmeans package v1.7.0; [54]) with the false discovery 
rate P-value adjustment.

For the weather models, curvilinear relation-
ships in the weather variables and week were mod-
elled as 2nd degree orthogonal polynomials. We also 
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included interactions between year and each polyno-
mial: trapcount ~ poly(week, degree = 2) * year + poly
(ddm14, degree = 2) * year + poly(pt14, degree = 2) * 
year + poly(rha14, degree = 2) * year + ttmin + (1|we
ek_year) + (1|site/sitespecific). Further, we included 
minimum temperature of the trap-day as a covariate. 
Where non-significant (alpha of 5%), individual poly-
nomial terms and interactions were omitted from the 
models and linear terms and main effects retained 
alone. Type III ANOVA tables were computed with the 
car package (v3.0.12; [55]) and used to assess polyno-
mial terms. Significant linear effects were additionally 
reported with summary table statistics (Estimate and 
Z-test) in order to capture the magnitude of the effect 
(i.e. the Estimate). To aid in the interpretation we con-
verted the original estimates to incident rate ratios 
which can be interpreted as a multiplicative factor (i.e. 
an incident rate ratio of 2 indicates a 2 times increase).

All model fits and assumptions (including potential 
spatial and temporal autocorrelation) were assessed 
with the DHARMa package (v0.4.4; [56]); multicol-
linearity was assessed with the performance pack-
age (v0.8.0; [57]); and figures were created with the 
ggplot2 package (v3.3.5; [58]). Note that figure scales 
are log10 transformed after first adding 1 to better vis-
ualize patterns.

Results
Mosquito surveillance activities
More than 265,000 mosquitoes were collected through-
out southern Manitoba over the 2-year surveillance 
period, with 57% captured in 2020. This included weekly 
collections in Western Manitoba and one-time satellite 
collections at various times between June and September 
in Eastern and Central Manitoba, though the latter rep-
resented a small proportion (11%) of the total mosquito 
catch. Trap counts tended to be highest between weeks 
26 and 29, though this differed to some extent by species 
and year. Notable were fogging events in Brandon in both 
2020 and 2021, which subsequently resulted in consid-
erably reduced mosquito numbers in that community. 
Consequently, we omitted mosquito trap count data from 
this site post-fogging for all analyses (CDC weeks ≥ 30 in 
2020, weeks ≥ 28 in 2021).

Aedes vexans was the most common mosquito species
There was considerable variation in the relative propor-
tions of each mosquito species per trapping location 
(Fig. 1), as well as over time (Fig. 2). Of the mosquitoes 
caught, 40% (2020) and 80% (2021) represented the four 
primary vector species: Ae. vexans, Oc. dorsalis, Cx. tar-
salis, and Cq. perturbans. This discrepancy in proportions 
between years is largely attributed to Cq. perturbans from 

Fig. 1  Relative trap counts for the eight most commonly found mosquito species in 2020 and 2021. Mosquitoes were captured on a weekly basis 
(May to September) from 17 sampling sites throughout Manitoba, Canada. Culex tarsalis counts are not included for all locations in the eastern part 
of the region (denoted with an asterisk*). Ae. canadensis, An. earlei, Oc. trivittatus, and Oc. triseriatus were not surveyed in 2020. We collected one Oc. 
triseriatus in 2021, which was not included on the figure



Page 5 of 14Baril et al. Parasites & Vectors          (2023) 16:153 	

a single location (Cypress River), where > 50,000 individ-
uals were captured in 2021 and only 14,000 in 2020. As 
this site reflected drastically and systematically different 
trapping patterns (Figs. 1, 2) we removed the site from all 
subsequent analyses (outlier effect).

There was a significant interaction between species 
and year (χ2

3 = 33.57; P < 0.0001) and we therefore con-
ducted Post-Hoc analyses separately for each year. These 
showed that in both years, we captured significantly 
more Ae. vexans than each of the three other primary 
vector species (P < 0.01 across all pairwise comparisons;). 
Ochlerotatus dorsalis trap counts were 2.4× higher than 
Cx. tarsalis in 2020 (P < 0.001) but 0.28× lower in 2021 
(P < 0.001). However, both O. dorsalis and Cx. tarsalis 
had higher trap counts than Cq. perturbans in 2020 (9.3× 
and 3.4×; both P < 0.0001) as well as in 2021 (2.5× and 
9.0×; both P < 0.05).

