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Abstract

Osteoimmunology is at full display during endosseous implant osseointegration. Bone formation, 

maintenance and resorption at the implant surface is a result of bidirectional and dynamic 

reciprocal communication between the bone and immune cells that extends beyond the well-

defined osteoblast-osteoclast signaling. Implant surface topography informs adherent progenitor 

and immune cell function and their cross-talk to modulate the process of bone accrual. Integrating 

titanium surface engineering with the principles of immunology is utilized to harness the power 

of immune system to improve osseointegration in healthy and diseased microenvironments. 

This review summarizes current information regarding immune cell–titanium implant surface 

interactions and places these events in the context of surface-mediated immunomodulation and 

bone regeneration. A mechanistic approach is directed in demonstrating the central role of 

osteoimmunology in the process of osseointegration and exploring how regulation of immune 

cell function at the implant-bone interface may be used in future control of clinical therapies. 

The process of peri-implant bone loss is also informed by immunomodulation at the implant 

surface. How surface topography is exploited to prevent osteoclastogenesis is considered herein 

with respect to peri-implant inflammation, osteoclastic precursor-surface interactions, and the 

upstream/downstream effects of surface topography on immune and progenitor cell function.
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1. Introduction

Endosseous implant success requires the life-long accrual and maintenance of bone at the 

alloplastic interface. Osseointegration was defined as “the direct structural and functional 

connection between the living bone and surface of a load-bearing implant” [1]. The 

definition implies that the bone tissue is formed against the endosseous implant surface and 
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that it is maintained throughout the functional lifetime of the implant. At this interface, the 

biologic mechanisms affecting bone formation and remodeling are affected by the implant 

design, alloplastic surface characteristics, altered biomechanical environment, host status, 

surgical technique and loading conditions [2,3]. As such, the exact mechanisms underlying 

osseointegration and the causes of its failure remain incompletely defined. With expanding 

prescription of endosseous implants to include scenarios presenting higher risk local and 

systemic factors, there is a growing need for improving clinical control of the implant-bone 

interface and osseointegration.

Peri-implant bone formation occurs reproducibly by the proscribed surgical disruption of 

bone tissue and the insertion of an alloplastic surface into the bone and bone marrow. 

Inflammation is inherent to this process. While earlier studies focused on bone formation 

and the role of surface-adherent osteoprogenitor cells, continued investigations have 

expanded to include the role of osteoclasts in ongoing resorptive processes. After implant 

placement, the bone-implant interface is instantly filled with a fibrin coagulum enriched 

with growth factors and cytokines and containing platelets, erythrocytes, neutrophils, 

macrophages and debris of cortical and trabecular bone. These represent cells of the innate 

immune system and bring to light the previously overlooked roles of the immune cells in 

the control of interfacial bone accrual (net result of bone formation and bone resorption) and 

their interplay with bone forming and bone resorbing cells that define the osseous interface.

As originally conceived, the function of immune cells in bone biology was related to 

osteoclastogenesis [4], but many studies of bone formation and bone regeneration have 

revealed important regulatory functions of immune cells on the regulation of osteoblast 

function and bone regeneration [5–9]. The dental implant surface character (bulk chemistry, 

topography, hydrophilicity) alters the adherent cells phenotypes, and the interaction of 

immune cells with the endosseous implant surface can alter immune cell function, further 

underscoring the importance of osteoimmunology in the process of osseointegration.

Understanding how implant surface characteristics inform adherent immune cell function is 

a central aspect of understanding the process of bone accrual that results in osseointegration. 

This review summarizes what is known regarding immune cell–implant surface interactions 

and places these events in the context of bone regeneration and osseointegration. This effort 

demonstrates the central role of osteoimmunology in the process of osseointegration and 

explores how the regulation of immune cell function at the implant-bone interface may be 

used to control/manipulate clinical outcomes.

2. Osseointegration

2.1. Osseointegration defined as functional, histologic and molecular osseous processes

The central success for bone anchoring of titanium endosseous implants emerged from 

observations of the functional immobility of the implant being associated with the absence 

of infection, pain or other signs of failure. Both Branemark and Schroeder identified 

bone anchorage or ankylosis as a key to successful endosseous implant therapy [1,10]. In 

1976, Kydd and Daly demonstrated that endosseous conical titanium alloy implants were 

immobile (resisted rotation) five months following surgery [11]. Branemark’s findings and 
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the ongoing development of ground section histology [12,13] resulted in associating this 

success with the formation of a ‘direct’ bone-to-implant interface lacking an intervening 

fibrous connective tissue ‘scar’. Thereafter, immobility of the endosseous implant was the 

central clinical determinant of functional success. Sennerby and Thomsen demonstrated 

that experimental inflammation resulted in impairment of osseointegration and was an early 

indication that inflammation was an important target for clinical endosseous implant success 

[14]. The conceptual evolution of osseointegration over time is depicted in Fig. 1.

2.2. Molecular and cellular processes of osseointegration

The complete molecular mechanism(s) of osseointegration and the cellular interactions that 

occur on the implant-bone interface and the surrounding tissue remain to be fully elucidated. 

These processes have been studied in human and animal models, and attempts have 

been made to correlate the molecular events and phenotypic observations with histologic 

representation of bone formation at the implant surface [15–26]. A number of key biological 

processes including inflammation, neurogenesis, angiogenesis, extracellular matrix (ECM) 

deposition and osteogenesis, as well as the associated signaling pathways are temporally 

regulated during osseointegration [15–17,27]. Gene expression events in the process of bone 

formation are recapitulated at the developing bone-implant interface [17,25].

Prominent up-regulation of neurogenesis related genes including those associated with 

neural tube, axon formation and neural signal transduction have been reported during 

osseointegration in vivo [17]. Both neurofilament-positive fibers and nerve bundles have 

been observed near the titanium implant surface [28,29]. These findings suggest that 

neurogenic tissues are regenerated during endosseous implant osseointegration. In addition, 

nervous system-related genes may play an active role during bone regeneration. As an 

example, neuropeptide Y, a nervous system-related gene, has been shown to modulate 

osteoblast function in vivo [30,31]. Neurotrophic factors such as BDNF produced by 

peripheral nerve injury can promote osteogenesis in vivo [32]. NGF that is upregulated 

in macrophages and mesenchymal stem cells (MSCs) during osseous regeneration may be a 

therapeutic target for enhanced osseointegration [33]. More general studies of regeneration 

underscore the role of innervation in regeneration. While studies of bone regeneration 

implicate neurogenesis in successful repair, the complex interactions of MSCs, nerve cells 

and immune cells remain to be elucidated [34].

Peri-implant angiogenesis is induced by vascular endothelial growth factor (VEGF), basic 

fibroblast growth factor, angiopoietin 1, platelet derived growth factor (PDGF), insulin-

like growth factor (IGF), and hypoxia-inducible transcription factor expressed by implant 

adherent cells [26,35]. Angiogenesis is modulated in implant surface-topography dependent 

ways [36] and VEGF signaling has been defined in vivo to promote bone formation at 

the implant surface [37]. There is a general understanding of VEGF’s role in bone repair 

[38] and more complex regulation is suggested. For example, osteoprogenitor cell-secreted 

VEGF recruited both MSCs and macrophages to bone defects that ultimately modulated 

proinflammatory cytokine expression and increased bone formation in vivo [39]. These 

types of indirect effects (cell-cell interactions) on osseointegration may be influenced by 
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implant surface topography and further control osteogenic and inflammatory events in 

promoting osseointegration.

Osteoinduction and differentiation of stem cells into osteoprogenitor cells on the implant 

surface are regulated by key transcriptional regulators including Runt-related transcription 

factor 2 (Runx2) and Osterix [40]. Osteogenesis on the implant surface is indicated by the 

expression of alkaline phosphatase (ALP), integrin-binding sialoprotein (BSP), osteopontin 

(OPN), osteonectin (ON), osteocalcin (OC). The presence of these bone components at 

the interface was affirmed histologically [41]. The process is affected by several growth 

and differentiation factors including those of the bone morphogenic protein (BMP) and 

transforming growth factor (TGF) family.

Extracellular matrix components expressed at the forming interface comprise type 1 

collagen, vinculin, fibronectin, and various proteoglycans including Decorin and Biglycan 

[21,26,42,43]. Immunomodulatory control of ECM formation is well defined in terms of 

biologic processes [44]. Examples of inflammatory cell or inflammatory mediator changes 

in ECM production affecting bone repair in vivo exist, and this occurs at the local level 

and by influence of systemic inflammation [45,46]. How immune cells and inflammatory 

mediators are temporally regulated at the implant surface to influence these first impactful 

stages of ECM formation during osseointegration have not been mechanistically explored. 

The potential complexity of this regulatory relationship is further influenced by our growing 

knowledge of the impact of ECM physical properties on immune cells (and MSCs) 

function [47]. The implant surface represents an infinitely stiff surface, yet how topography 

influences the stiffness of the superimposed forming and immature bone matrix and its 

downstream effects on cell function are not known.

Ultimately, inflammation-mediated changes in ECM production occur through 

transcriptional regulation as well as post-transcriptional modification involving cross-

linking and protease activity. Prominent changes in immunomodulatory gene expression 

within ECM forming MSCs include both the NF-κB and NLRP3 pathways. The early 

immunoinflammatory changes appear to be regulated via the I-κB kinase/NF-κB cascade, 

whereas the later osteogenesis-related mechanisms are regulated by TGF-β/BMP, Notch and 

Wnt signaling as shown in a transcriptional profiling of osseointegration in humans [17]. 

Multiple studies have demonstrated that the expression of these factors and proteins may be 

altered by implant surface topography as discussed below.

2.3. Effect of implant topography on osteogenic molecular and cellular processes

Creating a favorable extracellular microenvironment to trigger the migration and adhesion 

of MSCs on the implant surface and the subsequent differentiation of MSCs into 

osteoblasts is important. How MSCs and osteoprogenitor cells perceive the surrounding 

microenvironmental cues has been an area of active research [48–60]. The endosseous 

implant surface is an essential environmental factor affecting this phenomenon.

Specific surface topographic dimensional parameters have been defined and the relative 

effects of smooth (0.0–0.4 μm S(a)), minimally rough (0.5–1.0 μm S(a)), moderately rough 

(1.0–2.0 μm S(a)) and rough (>20.0 μm S(a)) surface topographies on the resulting bone 
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to implant contact were identified [61–63]. In addition, different nanomodifications have 

been applied to implant surfaces, either directly on machined surfaces or by overlaying 

nanofeatures on microstructured topographies. The specific dimension and attributes of 

the nano-structures promote different outcomes compared to smooth or micron-scale 

surface modifications both in vitro and in vivo [64,65]. The current literature supports 

the hypothesis that titanium surfaces which mimic the physical properties of osteoclast 

resorption pits created during normal bone remodeling, such as roughness and complex 

hierarchical submicron and nanoscale structures, appear more effective in supporting 

osteoblast differentiation in vitro and osteogenesis in vivo [64–67] (Fig. 2).

