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Abstract

Motivation: There is widespread interest in identifying genetic variants that exhibit parent-of-origin effects
(POEs) wherein the effect of an allele on phenotype expression depends on its parental origin. POEs can arise
from different phenomena including genomic imprinting and have been documented for many complex traits.
Traditional tests for POEs require family data to determine parental origins of transmitted alleles. As most genome-
wide association studies (GWAS) sample unrelated individuals (where allelic parental origin is unknown), the study
of POEs in such datasets requires sophisticated statistical methods that exploit genetic patterns we anticipate
observing when POEs exist. We propose a method to improve discovery of POE variants in large-scale GWAS sam-
ples that leverages potential pleiotropy among multiple correlated traits often collected in such studies. Our method
compares the phenotypic covariance matrix of heterozygotes to homozygotes based on a Robust Omnibus Test. We
refer to our method as the Parent of Origin Inference using Robust Omnibus Test (POIROT) of multiple quantitative
traits.

Results: Through simulation studies, we compared POIROT to a competing univariate variance-based method which
considers separate analysis of each phenotype. We observed POIROT to be well-calibrated with improved power to de-
tect POEs compared to univariate methods. POIROT is robust to non-normality of phenotypes and can adjust for popu-
lation stratification and other confounders. Finally, we applied POIROT to GWAS data from the UK Biobank using BMI
and two cholesterol phenotypes. We identified 338 genome-wide significant loci for follow-up investigation.

Availability and implementation: The code for this method is available at https://github.com/staylorhead/POIROT-
POE.

1 Introduction

Most genome-wide association studies (GWAS) implicitly assume
the magnitude and direction of effect of a genetic variant on expres-
sion of a phenotype is independent of whether the variant was ma-
ternally or paternally inherited. However, there exists a distinct
class of genetic variants for which this assumption is violated. Such
variants harbor a parent-of-origin effect (POE) wherein the effect of
an allele on a trait depends on whether it was transmitted from the
mother or the father (Lawson et al. 2013). A substantial proportion
of the variation in complex traits is not explained by the additive
effects of common single-nucleotide polymorphisms (SNPs) across
the genome. POEs may represent an important contribution to this
missing heritability (Guilmatre and Sharp 2012).

There are multiple cited biological mechanisms by which POEs
can arise in mammals. These include maternal intrauterine environ-
ment effects and effects of the maternal mitochondrial genome.

However, the most frequently considered mechanism is genomic

imprinting (Rampersaud et al. 2008). This epigenetic phenomenon
was formally discovered in the 1980s primarily through embryo-
logical experiments (Reik and Walter 2001). In imprinting, the
maternal and paternal alleles undergo differential epigenetic modifi-

cations that leads to parent-of-origin-specific transcription of the
gene copies. Many imprinted genes tend to be found in clusters
across the genome. Regulation of the expression of these clustered

genes is under control of an imprinting control region (ICR), the
mechanisms of which are complex (Barlow 2011). These ICR are
often characterized by repetitive sequences and located near

imprinted genes. It is estimated that only �1% of mammalian genes
are subject to imprinting. However, there has been growing evidence
for the existence of POE variants for a wide range of hereditary

traits (Peters 2014). Classic examples of POE-associated diseases
include Prader–Willi syndrome and Angelman syndrome. These
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diseases result from imprinted genes at 15q11-15q13 when only ma-
ternal or paternal copies are expressed, respectively (Aypar et al.
2014). Considerable research has further suggested POEs originate
for a wide spectrum of complex traits, including obesity-related
phenotypes, type 2 diabetes, basal-cell carcinoma, attention-deficit/
hyperactivity disorder, schizophrenia, and breast cancer
(Giannoukakis et al. 1993; Temple et al. 1995; Huxtable et al.
2000; Polychronakos and Kukuvitis, 2002; Dong et al. 2005;
Palmer et al. 2006; Rampersaud et al. 2008; Kong et al. 2009; Wang
et al. 2012; Hoggart et al. 2014).

To detect variants demonstrating POEs, studies have historically
required genotype data from related individuals to ascertain paren-
tal ancestry of the inherited alleles. In the case of available
parent-offspring trio or other forms of familial genomes, there are
well-established methods to detect POEs (Weinberg et al. 1998;
Weinberg 1999; Sinsheimer et al. 2003; Cordell et al. 2004; Becker
et al. 2006; Ainsworth et al. 2011; Howey and Cordell 2012; Zhou
et al. 2012; Connolly and Heron 2015; Howey et al. 2015). These
approaches often test for a mean difference in allele effect based on
grouping offspring by parent-of-origin of the allele. These mean-
based tests are intuitive and optimally powered given sample size.
Yet, the requirement of trio or more general family data severely
limits this sample size in practice. This, in consequence, limits
genome-wide discovery of the modest genetic effects that we antici-
pate for complex human traits.