The influence of weather variables on trap counts 
was species‑specific
Aedes vexans
There was a significant interaction between year and the 
2nd order polynomial for trap week (χ2

2 = 6.34; P = 0.042). 
As such, trap counts increased and then decreased over 
the season (with a greater increase in 2021) (Fig.  3). 
Trap counts increased linearly with relative humidity 
(χ2

1 = 9.35; P = 0.002), with 1.12× (12%) more mosqui-
toes captured for every % increase in relative humidity 
(Est = 0.109; z = 3.057; Fig.  3a). In addition, there were 

significant quadratic effects of degree days (χ2
2 = 19.58; 

P < 0.0001) and precipitation (χ2
2 = 11.03; P = 0.004). 

Accordingly, trap counts were highest with intermedi-
ate values of degree days (Fig.  3b) and low precipitation 
(Fig. 3c). Trapping day minimum temperature had a sig-
nificant effect (χ2

1 = 5.13; P = 0.024), where trap counts 
were 1.07× (7%) greater with every 1 °C increase in mini-
mum temperature (Est = 0.072; z = 2.265). Notably the 
model fit (assessed by checking patterns in the residuals) 
for this species was marginal, suggesting other factors 
may be in play that were not been captured by this model.

Culex tarsalis
There was a significant interaction between year and 
the 2nd order polynomial for trap week (χ2

2 = 16.17; 
P = 0.0003), such that trap counts increased and then 
decreased over the season with a more distinct peak 
in 2020 (Fig.  4). There were no associations (quadratic 
or linear) between trap counts and relative humidity 
(χ2

1 = 2.52; P = 0.112; Fig. 4a). However, there was a lin-
ear relationship between trap counts and degree days 
(χ2

1 = 4.16; P = 0.041; Fig.  4b), such that the number of 
mosquitoes captured increased by 32% for every 1  °C 
increase in mean degree days (Est = 0.281; z = 2.040). 
There was a significant interaction between year and 
precipitation (χ2

1 = 4.73; P = 0.030). Accordingly, the 
relationship between trap counts and rainfall showed 
contrasting patterns, with a greater number of mosqui-
toes captured with high and low precipitation in 2020 

Fig. 2  Average weekly trap counts for each of the 17 sampling sites in 2020 a and 2021 b. Displayed are the four most commonly collected vector 
species: Ae. vexans, Cq. perturbans, Cx. tarsalis, and Oc. dorsalis. Culex tarsalis counts are not included for all locations in the eastern part of the region 
(denoted with an asterisk*)



Page 6 of 14Baril et al. Parasites & Vectors          (2023) 16:153 

Fig. 3  GLMM model analyses showing the effects of time (CDC week) and weather variables on Aedes vexans trap counts in 2020 and 2021. 
Seasonal mosquito activity was significantly impacted by a relative humidity, b degree days, and c precipitation in the 2-week period preceding the 
trapping date. Week corresponds to the week of the year for 2020 and 2021 (e.g., week 24 is the 24th week of both 2020 and 2021). Points represent 
observed data
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and 2021, respectively (Fig.  4c). There was no effect 
of trapping day minimum temperature on trap counts 
(χ2

1 = 2.05; P = 0.152).

Coquillettidia perturbans
There was a significant interaction between year and 
the 2nd order polynomial for trap week (χ2

x = 7.74; 
P = 0.0209), such that trap counts increased and then 
decreased over the season (with a relatively more con-
sistent peak in 2021) (Fig.  5). We also identified a sig-
nificant quadratic relationship between trap counts and 
relative humidity (χ2

2 = 9.10; P = 0.011), with elevated 
(but not extreme) humidity resulting in a greater number 
of mosquitoes captured (Fig.  5a). There were no effects 
(quadratic or linear) of degree days (χ2

1 = 0.81; P = 0.368; 
Fig.  5b) nor precipitation (χ2

1 = 0.24; P = 0.622; Fig.  5c). 
Trapping day minimum temperature had a significant 
effect (χ2

1 = 29.62; P < 0.0001), where trap counts were 
1.43 times greater with every 1 °C increase in minimum 
temperature (Est = 0.36; z = 5.44).