Multiple levels of data indicate that implant surface topography directly modulates 

osseointegration by influencing the osteoinductive and osteogenic activities of implant 

adherent MSCs or osteoprogenitor cells [68–74]. The physiological, cellular or molecular 

events – i.e. the mechanisms – acting at implants with altered surface topography to 

promote this surface-directed increase in bone formation and its accrual were elucidated 

by Boyan and coworkers (reviewed in Refs. [75,76]). It was demonstrated that osteogenic 

proteins and osteoinductive cytokine production in implant adherent cells, osteoblastic and 

osteoprogenitor cells (most notably MSCs), increase with respect to micron scale surface 

topography modification in vitro [24,75,76]. Other in vitro and in vivo studies that focused 

on the impact of enhanced surface topography on osteoinductive transcription factors 

demonstrated that it increases the expression and activity of both Runx2 and Osterix within 

implant adherent cells [40,77,78]. Topographic enhancement of the titanium surface also 

accentuates BMP mediated signaling in implant adherent osteoblastic cells in vitro [79,80].

Many microRNAs influence these key osteoinductive pathways in implant-adherent or 

adjacent cells, and implant surface character has been shown to regulate these microRNAs 

[81]. Exosomes have microRNA cargo [82–87], and are secreted by implant adherent cells 

as a communication mechanism. Micro/nano-textured hierarchical titanium topography was 

shown to induce osteogenesis in vitro and improve osseointegration in vivo by promoting 

osteoinductive exosome biogenesis and secretion in MSCs [88]. In addition, titanium surface 

characteristics influence DNA damage and the DNA repair pathway, including epigenetic 

factors, in MSCs and osteoblasts both in vitro and in vivo [89, 90]. The superior osteogenic 

potential of the rough surfaces was attributed to their different epigenetic landscape, and 

specifically the DNA methylation [90–92].

Further in vitro and in vivo studies have investigated the various mechanisms of cellular and 

molecular responses to micro/nano topographies of titanium implants [40,75–77,93–111]. 

The molecular processes instigated by topography of implant adherent cells is of current 

interest. These efforts were extensively reviewed by Thalji et al. [26]. Fig. 3 illustrates the 

osteoinductive/osteogenic signaling pathways potentially activated within osteoprogenitor 

cells adherent to titanium surfaces of diverse roughness. The descriptive studies clearly 

define the effect of topography on adherent cell function and more recent RNAseq [112] 

and single-cell seq [113] studies have expanded this understanding of osteogenesis and can 

be more fully applied to understanding of topography effects on tissue responses leading 

to osseointegration or its failure. Support for this approach has been suggested by recent 
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studies of osteoimmunology in periodontitis where data has informed spatiotemporal gene 

expression, cell population and cell-to-cell interactions [114].

Human experiments performed at the level of gene expression have arrived at similar 

and complementary conclusion that micro- and nanotopography enhance osteoinductive/

osteogenic gene expression in implant adherent cells [16,17,115]. This underscores earlier 

observations from human histological studies demonstrating that surface topographic 

modification (eg. moderately rough surface) effectively and reproducibly increase the bone 

to implant contact or osseointegration [116–121]. Clinical data also strongly implicate 

enhanced topography in the increased bone-to-implant contact and the correlated diminished 

risk of implant failure [122–124]. This body of work encouraged the present-day use of 

moderately rough endosseous implants in clinical implant dentistry.

3. Alveolar bone and the peri-implant cellular environment

The dental peri-implant microenvironment is unique because it presents an endosseous 

implant through mucosa to the oral environment. Dental implants are placed in the bone 

marrow of alveolar bone. The immediate interfacial tissues are often more bone marrow than 

mineralized bone and bone lining cells. The existence of alveolar bone-specific pathologies 

and the distinctive pattern of systemic diseases in maxilla-mandibular bones compared 

to other bones imply that they have a different cellular, physiological and pathological 

response, and bone homeostatic mechanism. Rapid remodeling, higher metabolism, occlusal 

stress stimulation, exposure to poly-microbial oral biofilm and microbiome, and tooth-

derived inflammatory responses exist only in alveolar bones.

Recent flow cytometry and high-throughput single-cell RNA sequencing studies have 

provided a comprehensive landscape of alveolar bone immunomodulatory environment 

[126–128]. Transcriptional profiling of mandibular bone marrow-derived cells revealed 

19 different cell subpopulations [127], affirming that alveolar bone presents a unique 

environment for bone regeneration, remodeling and repair [129]. Both precursor and 

immune cells account for the majority of cell components in the alveolar bone [128]. Stem/

progenitor cells from maxillary and mandibular bones proliferate at more rapid rates than 

those from axial skeletal bones [130]. In addition, alveolar bone cells are less differentiated 

within the osteogenic lineage, and have lower osteoclastogenic potential [127,131]. Bone 

and periosteum from tissues derived from maxilla and mandible retain many properties 

of the neural crest (their origin) allowing to produce a faster, more extensive, and more 

physiologically relevant bone repair than similar bone tissues derived from the mesoderm 

(i.e. long bones) [132]. Neural crest-derived stromal cells in alveolar bones may preserve 

different stromal microenvironment for putative HSCs [126]. This local control of HSC 

mobilization raises the possibility that an alloplastic surface may influence HSC function.

These observations suggest a unique environment involving immune cells that function in 

defining the tissue/implant interface. Emerging data shed light on the “site diversity” of 

bone tissue and the distinct osteogenic and immunogenic properties of the alveolar bone that 

may influence the process of dental implant osseointegration. Animal models that employ 

alveolar/oral models of osseointegration (such as [133–135]) may shed additional light on 
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the mechanisms that underscore both the high initial success rates observed clinically as well 

as the challenges presented by exposing the osseointegrated implant to the oral environment. 

Mouse models may enable mechanistic studies that extend our understanding the cell and 

molecular mechanisms influencing dental implant success and failure.

4. Immunomodulation as an Ally in osseointegration

Arron and Choi coined the term “osteoimmunology” to describe the complex regulatory 

interactions between bone-remodeling cells and immune cells [4]. There is a bidirectional 

and dynamic reciprocal communication between the bone and immune cells that extends 

beyond the well-defined cross-talk in osteoblast-osteoclast signaling involving receptor 

activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG) [136]. Immune cells 

express factors that modulate bone cell development and function, and bone cells provide 

vital signals to the hematopoietic and immune cells (reviewed in Refs. [136–145]) (Fig. 4).

The study of osteoimmunology and immunomodulation can inform our understanding of 

bone formation, maintenance and resorption at endosseous implant surfaces, particularly 

with respect to implant surface character and the resulting osteoimmune environment 

surrounding the implant. Implant surface character may guide immune and bone cell 

functions and their interaction to influence osteogenesis and bone repair, osteoclastogenesis, 

and immune responses that favor improved bone accrual at the endosseous implant surface. 

A deeper knowledge and more complete mechanistic understanding of the crosstalk between 

the bone and immune systems is required.

4.1. Immunomodulation is active during osseointegration

Following implant placement, the implant surface opposes the bone marrow (myeloid) 

tissues. Significantly, a ‘myelointegration’ is observed and indicated by a process of repair 

and repopulation of the disrupted bone marrow structure and its rich network of blood 

sinusoids with a morphologically normal mixture of parenchymal cells. The long-term 

presence of titanium implant in bone marrow does not disturb the microenvironmental 

organization of cells. The regenerated bone marrow cells coexist with the intramedullary 

titanium surface for an extended period of time [146]. More detailed studies of the 

medullary compartment response to endosseous implant placement may provide important 

insights into the medullary cells’ influence of bone formation at the implant surface.

Much of the osseointegration process revolves around MSCs and bone-forming osteoblasts 

that contribute to new bone formation. Cytokines and local immune cell factors are 

regulators of osteoblast formation and function [5–9]. In addition to the role of MSCs 

and bone forming osteoblasts, the development of classical modulators of inflammatory 

processes and dynamic inflammatory-related gene reprogramming has been reported to be a 

prerequisite for the differentiation of osteoprogenitor cells [147]. This is a complex process 

as illustrated by the multitude of immune-derived factors that promote or hinder osteoclast 

differentiation and activity (Fig. 5).

Inflammation after implant placement is indispensable and irreplaceable in the process 

of bone formation and osseointegration. It must be controlled by moving from pro-
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inflammatory to regenerative immune cell functions that empower osseointegration 

and not fibrous integration [148]. Growing evidence demonstrates that immune cells, 

their interaction with bone forming cells and the surface topographic effect influence 

osseointegration both in vitro and in vivo [149–154]. This is, of course, complicated by 

the oral environment and bacterial activation of the innate immune system. The dynamics of 

immune response and adherent cell populations on the titanium implant surface change over 

time and are influenced by implant surface characteristics, which will be discussed in the 

following sections.

4.2. Evidence of immune cell influence during osseointegration

The healing cascade after implant placement in bone begins with hematoma formation. The 

interaction between surface characteristics and serum molecules and proteins initiate many 

responses at the implant surface [155,156], possibly affecting later cellular functions that 

are relatively underexplored biophysically. The affinity for and conformation of adsorbed 

proteins, determined by surface characteristics, provide recognition sites for platelets and 

other cells to interact with the implant surface. Newer technologies such as RNAseq [112] 

and Single-Cell seq [113], cell flow cytometry [157], and advances in proteomics/spatial 

proteomics (e.g. Refs. [158,159]) offer the promise of an enhanced and detailed description 

of the healing cascade following implant placement. Table 1 exemplifies how titanium 

surface micro/nano topography can affect different immune system components.

4.2.1. The role of the complement system in immunomodulation of 
osseointegration—Complement is a major serum component that is generally 

proinflammatory and drives the first stages of wound healing. Transgenic mice lacking 

complement C3 display reduced inflammation and accelerated wound healing [160]. 

The complement system is activated following bone wounding and targets osteoblastic 

cells [161]. Products of the complement system are chemo-attractants for neutrophils, 

macrophages, and monocytes [162].

4.2.1.1. Effect of titanium surface characteristics on the complement 
system.: Titanium surface modifications influence complement activation and complement-

activating titanium surfaces induced greater inflammation and lower bone formation in 
vivo [163]. The degree of osseointegration has been positively correlated to significantly 

higher C5aR1 levels and decreased C3 levels around the titanium implant [164]. The 

surface characteristics of titanium implants influence protein adhesion directly. In an in 
vitro proteomic study, 218 proteins were identified on smooth and blasted acid-etched 

titanium surfaces after incubation with human serum, 30 of which were associated with 

bone metabolism. Apo E, antithrombin and protein C adsorbed mostly onto blasted and acid-

etched Titanium, whereas C3 and immunoglobulins were found predominantly on smooth 

Titanium surfaces. Increased surface hydrophilicity significantly decreased complement 

adsorption [165]. Annealed and non-annealed titanium surfaces possess different protein 

adsorption characteristics and differ in their interactions with humoral cascade systems, 

complement and intrinsic pathway of coagulation in vitro. A lowered IgG mediated 

complement activity on annealed titanium surface was shown [166]. Enhanced surface 

topography and hydrophilicity influence complement activation that may alter bone-to-
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implant contact. The possible direct (acting on osteoprogenitors (e.g. Refs. [167,168])) or 

indirect (acting on immune cells or endothelial cells (e.g. Ref. [169])) mechanism(s) of 

action remain to be fully elucidated. Questions such as early effects of surface topography 

on complement’s role in confronting oral bacterial contamination remain to be answered.