Ochlerotatus dorsalis
There was a significant interaction between year and 
the 2nd order polynomial for trap week (χ2

2 = 15.94; 
P < 0.001). As such, trap counts in 2020 decreased almost 
linearly, but in 2021 showed a pattern of increased and 
decreased numbers over the season. The was no effect 
(linear or quadratic) of relative humidity (χ2

1 = 1.67; 
P = 0.196; Fig. 6a) nor degree days (χ2

1 = 0.47; P = 0.494; 
Fig. 6b) on trap counts. However, we identified a signifi-
cant linear relationship between trap counts and precipi-
tation (χ2

1 = 3.89; P = 0.049; Fig.  6c). Accordingly, trap 
counts increased by 1.01 times (1%) for each mm increase 
in precipitation (Est = 0.0069; z = 1.972). There was no 
effect of minimum trapping day temperature (χ2

1 = 0.21; 
P = 0.646).

Discussion
The primary objective of our study was to explore the 
relationships between key weather variables and mos-
quito population dynamics in the Canadian Prairies. Our 
two consecutive years of weekly trapping throughout 
southern Manitoba yielded over 265,000 mosquitoes, of 
which the majority represented four noted vector species: 
Oc. dorsalis, Ae. vexans, Cx. tarsalis, and Cq. perturbans. 
It should be emphasized that the trap counts provide a 
good indication of mosquito activity (i.e., host-seeking) 
during the trapping period, but do not necessarily cor-
relate with overall mosquito abundances at a given sam-
pling site. Further, we discuss weather conditions favored 
by mosquitoes as it relates to higher trap counts rather 
than their true abundance/activity/biology. Aedes vexans 
was the most common mosquito in most sites/weeks, 

which is in agreement with historical records for our 
sampling region [59] and nearby regions [41, 47]. Both 
Oc. dorsalis and Cx. tarsalis are also well established in 
the Canadian Prairies [60, 61]. Interestingly, Cq. pertur-
bans trap counts were relatively low with the exception of 
one site, Cypress River. This is likely due to habitat suit-
ability, as the larvae of this species feed on cattails [43, 
62, 63] and our traps at Cypress River were situated adja-
cent a marsh-like area with heavy aquatic vegetation that 
included abundant cattails. Consequently, Cq. perturbans 
activity at this site appears driven by breeding site condi-
tions rather than weather variables.

In terms of seasonal activity, Ae. vexans, Cx. tarsalis, 
and Cq. perturbans all showed a similar (and expected) 
pattern, with trap counts gradually increasing to peak 
numbers before progressively declining. However, the 
peak in trap counts occurred later in the season for Cx. 
tarsalis (late-July to early August) in comparison to the 
other two species (early- to mid-July). This discrepancy is 
likely attributed to the overwintering behaviors of these 
species. While Cx. tarsalis overwinter as non-fed adults, 
Ae. vexans and Cq. perturbans overwinter in the egg 
stage and as larvae, respectively [31, 43, 64, 65]. Conse-
quently, the former requires a bloodmeal prior to laying 
eggs thereby delaying the first generation in comparison 
to the other two species. Trap counts for all three spe-
cies were higher in 2021 compared to 2020, presumably 
due to more favorable environmental conditions for adult 
survival, oviposition success, and/or host-seeking activi-
ties. Although Oc. dorsalis showed a seasonal trend simi-
lar to the other mosquito species in 2021, trap counts 
in the previous year were highest at or near the start of 
our surveillance activities. This suggests an early spring 
emergence of Oc. dorsalis in 2020, which is consist-
ent with their known biology [66]. However, the steady 
decline in their numbers throughout the 2020 season was 
unexpected given Oc. dorsalis can have multiple genera-
tions per year [67]. This suggests some combination of 
environmental factors later in the season and compara-
tively low sample sizes may have impeded the success of 
subsequent generations.

Mosquito seasonal activity is largely driven by tem-
perature, precipitation, and relative humidity [9–12]. 
Given most species complete development within 
14  days, we focused on how temperature, precipita-
tion, and relative humidity in the two weeks preced-
ing the trapping date affected mosquito counts. Both 
Ae. vexans and Cq. perturbans favored (i.e., higher trap 
counts) high humidity (75–85%), which is consistent 
with studies from other geographic regions [23, 68]. 
High humidity has been associated with increased egg 
production, larval indices, adult survival and activ-
ity, including host-seeking at close range [9, 11, 26, 68, 
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Fig. 4  GLMM model analyses showing the effects of time (CDC week) and weather variables on Culex tarsalis trap counts in 2020 and 2021. 
Seasonal mosquito activity was significantly affected by b degree days and c precipitation in the 2-week period preceding the trapping date. Since 
there was no significant effect of a relative humidity, only one, black, line is shown (seasonal effect). Week corresponds to the week of the year for 
2020 and 2021 (e.g., week 24 is the 24th week of both 2020 and 2021). Points represent observed data
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Fig. 5  GLMM model analyses showing the effects of time (CDC week) and weather variables on Coquillettidia perturbans trap counts in 2020 and 
2021. Seasonal mosquito activity was significantly influenced by a relative humidity in the 2-week period preceding the trapping date. Since there 
was no significant effect of b degree days or c precipitation, only one, black, line is shown (seasonal effect). Week corresponds to the week of the 
year for 2020 and 2021 (e.g., week 24 is the 24th week of both 2020 and 2021). Points represent observed data
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Fig. 6  GLMM model analyses showing the effects of time (CDC week) and weather variables on Ochlerotatus dorsalis trap counts in 2020 and 2021. 
Seasonal mosquito activity was significantly impacted by c precipitation in the two-week period preceding the trapping date. Since there was no 
significant effect of a relative humidity and b degree days, only one, black, line is shown (seasonal effect). Week corresponds to the week of the year 
for 2020 and 2021 (e.g., week 24 is the 24th week of both 2020 and 2021). Points represent observed data
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69]. In contrast, bouts of low humidity can cause eggs 
to desiccate and reduce adult longevity and/or activ-
ity in favor of seeking shelter [27, 28, 70]. The lack of 
a relationship between Cx. tarsalis and Oc. dorsalis 
trap counts and humidity was a bit unexpected, though 
the biology of both species suggests that their activ-
ity is less impacted by humidity. Stuart (2020) found 
Culex mosquitoes to prefer breeding under hot and dry 
conditions [71] with adult Cx. tarsalis typically reared 
in laboratories under relatively low humidity [72]. 
Ochlerotatus dorsalis is found in a wide rage of habitats 
(e.g., coastal marshes, grasslands, forests, tidal areas, 
and semiarid deserts), which can vary considerably in 
relative humidity [73, 74].

Since mosquito development is temperature-depend-
ent, their abundance typically increases with air tem-
perature (i.e., faster lifecycle) and then declines once a 
threshold has been reached [32, 75]. This threshold var-
ies depending on species, with reported ranges between 
22 and 30  °C [32, 76–80]. Moreover, mosquitoes have 
minimum metabolic temperatures (e.g., [30–32]) for 
which their activity largely ceases below this level. Con-
sequently, we focused only on the air temperatures fos-
tering mosquito development over the 14 days preceding 
the trapping date. Culex tarsalis favored high degree 
days, which is consistent with their biology in the Cana-
dian Prairies [61]. Aedes vexans favored intermediate 
degree days, presumably having increased mortality 
and/or reducing their activity by seeking refuge during 
bouts of extreme temperatures [81–83]. Temperature did 
not impact Cq. perturbans nor Oc. dorsalis trap counts, 
which may be attributed to the unique habitat require-
ments of the former and the diversity of suitable habitats 
for the latter. It is also possible that increasing the lag 
period to more than 14 days may better capture the effect 
of temperature on both species, as found for other spe-
cies/regions [5, 30]. Finally, minimum trapping day tem-
perature was associated with trap counts for Ae. vexans 
and Cq. perturbans but not the other three species. Tem-
peratures between 15 and 24 °C are generally suitable for 
host-seeking activities in mosquitoes [23], but both spe-
cies may have a narrower temperature range for optimal 
activity.