4.2.2. The role of platelets in immunomodulation of osseointegration—Among 

the first cells adhering to endosseous implants are platelets. Platelets adhere within the 

implant-adherent fibrin matrix that serves as a scaffold for migration (osteoconduction), 

proliferation, and differentiation of leukocytes and mesenchymal cells at the peri-implant 

site [170–172]. Platelets play a role in the regulation of progenitor and leukocyte function 

in response to titanium implants in vivo [173] by releasing factors including TGF-β, 

IGF-1, VEGF and PDGF that are critical to establishing an osseous interface at the 

implant surface [172,174, 175]. VEGF and PDGF contribute to angiogenesis that occurs 

within the peri-implant gap during the first 7 days following implantation [174]. Platelets 

support a vascular-rich granulation tissue that contributes to MSC recruitment and residence, 

providing foci for osteogenesis [170–172]. Implant surface nanotopography enhances 

the development of adjacent blood vessels in vivo, supporting the associated contact 

osteogenesis [176,177]. Both surface topography and surface chemistry appear to influence 

integrin mediated platelet attachment and activation in vitro [174]. The influence of implant 

surface topography on platelet activation and cytokine release demonstrates one of several 

mechanisms acting early in osseointegration. How this affects or is affected by altered 

inflammatory environments merits experimental consideration.

4.2.2.1. Effect of titanium surface characteristics on platelets.: Smooth machined 

titanium surfaces show higher adhesion of platelets but reduced activation while the rougher 

surfaces demonstrate reduced platelet adhesion but near 100% platelet degranulation with 

the release of factors that promote bone formation at the implant surface. Increased implant 

surface topography and hydrophilicity both promote platelet activation and cytokine release 

in vitro and in vivo [172,174]. Hyperhydrophilic micro-rough titanium surfaces increase 

platelet activation and blood clot formation compared to untreated micro-rough titanium 

surfaces in vitro [178].

Reducing adhesion and denaturation of fibrin/fibrinogen, increasing platelet activation/

degranulation, and decreasing thrombus formation may favor enhanced osseointegration. 

Surface modification strategies to improve titanium hemocompatibility and improve blood–

implant surface interactions have been extensively reviewed by Manivasagam et al. [179].

4.2.3. The role of neutrophils in immunomodulation of osseointegration—
Neutrophils are abundant in alveolar bone marrow [127,128]. Neutrophils are rapidly 

mobilized to the implant surface following implantation in the early inflammatory stage, 

and are key in recruiting macrophages and other immune cells to the injury site 

[180]. In addition to their phagocytic activity, neutrophils also contribute to modulating 

immune responses by other cells. Neutrophils play a role in immune regulation to 

recruit macrophages through IL-1β, CXCL1–3, TNF-α, and myeloperoxidase -generated 

ROS [181]. Neutrophils exhibit pro- and anti-inflammatory phenotypes, although these 
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phenotypes are not as well-characterized as those of macrophages [182]. The crosstalk 

between neutrophils and implant adherent cells is illustrated in Fig. 6.

4.2.3.1. Effect of titanium surface characteristics on neutrophils.: Neutrophils have 

only recently been considered as mediators of osseointegration. They are sensitive to 

different titanium surface properties and exhibit differential activation in response to 

alternative surface cues (Fig. 6). Aside from their importance in clearing the implant 

surface of foreign materials, neutrophils can direct next phases in immunomodulation 

by influencing macrophage polarization. This process is implant-surface specific; implant 

surface characteristics can modulate the attachment and activation of neutrophils and 

subsequent macrophage polarization by neutrophils in vitro [151,152,183,184]

Conditioned medium from smooth titanium-adherent neutrophils enhanced pro-

inflammatory macrophage polarization compared to that from rough titanium-adherent 

neutrophils [151]. The initial inflammatory response to rough hydrophobic titanium implants 

was shown to be characterized by neutrophil extracellular traps (NETs) formation (NETosis) 

in vitro [185]. NETs are extracellular web-like structures composed of neutrophil proteins 

and DNA; they trap and kill microorganisms. When uncontrolled, NETs are affiliated with 

inflammatory disease [186]. NET release on surfaces regulates thrombosis, fibrosis, and 

tissue integration. NETs may enhance thrombin generation and coagulation on implants 

[187]. Hydrophilicity on titanium appears to decrease NETosis occurring more readily on 

hydrophobic surfaces. Neutrophils secrete higher levels of pro-inflammatory cytokines and 

enzymes on smooth or rough hydrophobic surfaces compared to those on rough-hydrophilic 

surfaces. This behavior was associated with decreased macrophage inflammatory activation 

in co-culture and was affirmed when NET formation was inhibited pharmacologically [151]. 

These studies demonstrate the intricate interactions of immune cells active at the implant 

surface to modulate subsequent bone formation events. Whether or not neutrophils are 

therapeutic targets for either local or systemic control of osseointegration remains to be 

determined.

Long-term animal study of the interactions of circulating neutrophils with titanium implants 

revealed no systemic inflammatory response, and no deleterious neutrophil activity neither 

in the inflammatory phase of the repair process nor after 4- and 10-months evaluation after 

implant insertion [173]. The early topography-dependent function of neutrophils contributes 

to immunomodulatory control of interfacial osteogenesis.

4.2.4. The role of dendritic cells in immunomodulation of osseointegration—
Dendritic cells (DCs) are uncommon among the leukocytes in the peri-implant compartment. 

DCs are antigen presenting cells and a type of phagocyte that have similar roles in healing as 

macrophages, promoting early inflammation and resolving late inflammation [188]. Notably, 

DC-deficient animals have no skeletal defects [189]. However, immature DCs may benefit 

osseointegration by secreting high levels of anti-inflammatory cytokine IL-10 and TGF-β 
[153,190,191]. Interestingly, DCs can develop into tolerogenic DCs that protect against 

titanium particle-induced inflammatory processes by releasing anti-inflammatory cytokines 

such as IL-10 [192]. Titanium particle effects are clearly mediated by immune cells, and 

impact both the immediate and longer-term effects on osseointegration (reviewed in Ref. 
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[193]). These relatively rare cells may play a role in long-term immunomodulatory control 

of bone-implant interface [194].

4.2.4.1. Effect of titanium surface characteristics on dendritic cells.: Changes in 

surface roughness and hydrophilicity induce surface specific response in DCs. A hydrophilic 

rough titanium surface induced an immature or anti-inflammatory phenotype in DCs 

in vitro [190,191], potentially supporting osteoblast differentiation by suppressing local 

inflammation [190]. In contrast, both smooth and rough hydrophobic titanium surfaces 

induce pro-inflammatory DC phenotypes in vitro [153, 190] which reduce osteoblastic 

differentiation via the P38 MAPK pathway [153]. Further exploration of how surface 

topography influences DCs control of interfacial bone formation is required.

4.2.5. The role of macrophages in osseointegration—Macrophage interactions 

with osteoprogenitor cells during bone formation is well defined [145]. These interactions 

also have been observed among implant adherent cells in vivo [154]. It is now well accepted 

that macrophages play a role in modulating the cellular responses at endosseous titanium 

implant surfaces. Macrophages are relatively abundant in alveolar bone, are involved in 

all stages of bone repair and homeostasis, and extensively interact with progenitor and 

stem cells [128,195]. OsteoMacs are resident macrophages located along the bone surface 

in close contact to mature osteoblasts at the site of bone modeling and are necessary 

for the mineralization of bone matrix by osteoblasts [196]. OsteoMacs are present in all 

phases of the intramembranous ossification [197] indicating their specific role in osteoblast 

function. Early osseointegration is impaired when macrophages are depleted from mice 

[149], showing that macrophages play a role in bone regeneration around endosseous 

implants.

Macrophages can rapidly change their function in response to environmental signals. 

Macrophage plasticity and polarization direct the inflammatory response and determine their 

functionality during the different stages of inflammation. This plasticity is now known to 

be central to the osseointegration process. At the implant/tissue interfaces, the macrophage 

demonstrates dynamic functions and pivots from protective, pro-inflammatory function to 

anti-inflammatory and wound healing roles that promote osseointegration [150] (Fig. 7). 

However, the comprehensive role of the dynamics of macrophage plasticity may not be fully 

mirrored by the M1/M2 subpopulations paradigm, and factors that drive them towards either 

a regenerative or pro-fibrotic phenotype are incompletely known [198,199]. Macrophages 

adherent to the dental implant surface, their plasticity and phenotype, and the impact of 

these cells on osseointegration is the focus of current intensive investigation in vitro and in 
vivo.

4.2.5.1. The role of M1 macrophages in osseointegration.: Macrophages adopt a 

classically activated (M1 or pro-inflammatory) state in their early interactions with 

implanted titanium surfaces. Interestingly, macrophages derived from circulating monocytes 

possess proinflammatory role in comparison to macrophages that are tissue resident 

[200,201], implying a role for monocytic-derived cells in initiating the inflammation around 

implants. They release pro-inflammatory cytokines that aid in directing the phagocytotic 

clearing of the surface and removal of dying neutrophils, dead bone tissue and necrotic 
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debris by releasing proteolytic enzymes and reactive oxygen species. TNF-α, IFN-γ, IL-1β 
and IL-6 secreted by M1 macrophages stimulate the infiltrating and local T cells [202]. 

If unchecked, this pro-inflammatory response to implanted materials would impair the 

osseointegration process.

M1 macrophages also produce osteoinductive factors. Most prominently, Oncostatin M 

(OSM) secreted by M1 macrophages is an osteogenic cytokine and may have a regulatory 

role predominantly in the early phase of peri-implant bone regeneration by contributing 

to MSC recruitment, proliferation and differentiation, angiogenesis and matrix deposition 

[203–208]. OSM receptors are highly expressed in alveolar bone MSCs and osteoblasts 

[128]. In addition, OSM stimulates osteoblasts to secrete RANKL in vitro [209], promoting 

osteoclastogenesis and bone remodeling (Fig. 7). M1 macrophages also recruit MSCs by 

secreting the highest levels of chemo attractants, CCL2 and VEGF [150]. These underscore 

the potential significance of M1 macrophages in the control of interfacial osteogenesis 

through OSM. OSM is a prominent osteogenic factor produced by these cells and is 

now widely implicated in activating MSC osteogenesis. How this is temporally linked 

to subsequent M2 macrophage activities or whether it is the predominant osteogenic 

factor produced over the period of macrophage function in osteogenesis requires further 

investigation.

4.2.5.2. The role of M2 macrophages in osseointegration.: Temporal regulation and 

orchestrated transition of a surface-adherent population rich in M1 macrophages to one 

rich in M2 macrophages is required to move healing from the requisite inflammatory to 

regenerative phases of bone healing in the regulation of osseointegration. M2 macrophages 

improve interfacial osteogenesis by their production of cytokines, chemokines and growth 

factors, such as BMP-2, TGFβ, PDGF, and IL-10, leading to recruitment and differentiation 

of osteoblasts on the implant surface [150,210–213] (Fig. 7). An early demonstration 

of BMP-2 expression by cultured and titanium adherent macrophages suggested that 

macrophages may contribute surface-specific osteoinductive signals during bone formation 

at implanted alloplastic surfaces [214,215]. Later, further evidence of secretion of osteogenic 

factors by titanium adherent macrophages and their specific subtypes was demonstrated both 

in vitro and in vivo [150,210,213–221].

In addition, these alternatively-activated macrophages modify extracellular matrix (ECM) 

turnover by regulating the balance of matrix metalloproteinases (MMPs) and their tissue 

inhibitors [222], inhibiting osteoclastogenesis [211,223] and promoting angiogenesis [224]. 

A close crosstalk between macrophages and reestablishing vessel network during bone 

repair also has been shown [225]. Stimulation of angiogenesis is a synergistic effect 

of M1 and M2 macrophages with secretion of VEGF and OSM by M1 and PDGF 

by M2 macrophages [128,150,226, 227] (Fig. 7). Furthermore, an angiogenic M2-like 

macrophage subtype develops from M1 macrophages under the in vitro stimulation with 

Toll-like receptor (TLR) agonists and adenosine [228]. A prolonged pro-inflammatory 

microenvironment leads to a persistence of anti-regenerative cells and an inhibition of 

osteoblastogenesis with simultaneous stimulation of osteoclastogenesis.
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The increased M2 macrophage number and higher M2/M1 macrophage phenotype balance 

was correlated to the proximity and volume of bone growth at the titanium implant 

vicinity after 10 days in vivo [229]. A higher M2/M1 population ratio may reflect the 

early recruitment, survival and osteogenic functions of the cell populations at the implant 

interface that contribute to successful osseointegration. How topography controls the M2/M1 

population may be an important factor controlling the process of interfacial bone formation 

at implant surfaces.

4.2.5.3. Effect of titanium surface characteristics on macrophages.: There exists a 

correlation between the early macrophage response to titanium surface topography and 

the outcome of bone remodeling. The initial M1 response is independent of surface 

topography and spatial confinement [230]. Therefore, the transition to pro-healing/anti-

inflammatory state appears to be implant surface topography-dependent. As these cells 

produce proinflammatory cytokines as well as the osteogenic factor OSM, how the duration 

of M1 residence upon an implant surface is influenced by surface topography may be an 

essential aspect of immunomodulation in osseointegration.

It is known that physical and mechanical factors co-regulate macrophage attachment, 

plasticity and phagocytosis [231–236], and tailoring biomaterials to modulate macrophage 

fate and phenotype is of significant interest [141,180,237–240]. Titanium implant surface 

characteristics including topography and wettability are known to influence macrophage 

attachment, activity and phenotype [104,154,157, 213,215,217,219,241–249]. An implant 

surface presents a relatively (infinitely) rigid surface. In general, the polarization state 

of macrophages is closely related to the physical nature of their adherent substrate. 

Topographically enhanced surface-mediated elongation is associated with an M2-like 

phenotype and enhances the effects of M2-inducing cytokines as well [235]. This sheds light 

on how titanium surface topography-dependent changes in macrophage phenotype promotes 

osseointegration, yet needs further mechanistic investigation. Previous in vitro and in vivo 
studies also highlighted cytoskeleton-related mechano-transduction playing a pivotal role in 

the topography-induced osteoinductivity, polarization and immunomodulatory properties of 

macrophages on titanium [177,213,215,217,219]. However, how the cytoskeleton tension 

regulates macrophage polarization still remains largely unknown.

4.2.5.3.1. The role of titanium surface nanotopography in macrophage polarization.: 
More recent investigations have highlighted the impact of surface topography on adherent 

macrophage function in osseointegration. Micro-roughness mediates both pro- and anti-

inflammatory macrophage polarization [241,242,244,245,247,250–252]. Anti-inflammatory 

macrophage polarization (M2-like) was enhanced over a small range of micro-roughness 

(Ra = 0.51–1.36 μm; Sa = 0.66–2.91 μm), while roughness outside of the range upregulated 

a mixture of pro- and anti-inflammatory markers [245]. Micro-rough titanium surface was 

shown to increase BMP-2 expression and secretion in macrophages [215,216].

Nanotextured titanium surfaces can promote anti-inflammatory rather than pro-inflammatory 

macrophage phenotypes [175,177,213, 217,221,247,248,253–257]. Titanium surfaces with 

100 nm diameter nanotubes favored an M1 macrophage phenotype, while those with 30 nm 

diameter favored M2 polarization, increased MSCs osteoblastic differentiation in co-culture 
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and induced better osseointegration in vivo. Osseointegration of 100 nm nanotube surfaces 

significantly improved in mice in which M1 macrophages were restrained [254]. FAK-

MAPKs signaling (JNK and Erk1/2) were involved in macrophages M1 polarization induced 

by this surface [258], while attenuation of macrophage inflammatory activity occurred with 

the surface-specific inhibition of MAPK and NF-κB pathways [255]. While nanotubes of 

varying diameter represent one type of nanoscale surface that can be nonlinearly applied to 

clinical dental implants, other discrete nanofeatures have not been broadly explored.

A titanium hierarchical nano surface (nanoscale features superimposed on micro scale 

roughness) significantly upregulated the gene expression of M2 markers and BMP-2 in 

macrophages as well as specific receptors of BMP-2 such as BMPR2 and BMPR1A in 

MSCs leading to their enhanced osteogenic differentiation in vitro [217]. Micro/sub-micro 

hierarchical titanium surfaces promoted an M2 phenotype and inhibited M1 macrophage-

mediated inflammatory reactions via suppression of the TLR2/NF-κB signaling pathway 

and promoted osteogenic differentiation of MSCs by modulating macrophage polarization 

in vitro, all of which translated to enhancing early osseointegration in rats [256]. A micro-

rough titanium surface with superimposed nano-flakes and nano-wires structures (micro/

nano) polarized macrophages to M2 phenotype and increased BMP-2, BMP-6 and TGF-β 
expression in M2 macrophages compared to the rough surface. This improved osteoblastic 

differentiation on the micro/nano surface [221]. Titanium surfaces with nanoscale (90 nm) 

honeycomb-like TiO2 structures reinforced the M2 polarization of macrophages through 

the activation of the RhoA/Rho–associated protein kinase signaling pathway and induced 

subsequent BMP-2 expression, again suggesting the role of cytoskeletal signaling and 

cell shape effects on macrophage polarization. The surface adherent population favorably 

triggered osteogenic differentiation of MSCs in vitro and improved osseointegration in 
vivo [213]. A rough titanium surface induced increased OSM expression in adherent 

monocytes and enhanced MSC differentiation in co-culture [259]. Another study did not find 

significant differences in OSM mRNA and cytokine levels from macrophages cultured on 

smooth and honeycomb-like TiO2 nano-structures [213]. Here, a brief focus was created on 

macrophage-osteoblast functions and M1/M2 ratios with evidence that both M1 (via OSM) 

and M2 macrophages (via BMP-2, TGF-β etc.) promote osteoinduction and osteoblast 

function in bone repair.

A micro/nano titanium topography promoted osteogenic differentiation in vitro by induction 

of exosomes that mediate macrophage-MSC osteogenic crosstalk [260], adding to the 

complexity of paracrine regulation of osteogenesis that is influenced by the implant surface 

topography. The impact of implant surface topography on monocyte paracrine control of 

osteoinduction requires further investigation of soluble, cell-to-cell, and cell-ECM/surface 

interactions.

4.2.5.3.2. The role of titanium surface hydrophilicity in macrophage polarization.: 
Surface wettability or hydrophilicity is a second significant modulator of cell responses 

and bone formation at implant surfaces, and it modulates the anti-inflammatory 

activation of macrophages. The combination of roughness and hydrophilicity to suppress 

proinflammatory markers has been repeatedly shown to enhance the anti-inflammatory 

macrophage phenotype [154,241,242,251,252, 261–263]. A hydrophilic nanostructured 

Shirazi et al. Page 14

Biomaterials. Author manuscript; available in PMC 2023 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



titanium surface successfully compensated for the compromised M2 macrophage function 

of Type 2 diabetic rats by attenuating the pro-inflammatory response and promoting M2 

macrophage activity, that favored osseous healing [263].

In a mouse study, an initial increase in local and systemic proinflammatory markers 

and elevated monocyte/macrophage markers was observed one day following placement 

of rough hydrophilic implants compared to hydrophobic implants with the same surface 

topography [154]. Differing levels of cytokines were measured in circulating plasma based 

on implant surface properties. An increased level of pro-inflammatory IL12p40 was detected 

in circulation of mice receiving rough hydrophilic titanium implants compared to rough 

titanium after 24 h. Mice with rough hydrophilic implant also displayed higher IL10 levels. 

The levels of IL12p40 were reduced after 3 days in the hydrophilic versus the hydrophobic 

group. After 7 days, there was a further increase in IL10 and still lower levels of IL12p40 

in mice with hydrophilic implants [154], indicating immunomodulation favoring reduced 

inflammation and enhanced bone formation.

The mechanism(s) controlling cellular responses to hydrophilic titanium surface modulation 

of the M2 macrophage phenotype in vitro includes interactions of β1 integrin with adsorbed 

fibronectin followed by activation of the PI3K/Akt signaling pathway. Additionally, 

macrophages adsorbed onto the hydrophobic titanium surface interacted with adsorbed 

fibrinogen through integrin β2 resulting in the generation of M1 macrophages most likely 

involving NF-κB activation. Further, hydrophilic surface induced BMP-2 and TGF-β 
expression in macrophages and positively affected osteoblastic differentiation [219]. In a 

mouse study, microstructured hydrophilic titanium surfaces modulated Wnt signaling gene 

expression in macrophages through integrin signaling, and Wnt signaling mediated anti-

inflammatory macrophage polarization [104] that can promote osteogenic differentiation of 

MSCs [264,265] in response to topographical cues particularly though BMP signaling [264]. 

This Wnt dependent mechanism has been observed in vivo [104]. The loss of Wnt signaling 

attenuates macrophage polarization, and this was associated with decreased recruitment of 

MSCs and CD4 T-cells [104]. The local delivery of a Wnt protein therapeutic in a rat model 

improved osseointegration in an unstable implant placed into an oversized osteotomy and in 

cases where fibrous encapsulation was predominant [266,267].

The above examples demonstrate that the surface-mediated modulation of macrophages 

works both directly and indirectly with osteoblastic cells to influence osteoinduction and 

bone formation. Other examples include the macrophage response to a rough-hydrophilic 

titanium surface influencing T-helper cell populations and MSC recruitment [154]. These 

findings highlight that immunomodulatory topographies may direct implant-adherent 

macrophage via two possible scenarios. The first strategy minimizes the initial M1 reaction 

(temporally and/or quantitatively), while the second focuses on advancing temporally and/or 

quantitatively the dominance of M2 macrophages. Both strategies recognize the necessity 

of M1 macrophages during wound healing and osteogenesis and identify the role of M2 

macrophages in osteoinduction and osteogenesis. Macrophages adherent to implant surfaces 

with enhanced surface topography positively contribute to the osseointegration process.
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It should be emphasized that the impact of implant surface physical properties as 

exemplified by hydrophobicity, while often interrogated at the cellular level, is mediated 

largely surface-adsorbed protein effects. A recent review indicates that multiple surface 

features impact protein abundance and conformation to influence adherent cell behavior 

[268].

4.2.6. The role of T cells in immunomodulation of osseointegration—There is 

emerging evidence supporting the role of T cells in bone repair and regeneration through 

modulation of inflammation during the healing process [269] (Fig. 8). Naive T cells 

differentiate into either CD4+ T helper (Th) cells or CD8+ cytotoxic (effector) T cells which 

can exert negative or positive effects on bone healing [270]. CD4+ T cells are further divided 

into Th1, Th2, Th17, and regulatory T cells (Treg) and differ in the cytokines produced 

and their function [271]. A consistent upregulation of CD4+ and downregulation of CD8+ 

cells was observed around titanium implants placed in rabbit tibia after 10 days, indicating a 

CD4-lymphocyte phenotype driven reaction [229].