The influence of precipitation on mosquito life his-
tory traits is often complex and differs among species 
and studies [6, 30, 37, 84–87]. Even within a species the 
relationship is not always clear. For instance, some stud-
ies have found a positive effect of rainfall on Ae. alpbopic-
tus abundance [88–91], whereas others have not [92, 93]. 
Although the larval stages of all mosquitoes are depend-
ent on water availability, their breeding habitats, ovipo-
sition biology, and egg physiology can vary markedly. 
Indeed, rainfall over the 14  days prior to the trapping 

date influenced mosquito counts for Ae. vexans, Cx. tar-
salis, and Oc. dorsalis, but the underlying biological rea-
soning was not always obvious. Larval breeding sites for 
Oc. dorsalis include temporary pools formed by precipi-
tation [73], which is in line with the higher levels of rain-
fall that this species favors. However, Ae. vexans favoring 
dryer conditions was unexpected as this species ovi-
posits on soil, relying on precipitation events to trigger 
egg hatching [94, 95]. Consequently, Ae. vexans should 
increase in abundance with higher levels of short-term 
rainfall. Precipitation influenced Cx. tarsalis activity, but 
the species favored higher and lower levels of rainfall in 
2020 and 20,921, respectively. Given Cx. tarsalis and Cq. 
perturbans lay their eggs directly on the surface of water 
[96, 97], they are more likely to be influenced by longer-
term precipitation. This would presumably dictate the 
number of suitable breeding sites available and in turn 
mosquito abundance several weeks later [37]. Indeed, 
abundance of some mosquito species has been positively 
associated with rainfall events occurring several weeks to 
even months later [5, 30, 37, 86].

There are several considerations related to experimen-
tal design that must be taken into account when forming 
conclusions from our study. The interactions between 
individual weather factors, additional factors not exam-
ined in this study (e.g., wind velocity, moonlight, and 
anthropogenic water sources), and their combined 
effects are nearly impossible to disentangle without con-
trolled experiments. Some weather variables, particu-
larly precipitation, may show improved modelling for 
some species with longer lag periods from the trapping 
date, though it would be challenging to infer the specific 
reason(s) for any significant relationships. The preci-
sion of our study could also be improved by setting up 
weather stations directly at each trapping site. Further, 
our traps predominately captured host-seeking females 
from dawn to dusk, with most traps set up on the inter-
face between human dwellings and forest/agricultural 
land. Given the differences in host-seeking behaviors 
and ecologies among species, this design may not accu-
rately reflect the true relative abundances of each species. 
Deploying multiple trap types (e.g., gravid, net, BG-Sen-
tinel) to supplement our collections in conjunction with 
sampling sites with varying land cover (e.g., forest, urban 
and rural areas, agricultural areas) may better inform on 
the relative abundances of each species. Finally, extend-
ing our surveillance activities earlier in the spring may 
better determine the seasonal abundances of some mos-
quito species and the associated weather factors (e.g., Oc. 
dorsalis).
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Conclusion
We carried out 2 years of seasonal surveillance in Mani-
toba, Canada to explore the seasonal population dynam-
ics and associated weather factors. The environmental 
conditions varied markedly between years (e.g. 2020: 
abnormally high rainfall concentrated over a few days; 
2021: very dry), allowing us to capture a wide range of 
weather variables. Previous work has investigated the 
associations between temperature/precipitation and Cx. 
tarsalis trap counts in the Canadian Prairies [61], but 
to our knowledge this is the first study to explore other 
commonly found vector species in this region. The per-
vasiveness, seasonal activity, and associations with 
weather variables differed among species, likely due to 
their unique ecologies and behaviors. From our experi-
ences, future surveillance efforts in the Canadian Prairies 
may benefit from using multiple trap types and a breadth 
of sampling sites. Placing moisture and temperature 
probes adjacent to each trap would improve accuracy 
and investigating other meteorological elements could 
provide further insights. Future studies aimed at associat-
ing the population dynamics of these vector species with 
pathogen infection rates would provide valuable informa-
tion for surveillance programs. Ultimately these discrete 
differences among mosquito species in optimal weather 
conditions will influence their vector potential on an 
annual basis.
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