Individual T cell subsets, upon their activation, affect osteoblast maturation through the 

production of soluble factors. The proinflammatory T cells, including the T helper 17 cells, 

are most stimulatory for osteogenesis in vitro [272]. Effector/regulator T cell ratios impact 

bone regeneration and bone healing outcomes [270]. Terminally differentiated CD8+ T cells 

secrete TNF-α and IFN-γ [273] which have inhibitory effect on osteogenic differentiation 

capacity of MSCs [270] and negatively affect bone regeneration in humans [274]. T helper 

cell function depends on physiological or pathological conditions [6,275] and T helper cell 

subsets (Th1, Th2, Treg and Th17) can be transformed into each other [276]. Reducing the 

number of Th1 and Th17 cells in the local microenvironment might improve the survival 

and osteogenic differentiation of the MSCs [276]. Th2 cells can activate macrophages 

toward an anti-inflammatory phenotype to reduce inflammation [277]. Treg cells are 

abundant in alveolar bone [127] and mainly have an anti-osteoclastogenesis function by 

secreting TGF-β, IL-4, and IL-10 [278]. Accounting for the temporal distribution of T cell 

phenotypes at and surrounding endosseous implants is incomplete and may contribute to 

further understanding of immunomodulatory control of osseointegration. The implied role 

of T cells in the osseointegration process suggests that systemic diseases or conditions that 

influence various T cell function or abundance may be contributors to otherwise unexplained 

failure of osseointegration. This idea is supported by mouse model studies in which CD4 

and CD8 T cell levels were manipulated to alter bone repair in a non-critical size mouse 

femur osteotomy model [270].

Although M1/M2 macrophage activities exist without T cell influence, specialized or 

polarized T cells (Th1, Th2, Treg) play a role in macrophage polarization [279,280], and 

the transition of cytokine profiles from Th1 to Th2 cells is related to the M1/M2 phenotype 

[276]. M1 macrophages promote Th1 cells to secrete inflammatory cytokines such as IL-2, 

IFN-γ, TNF-α, TNF-β; and M2 macrophages contribute to the secretion of cytokines 

such as IL-4, IL-5, IL-6, IL-10, IL-13 by Th2 cell in vivo [276,281,282], highlighting 

the importance of the interaction between macrophage and T cells for bone formation and 

maintenance. Further work is needed to understand the role of adaptive immunity in the 

process of osseointegration.
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4.2.6.1. Effect of titanium surface characteristics on T cells.: The influence of surface 

topography on T cell function in osseointegration is rarely studied, although a recent in vitro 
report indicated that nanotubes (105 nm) increased T cell FGF-2 production by blocking 

key MAPK pathways to increase MSCs proliferation [283]. Increased surface roughness 

and hydrophilicity was shown to polarize the adaptive immune response towards a Th2, pro-

wound healing phenotype, leading to faster resolution of inflammation and increased stem 

cell recruitment around rough hydrophilic titanium implants placed in mice [154]. T-helper 

cell profiles changed as early as 3 days post-implantation. Rough hydrophobic titanium 

implants increased Th1 as well as Th2 and Treg phenotype factors compared to control in 

adjacent bone marrow. Rough-hydrophilic titanium generated the greatest up-regulation of 

Th2 and Treg genes, while simultaneously reducing Th1 genes at day 3 [154] (Fig. 8).

In an animal study, endosseous implant-associated changes in T-cell populations were shown 

to extend to contralateral leg bone marrow and spleen. Titanium implants with rough and 

rough-hydrophilic surfaces changed the T-helper cell profile by decreasing Th1, Th17, and 

Treg populations and increasing Th2 cells in bone marrow of the contralateral leg with 

no implant. A decrease in Th1 and Th17 cells and increase in Treg population was also 

observed in the spleen of experimental animals [154]. These results suggest that either 

antigen presenting cells travel from the implantation site and re-enter the lymph node and 

exert these effects or the soluble factors produced from implant adherent or adjacent cells 

affect other T-cells systemically. Further studies are needed to better understand the possible 

systemic immune influence of titanium implant placement.

This brief overview of possible T cell activities in osseointegration illustrates the complex 

and early stage immunomodulatory environment that is established on and proximal to the 

titanium implant surface (Fig. 8).

4.2.7. The role of B cells in immunomodulation of osseointegration—B cells 

participate in the process of bone repair and predominate the later stages of bone healing 

[284]. B cells may play a temporal regulatory role in osseointegration by secreting OPG 

and RANKL to control bone formation/resorption [285]. B lineage cells are not perturbed 

by the long-term presence of titanium implant in bone marrow and B cell differentiation in 

bone marrow around endosseous implants is considered an index of myelointegration [146]. 

Studies regarding the role of B cells in osseointegration are rare. Additional studies are 

required regarding the contribution of B cells and their secreted factors to osseointegration. 

The crosstalk between B cells and implant adherent cells is depicted in Fig. 9. The relative 

absence of studies concerning the role of B cells in the immunomodulatory control of 

osseointegration contrasts with the remarkable observation that the genetic knockdown of B 

cells in mice resulted in more trabecular bone and greater levels of bone sialoprotein mRNA 

than in wild-type mice [286].

5. Immunomodulation as an Enemy of Osseointegration

Dental implants are placed in the microbial-rich environment of the mouth. The complexity 

of osteoimmunology, the oral microbiome, and the osseous and mucosal structures 

surrounding implants is on full display. Fifty two different wound healing biomarkers 
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were identified during a 16 week evaluation of osseointegration, highlighting the complex 

inflammatory peri-implant environment [287]. Considering the molecular and cellular basis 

of osseointegration discussed above, the process of peri-implant bone loss and implant 

failure (absence of bone to implant contact) may be further informed by immunomodulation 

at an implant surface. Peri-implant bone loss is an etiologically diverse phenomenon 

with shared immune-mediated chronic inflammatory processes leading to ineffective or 

insufficient bone apposition by osteoblasts, the excessive differentiation and activation of 

osteoclasts, and prolonged osteoclastogenic signals by immune and local stromal cells [288–

293].

5.1. Immunomodulation is active during peri-implant osteoclastogenesis

The induction of osteoclast function is necessary during the formative phase of 

osseointegration, and transiently increased numbers of osteoclasts may not be contrary to the 

overall accrual of bone mass by an integrated regulation of bone formation and resorption 

[97,294]. Clearly osteoclasts migrate to the implant site and start osteoclastic resorption and 

remodeling of bone debris [295,296]. Factors released during osteoclastic bone resorption 

regulate immune cell, and immune or inflammatory factors induce osteoclastogenesis [297].

Before expounding on the catabolic effects of osteoclastogenesis on bone accrual in 

osseointegration, the process of bone resorption in removal of surgically damaged bone 

following implant placement and the role of bone resorption to maintain bone turnover 

throughout the functional lifetime of a successful implant must be acknowledged. 

Osteoclastic activity is acknowledged to occur at early times in bone adjacent to placed 

implants and bone turnover has been repeatedly observed long after implant placement. 

The question of how implant surfaces influence osteoclast function was posed before the 

discovery of molecular mechanisms controlling osteoclastogenesis [298].

It is now accepted that three major cytokines (macrophage-colony stimulating factor (M-

CSF), RANKL and OPG), and the RANK/RANKL/OPG signaling axis are involved in 

the well-defined regulation of osteoclastogenesis by immune cells [299–304]. Significantly 

elevated levels of prostaglandin E2 (PGE2), TNF-α, IL-1, IL-6, IL-17 and M-CSF in 

peri-implant inflamed tissues induce the secretion of RANKL by bone cells, activated 

leucocytes, dendritic cells and neutrophils [305–309]. Both soluble and membrane-bound 

RANKL can induce osteoclastogenesis through RANK and downstream signaling in 

osteoclast precursors [310–316], suggesting a role for adherent cells in this process. IL-1 

and TNF-α may induce osteoclastogenesis alone in the absence of RANKL [307,317]. 

OPG is a decoy receptor for RANKL and prevents RANK-RANKL interactions to fine-tune 

osteoclast differentiation and bone remodeling. OPG is secreted by osteoblasts and bone 

marrow B cells and its production can be induced by IL-4, and TGFβ. Synchronously, 

OPG drives apoptosis of the pre-existing osteoclasts [305,318]. High OPG expression and 

low RANKL/OPG ratios result in the inhibition of osteolysis, while high RANKL/OPG 

ratio leads to peri-implant osteoclastogenesis, bone resorption and implant loosening [306, 

319–321]. Osteoclastogenesis is a complex process as illustrated by the many of immune-

derived factors that promote or hinder osteoblast differentiation and activity (Fig. 10). 

Given the prevalence of osteoporosis and the many different pharmacological approaches 
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to inhibiting osteoclast activity including bisphosphonates and RANKL antibodies (e. g., 

Denosumab), the role of osteoclasts and the impact of surface topography on osteoclasts in 

osseointegration merits further consideration.

5.2. Osteoclastogenesis and implant surface topography

The impact of endosseous implants surface topography on osteoclastogenesis can 

be considered with respect to microbial colonization and peri-implantitis, osteoclastic 

precursor-surface interactions, and the upstream/downstream effects of surface topography 

on immune cell and osteoblast (and precursor) cell function. Examples of all have been 

presented in the literature. The role of implant surface topography in modulation of 

osteoclastogenesis is demonstrated in Fig. 11. Table 2 summarizes how titanium surface 

micro/nano topography may affect osteoclastogenesis.

5.2.1. Direct effect of surface topography on osteoclastogenesis—Surface 

topography mediates osteoclast-implant interactions and contributes to defining the net 

bone accrual in the process of osseointegration [322] (Fig. 11). It remains to fully consider 

the significance of possible surface-mediated reduction in osteoclastogenesis on net bone 

accrual at the implant/bone interface and the process of long-term bone remodeling around 

implants.

The effects of nanotopography upon osteoclasts have been demonstrated in vitro 
[323]. Cytoskeletal reorganization plays role in osteoclastogenesis [324], implicating the 

possible role of implant surface topography in this process. In addition, titanium surface 

microtopography affects the assembly of the osteoclast resorption apparatus in vitro [325]. 

These effects are mediated through different topography-sensitive pathways. For example, 

micro/nano titanium surfaces reduce osteoclast activity and inhibit osteoclast differentiation 

through MAPK signaling pathway [326,327]. Additionally, titanium surface roughness 

(approximate Ra of 1.25 μm) facilitated osteoclast differentiation through the activation 

of the RANK-TRAF6 signaling network [328]. The osteoblast-osteoclasts interactions are 

influenced by surface topography require further investigation. For example, titanium with 

nanotopography attenuates the osteoclast-induced disruption of osteoblast differentiation in 
vitro by regulating histone methylation [91].

5.2.1. Indirect effect of surface topography on osteoclastogenesis—The effect 

of surface topography may be indirect (Fig. 11). MSCs and osteoblasts may acquire an 

immunomodulatory role affecting osteoclastogenesis that is surface topography dependent, 

for example, through modulating the fusion of new osteoclasts and reduced activity of 

existing osteoclasts [105]. Similarly, other immune cells that are adherent to implant 

surfaces may play roles in osteoclastogenesis that are also surface topography informed. 

Implant surface topography influences the expression of osteoclastogenic factors including 

TNF-α, M-CSF, OPG and RANKL by surface-adherent cells as shown both in vitro and in 
vivo [24,26,97,98,329,330].

Implant surface topography may influence osseointegration through modulating OPG/

RANKL ratios. For example, microstructured titanium surfaces increase the production 

of OPG by osteoblasts in vitro which can inhibit the formation of osteoclasts and 
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therefore decrease the bone resorbing activity [97,329,330]. Titanium implants with 

15 nm high disordered nanopillars increased osteogenesis, increased OPG and reduced 

RANKL expression. This led to decreased osteoclast formation in vitro and improved 

osseointegration in vivo [321]. Another study revealed the surface topography dependent 

MSC secretion of RANKL/OPG. MSCs on titanium surface with 30 nm nanotubes in 

diameter showed lower RANKL/OPG ratios while 100 nm surface had high RANKL/OPG 

ratio leading to significantly lower osteoclastogenesis in vitro and better osseointegration 

in vivo on the titanium surface with 30 nm nanotubes [331]. Another indirect mechanism 

at play may involve surface adherent macrophages. Titanium with micro/nano topography 

inhibits osteoclastogenesis via mediation of M2 macrophage polarization both in vivo and in 
vitro [332].

5.3. Factors that promote inflammation and osteoclastogenesis at the implant-bone 
interface

Site-specific, implant-related (eg, surface roughness, mechanical strain, titanium particulate 

debris, and excess cement), and patient-related factors (eg, genetics, diabetes and other 

systemic diseases) are all implicated in the initiation/progression of inflammation leading to 

osteoclastogenesis at endosseous implants [333–338].

5.3.1. The role of innate and adaptive immune system components in peri-
implant osteoclastogenesis—Bone and immune cells dynamics, and immune response 

during peri-implant and alveolar bone loss have been extensively reviewed [290, 339–

343]. It is suggested that the increased levels of the selected peri-implant crevicular fluid 

(PICF)-derived biomarkers of inflammation, matrix degradation/regulation, and alveolar 

bone turnover/resorption combined with site-specific microbial profiles may be associated 

with peri-implant bone loss and could have potential as predictors of peri-implant diseases 

[344].

Both innate and adaptive immunity may be involved in the inflammatory challenges 

facing endosseous implants success. Innate immunity involving neutrophils, macrophages, 

dendritic cells, and T cells in the tissue surrounding the endosseous implant leads 

to osteoclast-mediated peri-implant bone loss. Adaptive immune responses to foreign 

substances include T cell and B cell responses and can develop over time through exposure. 

Innate and adaptive immune responses induce bone loss by means of multiple immune 

receptors, inflammatory cytokines (e. g. IL-1β, IL-6, IL-12, IL-17, TNF-α, IFN-γ, IL-8, 

monocyte chemo-attractant protein-1, macrophage inflammatory protein-1α), and matrix 

metalloproteases through RANKL, Notch, Wnt, and NLRP3 inflammasome signaling 

pathways [290,345–352] (Fig. 11). The activation of inflammatory signals within MSCs 

or osteoprogenitors inhibits osteoinductive signaling and osteogenesis. Similar inflammatory 

mediators promote osteoclastogenesis. Unregulated, continued inflammation results in the 

failure of bone formation at the implant surface.

5.3.1.1. The role of the inflammasome in peri-implant osteoclastogenesis.: NLRP3 

inflammasomes are important regulators of IL-1β activity and release from multiple 

cells that populate the implant surface in response to pathogen- and injury-related 
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signals (DAMPs and PAMPs) [345]. Inflammasome activation in bone-resident and 

circulating macrophages promotes M1-like macrophage polarization [353–356]. NLRP3 is 

a prerequisite for osteoclast maturation [357]. The role of the NLRP3 inflammasome in 

inflammatory alveolar bone resorption has been highlighted in vivo [358,359]. It drives 

the peri-implant bone loss via caspase-3/GSDME [360], along with several alternative 

inflammation pathways that function in peri-implantitis such as the LOX-1/MMP9 signaling 

pathway [361], TLR2/NF-κB/MAPK/JNK pathway [362, 363], and Erk1/2/MAPK pathway 

[364]. The NLRP3 inflammasome may also play role in inflammatory alveolar bone 

resorption by inducing pyroptosis [360,365–368]. The NLRP3 inflammasome alters the 

RANKL/OPG ratios to enhance osteoclastogenesis [369], suggesting its role in mediating 

the net accumulation of bone at the implant/tissue interface.

There is evidence that surface topography may influence inflammasome function. NLRP3 

inflammasome can enhance osteoclast bone resorption ability in vivo by reorganizing 

the actin cytoskeleton [370], and cytoskeleton F-actin microfilaments inhibit NLRP3 

inflammasome activity in macrophages. This inhibition depends on the actin polymerization 

state [371]. Titanium with nano-sized crystalline hydroxyapatite significantly upregulated 

Caspase1 expression in differentiating osteoblasts which further suggests an involvement 

of the inflammasome complex [372]. Although no other studies have been performed 

linking the inflammasome pathway to implant surface topography, titanium particles and 

ions appear to increase expression of inflammasome proteins and function in peri-implant 

cells [373–377].

5.3.1.2. The role of NF-κB signaling pathway in peri-implant osteoclastogenesis.: NF-

κB signaling pathway regulates inflammatory protein expression in macrophages and 

MSCs [378,379]. NF-κB is in the upstream of inflammasome pathway and is the 

transducer of priming signals necessary for pro-IL-1β transcription and assembly of NLRP3 

inflammasome compartments [367,380,381]. Inflammation driven by NF-κB activity is 

known to be a primary activator of peri-implant osteoclastogenesis and osteoclast function 

both in vitro and in vivo [382,383]. The NF-κB pathway inhibits the production of BMPs 

that diminishes the BMP2-stimulated Runx2 and Wnt-stimulated β-catenin binding to 

Osteocalcin and bone sialoprotein promoters [313,384]. The NF-κB cascade was identified 

by gene ontology analysis of changes in gene expression in rough implant-adjacent cells at 

day 4 following implantation, underscoring a transient role for inflammation in control of 

osseointegration [17]. A subsequent study compares a rough vs. rough/hydrophilic surface 

implants in the same model without identifying changes in inflammatory signaling [385]. 

Further examination in the context of systemic inflammatory determinants (e.g., chronic 

inflammatory diseases, aging) could reveal additional surface topography influences on 

NF-κB-related pathways affecting immunomodulation [386].

Titanium surfaces of various roughness differentially activate the early NF-κB 

transcriptional pathway in macrophages in vitro, with rough hydrophilic surfaces having 

minimum activation compared to smooth surface [382]. The NF-κB nuclear translocation 

was decreased on a micro/sub-micro-textured titanium surface [256]. This is thought to be 

an integrin-mediated event [387], however, other mechanisms have been implicated in cell 

culture [382]. In a therapeutic approach targeting NF-κB, the inhibition of NF-κB signaling 
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in implant adherent cells was achieved by the binding of NBD (NF-κB essential modulator 

(NEMO)-binding domain) peptide to titanium implant surfaces. In addition to demonstrating 

reduced osteoclast activity in cell culture on the NBD modified surface, in vivo studies 

using NBD modified implants demonstrated that this inhibition of NF-κB signaling also 

reduced the local osteoclast population and was associated with an increased bone to implant 

contact in an ovariectomized rat model [383]. There exist multiple approaches to inhibition 

of NF-κB signaling that may be synergistically applied with the topographic modification of 

the dental implant surface.

5.3.1.3. The role of toll-like receptors in peri-implant osteoclastogenesis.: Toll-like 

receptors (TLR) are sentinel receptors of the innate immune system and play a central role 

in innate immunity. TLR activation in osteoclasts and their precursors is an important aspect 

in the pathogenesis of inflammation-induced bone resorption [388–390]. TLR-induced 

production of TNF-α and IL-6 promotes functional osteoclast differentiation in synergy 

with RANKL both in vivo and in vitro [391,392]. TLR 2, 4, 5, and 9 are expressed 

on osteoblasts and their activation increases osteoclast differentiation in vivo and in 
vitro by an indirect mechanism through stimulation of RANKL [388]. TLR2/4 knockout 

mice showed significantly less bone resorption compared to WT mice in ligature-induced 

experimental peri-implantitis using smooth surfaced implants. Gingival injection of anti-

RANKL antibody significantly reduced bone loss compared with the ligation only group in 

both WT and TLR2/4 KO mice [393]. TLR4 was shown to mediate alveolar bone resorption 

in experimental peri-implantitis around smooth surfaced implants through regulation of 

immune B cell infiltration, RANKL/OPG ratio, and inflammatory cytokine production in 
vivo [389]. In a human model of peri-implantitis, a TLR4 induced inflammatory cytokine 

production and extracellular matrix breakdown was demonstrated [390].

Macrophage exposure to smooth titanium surface displayed an enhanced immune response 

to TLR4, TLR7 or TLR2/1 compared to rough surfaces in terms of soluble immune 

mediators secreted and M1/M2 gene expression profiling [394]. A micro/sub-micro-textured 

titanium surface yielded the least TLR2 expression in cultured macrophages compared 

to smooth surface [256]. A reduction in TLR3 expression was reported in macrophages 

cultured on rough titanium surfaces compared to machined surface. TLR downstream 

signaling was regulated in a roughness-dependent manner [394]. Melatonin was shown 

to reduce peri-implantitis through inhibiting TLR4/NF-κB signaling and osteoclastogenesis 

around micro-rough titanium implants in vivo [395]. Nonetheless, the overall effect of 

TLR pathway regulation by surface topography on cytokine responses in peri-implant 

bone loss and subsequent protective versus pathogenic signals in this process need further 

investigations.

5.3.1.4. The role of complements in peri-implant osteoclastogenesis.: Complement-

dependent mechanisms of inflammatory alveolar bone destruction have been demonstrated 

[396]. C3 activation induces osteoclast differentiation and C3 knock-out bone marrow 

cells exhibited lower RANKL/OPG expression ratios, express lower M-CSF and IL-6, and 

generated significantly fewer osteoclasts [310]. Increased C3 was detected in the serum 

and surrounding tissues near by the titanium implants with increased inflammation and 
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osteoclast formation. C3a/C3aR, and not C3b, played an important role in NF-κB mediated 

secretion of TNF-α and MMP9 leading to differentiation and proliferation of osteoclasts 

[397].

5.3.1.5. The role of dendritic cells in peri-implant osteoclastogenesis.: DCs are key 

players in osteoimmunology and have been implicated in inflammation-induced bone 

loss through the activation of CD4+ T cells leading to induction of osteoclastogenesis 

[297,398,399]. Mature DCs increase the secretion of inflammatory factors such as IL-12 

and facilitate the activation of T-cells and B-cells, which enhance inflammation and may 

impede peri-implant interfacial bone formation [153,190,191]. Dendritic cells may also 

transdifferentiate into osteoclasts at their early development stage, and IL-1β may increase 

the fusion of dendritic cells into osteoclasts [400,401]. These osteoclasts produce higher 

IL-1β compared to osteoclasts derived from monocytes, which further induces TNFα-

producing CD4+ T cells and promotes bone resorption [402].

Smooth and rough hydrophobic titanium surfaces switch DCs toward maturation 

phenotypes, increase the expression of IL-6, IL-12, IL-18, and TNF-α, inhibit the 

differentiation and mineralization of osteoblasts and promote osteoclastogenesis in 
vitro [153,190]. DCs on smooth titanium surface release MCP-1 [190] which induces 

osteoclastogenesis and the formation of multinucleated osteoclast-like cells from bone 

marrow precursors in vitro and can induce bone resorption with RANKL [403, 404].

5.3.1.6. The role of macrophages in peri-implant osteoclastogenesis.: Macrophage 

polarization plays major roles in peri-implant bone loss [405–408]. Bacterial products or 

interferons present in peri-implant tissue promote M1 phenotype, and M1 macrophages 

constitute a majority of inflammatory cellular composition in histopathological observations 

of human peri-implantitis lesions [406,408–410]. M1 macrophages are involved in peri-

implant osteoclast activities by secretion of high levels of TNF-α and IL-1β, as well as 

being the potential precursor of osteoclasts under the stimulation of M-CSF and RANKL 

[307,339,341]. Furthermore, these macrophages can express RANK, RANKL, and M-CSF, 

which enable self-activated osteoclastogenesis [306]. Interestingly, macrophages isolated 

from inflamed peri-implant tissue were found to differentiate into mature osteoclasts without 

accompanying osteoblastic cells or MSCs, and expressed higher RANKL mRNA compared 

to OPG mRNA [411]. M1 macrophages also induce the Th17 polarization of CD4 cells 

that produce IFN-γ, IL-17, and IL-21 leading to more osteolytic effects in vivo [412]. 

The mechanism and regulators of the differentiation of macrophages into osteoclasts, and 

the role of macrophage-osteoclast axis in bone loss caused by inflammation has been 

extensively reviewed [413]. All of these findings demonstrate that peri-implant macrophages 

can differentiate to active osteoclasts in the presence of M-CSF via two pathways: direct 

stimulation from IL-1 and TNF-α or by binding to RANKL secreted from the various 

cells mentioned above, elucidating how chronic inflammation rapidly cascades into severe 

peri-implant osteolysis and bone resorption.

Implant surface topography affects macrophage-mediated osteoclastogenesis. Titanium 

surface with anisotropically patterned nanospikes was shown to modulate macrophage 

polarization and downstream osteoclast differentiation in vitro [247]. A nanoporous (30 
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nm) titanium implant surface suppressed osteoclastogenesis via the integrin β1/FAKpY397/

MAPK pathway in vivo [248], strongly implicating surface topography effects on 

precursor cells. In other work, a micro/sub-micro hierarchical titanium surface inhibited 

the osteoclastogenesis regulatory factor NFATc-1 and reduced the osteoclastogenesis of 

macrophages in vivo [256]. It is interesting to note that the study of surface topography 

effects in osseointegration - even with respect to the role of macrophages - has 

specifically focused on osteogenesis and much less focus on osteoclastogenesis. Studies 

that do exist frequently focus on particle (wear-debris)-induced inflammation leading to 

osteoclastogenesis [414].

5.3.1.7. The role of T cells in peri-implant osteoclastogenesis.: Both Th1 and Th2 

may inhibit osteoclastogenesis by secreting IL-4 and IFN-γ [415]. Th17 cells are 

osteoclastogenic T helper cell subset. IL-17 from Th17 cells increases osteoclastogenesis 

in vivo by activating NF-κB [416, 417]. T-cells contribute to the release of TNF-α, RANKL, 

M-CSF, and IL-1, all of which can trigger MSCs and pre-osteoblasts to express RANKL in 
vivo [418] and indirectly support osteoclastogenesis. Importantly, Th17 cells do not induce 

osteoclastogenesis in the absence of osteoblasts, suggesting that RANKL expressed on Th17 

cells alone is not sufficient to induce osteoclastogenesis [419]. Th17 cells also upregulate 

RANK exhibition on osteoclast precursors [420].

5.3.2. The role of epigenetics in peri-implant osteoclastogenesis—The role 

of genetics and epigenetics in peri-implant bone loss was recently highlighted [421,422]. 

Epigenetic mechanisms play a role in osteoblast and osteoclast differentiation, macrophage 

polarization [423–427], and the modulation of RANKL and OPG expression [423]. Biofilm 

bacteria may trigger epigenetic changes in peri-implant tissues by binding to TLRs and 

activating NF-κB and MAPK pathways [428–431]. Epigenetic changes of inflammatory 

cytokine genes such as IL-1β may lead to excessive peri-implant inflammation and 

osteoclastogenesis [432–434]. Chronic inflammation may work through persistent signaling 

that leads to epigenetic changes in the cells of the peri-implant region by suppressing 

specific transcription factors for osteogenesis or by activating certain transcription factors 

for osteoclastogenesis [435]. MicroRNAs represent a dynamic epigenetic mechanism around 

endosseous implants that could participate in the development/progression of peri-implant 

bone loss. For example, microRNA-regulated pathways control the sequential steps required 

for osteoclast differentiation [436]. MicroRNAs expressed by peri-implant tissues are related 

with susceptibility to peri-implant bone resorption [437,438].

There is evidence that bone and immune cell epigenetics are modulated by surface 

topography [439]. Surface spatial confinement alters the pro-inflammatory functions of 

macrophages by changing epigenetic profiles in vitro [230]. However, little is known 

about immunomodulation through the surface topography mediated regulation of epigenetic 

mechanisms in peri-implant tissue resident cells and in immune cells that infiltrate the 

inflamed peri-implant tissue. Epigenetic mechanisms affecting immune cells (reviewed in 

Ref. [440]) may be relevant to topography-mediated osseointegration [441] and longer term 

preclinical (and clinical) investigations are required to reveal these effects.
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5.3.3. The relevance of surface topography in immunomodulation 
of osteoclastogenesis—The unfavorable and/or destructive osteoimmune 

microenvironment in systemic conditions such as osteoporosis and diabetes alters the 

composition of blood and tissue fluids, reduces osteoprogenitor cell recruitment and 

differentiation; and induces high osteoclast activity, excessive inflammatory responses and 

compromised M2 macrophage function [269,442]. This negatively affects the formation 

and maintenance of osseointegration. A hyper-immune status associated with systemic 

inflammatory disease may negatively influence endosseous implants success by mechanisms 

involving implant-resident immune cells.

An immunomodulatory implant surface topography may improve osseointegration in 

compromised conditions by modulating protein-implant interactions and mediating later 

cellular functions towards the resolution of inflammation, improved bone formation 

and reduced osteoclastogenesis. For example, a nanostructure titanium design improved 

osteogenic and angiogenic differentiation and increased the OPG/RANKL ratio in 
vitro leading to improved osseointegration in both diabetic and osteoporotic models 

in vivo [443,444]. A hydrophilic micro-rough surface successfully compensated for 

the compromised immune function in Type 2 diabetes model by attenuating the pro-

inflammatory response and promoting M2 macrophage activity, thus restoring macrophage 

homeostasis. Proteomic analysis of both surface adherent and wound exudate material 

showed that this surface promoted an immunomodulatory pro-reparative environment 

[263]. A biomimetic hierarchical implant surface promoted early osseointegration in 

osteoporotic rats by suppressing macrophage activation and osteoclastogenesis [256]. 

The immunomodulatory interactions that occur between implant adherent cells and the 

alloplastic surface under compromised systemic conditions are still poorly understood and 

merit further investigation.

5.4. A “Foreign body reaction to titanium implants” theory

Multinucleated giant cells (MNGCs) are a classic identifying feature of the foreign body 

reaction. They are observed at endosseous implant/tissue interfaces. This is considered a 

consequence of macrophage activation and chronic inflammation in response to implanted 

material properties, where high levels of IL-4 and IL-13 are produced leading to fibrous 

capsule formation [445]. OsteoMacs may be the precursor cell of MNGCs in bone and have 

been previously reviewed [446]. These multinucleated cells are distinct from osteoclasts as 

illustrated by differences in surface markers and gene expression profiles in vitro [447]. This 

needs to be further investigated in vivo in the peri-implant compartment.

How the monocyte/macrophage lineage differentiate and polarize toward MNGCs has 

been extensively reviewed [446]. MNGCs are capable of polarizing toward M1 and 

M2 phenotypes similar to macrophages highlighting their possible role during implant 

integration and peri-implant bone infection/resolution and there is evidence that MNGCs are 

associated with increased vascularization and/or new bone formation at bone biomaterials 

[448]. The macrophage polarization, MNGCs formation and foreign body reaction may 

be dependent on surface and the surrounding microenvironment characteristics determining 

the local macrophage activation state. By limiting the action of M1 polarizing factors 
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in the bone-implant interface and promoting M2 macrophage polarization by biomaterial 

or pharmacological solutions, it might be possible to limit the osteolysis caused by the 

inevitably forming foreign body particles. The question of how the multitude of factors 

secreted by other cells of the implant interface might regulate local foreign body reaction 

and macrophage polarization and function remains a subject for future studies.

It is suggested that MNGCs may represent a foreign body reaction affecting two important 

steps in osseointegration: 1) Identification of the titanium foreign body by the immune 

system, and 2) the development of a bone-forming environment that translates into bone 

accrual on the titanium surface. This may be interpreted as an attempt to isolate the 

foreign body from the bone marrow space [449]. An alternative hypothesis is that the 

MNGCs represent an inflammatory response involving foreign body giant cells [450]. 

Foreign body giant cells respond to antigens accumulated on the implanted implant 

surface. This is supported by the relatively sparse localization of multinucleated cells 

histologically observed along the implant surface. This inflammatory surveillance role 

directs antigen removal and inflammation leading to osteoclastogenesis and the removal 

damaged tissue including local bone. This removal of damaged bone is an integral part 

of the osseointegration process. Invading bacterial pathogens may induce the fusion of 

macrophages to MNGCs which degrade bone around implants [164,451, 452]. However, 

MNGCs were shown to be incapable of resorbing bone in vitro and have minimal capability 

to degrade bone compared to osteoclasts with a 40-fold decrease in efficiency [453].

The interpretation of osseointegration as a foreign body reaction driven by MNGCs offers 

insights and raises questions regarding the cellular processes of osseointegration. However, 

a classical definition of a foreign body reaction is “an immune-mediated reaction to 

implanted materials where a cascade of inflammatory events and wound-healing processes 

result in fibrosis, or the cellular and collagenous deposition that encapsulates implants” 

[454]. A foreign body reaction follows the acute phase of inflammation, and the continued 

development of granulation tissue surrounding the implant that contains macrophages, 

fibroblasts and blood vessels leads to formation of a fibrous encapsulation of the implant 

separating it from the host tissues [455]. It appears that MNGCs are present at implants, 

but this does not imply that a foreign body reaction is the driving mechanism for 

osseointegration. Clearly as this review reveals, other immune cell events at the surface 

can modulate the osteoinductive and osteogenic events that occur at the interface. While 

the osseointegration process clearly invokes the function of MNGCs, it also clearly avoids 

the comprehensive foreign body reaction. This self-limited MNGC response underscores 

the complex immunomodulatory processes of surface-adherent and localized precursor cells 

during osseointegration.

6. Concluding remarks

This review provides a summary of the most recent advances in the understanding of 

immunomodulation in osseointegration and the role of titanium surface topographies for 

directing progenitor and immune cell fate and function to improve implant osseointegration 

and prevent bone loss. In the past decade, descriptions of immune cell activities at the 

implant/tissue interface have illuminated the potential impact of immunomodulation in 
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osseointegration. However, detailed mechanistic studies are lacking. Further, these studies 

have clearly revealed the impact of implant surface topography on the reported phenotypes 

of adherent immune cells. Still, gaps remain in our understanding of topography-related 

immunomodulatory events at the implant/tissue interface. The interaction of immune 

cells with MSC/osteoblastic cells and how surface related events influence surrounding 

bone tissue physiology remain under explored. Current information suggests that surface 

topography may be useful in controlling tissue responses that reflect immune cell 

modulation of osteogenic events at alloplastic surfaces. Such tactics and principles are 

also anticipated to apply to other fields involving alloplastic material/tissue interfaces that 

address a diversity of biomedical applications. Further understanding of how titanium 

implant topography influences the population of implant adherent cells has emerged as a 

fruitful approach to controlling tissue responses at titanium endosseous implant surfaces 

(Summarized in Fig. 12.)
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Fig. 1. 
Conceptual evolution of osseointegration. Historically, titanium was considered bioinert and 

osseointegration was viewed as an unimpeded bone formation. The principles advanced 

for the clinical success of osseointegration were based on the concept that proper bone 

surgery enabled subsequent formation of bone from the surgical margins toward the 

implant surface. The attribution of active interactions of the implant surface with adherent 

cells began with the concept of contact osteogenesis where enhanced surface topography 

guided the osteoprogenitor cell and their osteogenic functions to the implant surface. Bone 

formation occurred both from the surface (contact osteogenesis) as well as toward the 

surface (distance osteogenesis) both accelerating formation of and expanding the bone 

to implant contact. Continued studies of osteoprogenitor/osteoblast interactions with the 

implant surface demonstrated that surface topographic modifications were able to increase 

the rate and extents of osteoblastic differentiation and osteogenesis in vitro and were 

able to increase the bone-to-implant contact at the implant surface in animal and human 

studies. The osteogenesis-promoting nature of the implant surface was firmly established 

by studies demonstrating surface-mediated increases in osteoinductive protein and genes 

expression. This paradigm has most recently shifted to include the concept that the 

implant surface (principally, but not exclusively, Titanium) is immunomodulatory and 

bioactive. Investigations clearly demonstrated the presence of other cell types adherent to 

the implant surface and promoted more recent investigations of implant surface – immune 

cell interactions. The understanding of osseointegration has evolved to include the role of 

immune cells in modulating osteogenesis and osteoclastogenesis to affect bone accrual at the 

endosseous implant interface.
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Fig. 2. Topography is a critical variable in titanium surface biomimicry and immunomodulation.
Biologically inspired endosseous implant surfaces mimic the topographical features of 

an osteoclast resorption pit. Demonstrated are scanning electron micrographs of an 

osteoclast-resorbed bone surface (right panel) and titanium surfaces that have been acid 

etched and sandblasted with large-grit corundum. The action of osteoclasts on the bone 

surface leaves osteoclast resorption pits with microscale, hybrid, and nanoscale textures 

as well as biochemical cues for MSCs and osteoprogenitor cell recruitment, attachment 

and differentiation. Current studies suggest that surface topography influences adherent 

osteoprogenitor cell, immune cell and osteoclastic cell function and their interactions. 

The physical properties associated with osteoclast resorption pits can be generated on 

titanium using a variety of techniques, enhancing osseointegration through adsorption 

of various proteins, recruitment and attachment of pro-healing macrophages, MSCs 

and osteoprogenitor cells; and osteoblast differentiation, subsequent bone formation 

and downstream remodeling. The figure for bone resorption pit is adopted by kind 

permission of Tim Arnett (t.arnett@ucl.ac.uk) & Javier Manzano, from UCL https://

boneresearchsociety.org/resources/image/40/#top.
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Fig. 3. Signaling pathways activated by titanium surface topography to induce osteoblastic 
differentiation and decrease the release of inflammatory factors in MSCs.
Surface roughness induces the osteoblastic differentiation of MSCs through multiple 

pathways. Runx2 and Osterix are major hubs where all osteogenic pathways converge. 

Surface roughness reduces the release of inflammatory cytokines from MSCs/osteoblasts 

possibly by blocking NF-κB and MAPK pathways. The detailed description of these 

pathways are studied in Refs. [60,75,106–108,125].
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Fig. 4. Immunomodulation in osseointegration; bidirectional regulation of adherent cell function.
The modulation of adherent/adjacent osteoprogenitor cells may represent indirect influence 

of surface topography that is mediated by adherent immune cells. The cross-talk between 

immune cells, bone cells and surface topography is discussed in detail in the following 

sections. The effect of surface topography is shown with arrows arising from the surface.
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Fig. 5. 
Immunomodulation of osteoblast differentiation. A multitude of immune-derived factors 

promote or hinder osteoblast differentiation and activity.
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Fig. 6. The possible role of neutrophils in immunomodulation of osseointegration.
Neutrophils may modulate the process of osseointegration by secreting various factors that 

affect macrophages and T cells activation. An enhanced implant surface topography (rough 

hydrophilic) decreases NETosis and the release of inflammatory factors from neutrophils 

and improves osseointegration via downstream signals (dark green arrows). Bone stromal 

cells secrete factors that regulate neutrophils. Factors secreted from MSCs are depicted in 

orange arrows and factors secreted from neutrophils are shown in light green arrows. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the 

Web version of this article.)
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Fig. 7. 
The possible role of macrophages in immunomodulation of osseointegration. Macrophages 

secret various factors that affect osteoprogenitor and other implant adherent cells leading to 

the resolution of inflammation and improved osteoblastogenesis. The initial M1 macrophage 

response is independent of surface topography. An enhanced implant surface topography 

eliminates M1 macrophages and increases M2 macrophages to improve osseointegration via 

downstream signals (dark green arrows). Both M1 (via OSM) and M2 macrophages (via 

BMP-2, TGF-β etc.) promote osteoinduction and osteoblast function in bone repair. Bone 

stromal cells secrete factors that regulate macrophages. Factors secreted from MSCs and 

osteoblasts are depicted in orange arrows and factors secreted from neutrophils are shown in 

light green arrows. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the Web version of this article.)
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Fig. 8. The possible role of T cells in immunomodulation of osseointegration.
T cells may play roles in the process of osseointegration by secreting various factors that 

affect osteoblastogenesis and osteoclastogenesis. An enhanced implant surface topography 

(rough hydrophilic) decreases Th1 cells and increases Th2 and Treg cells leading to the 

resolution of inflammation and osteoblastic differentiation of MSCs via downstream signals 

(dark green arrows). Bone stromal cells secrete factors that regulate T cells. Factors secreted 

from MSCs and osteoblasts are depicted in orange arrows and factors secreted from T cells 

are shown in light green arrows. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the Web version of this article.)
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Fig. 9. The possible role of B cells in immunomodulation of osseointegration.
B cells release various factors that affect other immune and bone cells. B cells 

may participate in the process of osseointegration by secreting OPG and increasing 

osteoblastogenesis, and increasing M2 macrophage leading to the resolution of 

inflammation. B cells secrete RANKL during inflammation. The effect of surface 

topography on B cells is not clear. Factors released from MSCs are depicted in orange 

arrows and factors secreted from B cells are shown in light green arrows. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the Web version of 

this article.)
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Fig. 10. 
Immunomodulation of osteoclastogenesis. Osteoclastogenesis is a complex process as 

illustrated by the many of immune-derived factors that promote or hinder osteoclast 

differentiation and activity.
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Fig. 11. Immunomodulation of osteoclastogenesis by implant surface topography.
The effect of implant surface topography (thick green arrows) leading to the inhibition 

of osteoclastogenesis via downstream signals is illustrated. Surface-mediated factors 

activate inflammasome in various bone and immune cells (osteoblasts, osteoclasts, 

monocytes, macrophages, neutrophils, and adaptive immune cells, such as T helper 17 

cells) leading to the release of IL-1β and IL-18. Elevated IL-1β expression promotes 

osteoclastogenesis, decreases osteoblast activity, and enhances inflammation by creating a 

pro-inflammatory milieu in a context- and cell type-dependent manner. IL-1β modulates 

osteoclast differentiation and activity by direct effects on osteoclasts or by indirectly 

modulating the expression of RANKL by other cell types. Surface topography can directly 

activate inflammasome pathway in adherent cells. Topographic cues directly increase OPG 

and reduce RANKL in bone cells. Increasing OPG/RANKL ratio is central to direct and/or 

indirect surface mediated anti-osteoclastogenic effects. An enhanced surface topography 
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decreases the activity of pro-inflammatory immune cells and the subsequent release of 

osteoclastogenic factors, while inducing the activity of pro-healing immune cells and the 

release of anti-osteoclastogenic factors. The direct effect of topography to reduce osteoclast 

differentiation has been demonstrated. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the Web version of this article.)
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Fig. 12. 
Harnessing osteoimmunology and surface topography for modulation of osseointegration. 

An enhanced titanium surface topography modulates the series of events after implant 

placement towards the resolution of inflammation and increased osteogenesis. The arrows 

arising from the surface denote to topographical cues.
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Table 2

Summary of the effect of titanium surface topography on osteoclastogenesis.

Osteoclastogenic mechanisms Possible Role of Titanium Surface Micro/Nano Topography
a Example 

Reference

Direct topographical effects - Mediates osteoclast-implant interactions [322]

- Affects cytoskeletal reorganization in osteoclast precursors [324]

- Affects the assembly of osteoclast resorption apparatus [325]

- Reduces osteoclast activity and inhibit osteoclast differentiation through MAPK 
signaling pathway

[326,327]

- Attenuates the osteoclast-induced disruption of osteoblast differentiation by 
regulating histone methylation

[91]

Indirect topographical effects - Directs MSCs and osteoblasts to acquire an immunomodulatory role affecting 
osteoclastogenesis

[105]

- Modulates the expression of osteoclastogenic factors and OPG/RANKL ratios in 
peri-implant cells to inhibit the formation of osteoclasts

[24,26,97,98, 
329,330]

- Inhibits osteoclastogenesis via mediation of M2 macrophage polarization [332]

Inflammasome function - May influence inflammasome function by reorganizing the actin cytoskeleton in 
macrophages

[370,371]

NF-κB signaling pathway - Reduces the activation of early NF-κB transcriptional pathway in macrophages [256,382]

Toll-like receptors - Reduces the immune response to toll-like receptors and their expression in implant 
adherent cells

[256,394, 395]

Complement system - Reduces C3 activation which induces osteoclast differentiation [165]

Dendritic cells (DCs) maturation - Smooth and rough hydrophilic hydrophobic surfaces switch DCs toward maturation 
phenotypes, increase the expression of pre-inflammatory cytokines and promote 
osteoclastogenesis.

[153,190]

- DCs on smooth titanium surface release MCP-1 which induces osteoclastogenesis 
and the formation of multinucleated osteoclast-like cells from bone marrow 
precursors

Macrophage polarization - Modulates macrophage polarization and downstream osteoclast differentiation. [247]

- Suppresses osteoclastogenesis via the integrin β1/FAKpY397/MAPK pathway or 
inhibiting the regulatory factor NFATc-1

[248,256]

Systemic conditions - May improve osseointegration by modulating protein-implant interactions and 
mediating later cellular functions towards the resolution of inflammation and reduced 
osteoclastogenesis

[256,263, 443,444]

a
Refer to the text for detailed description of the mechanisms.
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