Rather than rely on family studies of limited sample size to detect
POEs, researchers have recently transitioned to detecting the phe-
nomenon in GWAS-scale cohorts. This practice requires innovative
statistical methods to deal with missing parental ancestry informa-
tion. For example, Kong et al. (2009) inferred parental origin of
alleles when parental genotype data are not available by first phas-
ing Icelandic probands. For each of the proband haplotypes, they
searched a genealogy database for the closest typed maternal and pa-
ternal relatives carrying that haplotype (Kong et al. 2009). For each
haplotype, they constructed a robust score comparing the meiotic
distances between the proband and these two relatives to quantify
the likelihood of maternal or paternal transmission and ultimately
assign parental origin. While this approach solves the issue of small
sample sizes, power is still impacted by the potential inaccuracy or
uncertainty in haplotypic reconstruction.

More recently, Hoggart et al. (2014) described a novel statistical
method for detecting POEs for a single quantitative trait using
GWAS data of unrelated individuals. The authors illustrated that
the existence of a POE results in increased phenotypic variance
among heterozygotes compared to homozygotes. They tested for
this variance inflation using a robust version of the Brown–Forsythe
test. The method successfully identified previously undocumented
POE associations of two SNPs with body mass index (BMI). This
work has enabled POE analysis in population studies of biobank
scale.

A sizable proportion of genes in the GWAS catalog are pleiotrop-
ic (Chesmore et al. 2018). These genes affect more than one bio-
logical process, in turn associating with multiple (correlated)
phenotypes (He and Zhang 2006). Analyzing the joint effects of a
gene on more than one trait can often result in a marked increase in
power over univariate approaches (O’Reilly et al. 2012; Solovieff
et al. 2013; Kocarnik and Fullerton 2014). Importantly, well-
established POEs in humans are usually the result of embryonic
silencing of one parental allele. As this silencing generally occurs
early in development, its effects are likely to present in all or nearly
all tissues expressing the gene. When differential silencing of this
gene affects multiple tissues, this can yield POEs for several distinct
phenotypes. Joint analysis of multiple traits can leverage this poten-
tial pleiotropy to improve power over univariate variance-based
POE tests while simultaneously reducing multiple testing burden of
multiple phenotypes.

Here, we expand on the concept initially suggested by Hoggart
et al. to develop a test for POEs in genetic studies of unrelated indi-
viduals that considers multiple quantitative phenotypes. We show
that a pleiotropic POE variant will not only induce differences in the
variance of POE traits between heterozygotes and homozygotes, but

also in their corresponding covariances. In our method, POIROT
(Parent-of-Origin Inference using Robust Omnibus Test), we test for
equality of phenotypic covariances matrices between heterozygous
and homozygous groups. Specifically, we use the robust omnibus
(R-Omnibus) test (O’Brien 1992) to accommodate highly skewed
traits. We first provide background on the statistical construction of
our test statistic using the R-Omnibus framework. Next, through
simulations, we demonstrate that our proposed method properly
controls type I error and achieves superior power compared to the
univariate approach of Hoggart et al. We also introduce a post hoc
test that can help distinguish variants with POE effects from variants
demonstrating more general gene–gene/gene–environment effects
(which also induce patterns of trait variance/covariance that differ
by genotype). We apply our method to GWAS data of BMI, high-
density lipoprotein (HDL) cholesterol, and low-density lipoprotein
(LDL) cholesterol from the UK Biobank and identify 338 significant
potential POE loci. We conclude with a discussion of our findings,
limitations, and proposed research to extend this work.

2 Materials and methods

2.1 Phenotype model
Using the notation of Hoggart et al. (2014) consider one biallelic
SNP with reference allele A and alternative allele B. Assume we have
collected nAA individuals who have the homozygous AA genotype,
nBB individuals who have the homozygous BB genotype, and nAB

individuals who are heterozygous. Further assume we have collected
K>1 continuous phenotypes on all subjects and that we have al-
ready adjusted these phenotypes for the effects of non-genetic con-
founders like principal components of ancestry.

We first model phenotypes in homozygous AA subjects. Let

y AAð Þ
i ¼ y AAð Þ

i;1 ; y AAð Þ
i;2 ; . . . ; y AAð Þ

i;K

� �0
2 R

K be the vector of phenotypes

for the ith AA individual. We can represent y AAð Þ
i using the following

framework

y AAð Þ
i ¼ l þ �i; i ¼ 1; . . . ; nAA (1)

Within (1), l ¼ ðl1; . . . ;lKÞ0 is the K� 1 vector of phenotype
means in AA subjects and ei ¼ ðei1; . . . ; eiKÞ0 is the K� 1 vector of
error terms. We assume that E ei½ � ¼ 0K and Cov ei½ � ¼ R, where R is
the K� K variance–covariance matrix of the vector of error terms.

We next model phenotypes in homozygous BB subjects. Let

y BBð Þ
i ¼ y BBð Þ

i;1 ; y BBð Þ
i;2 ; . . . ; y BBð Þ

i;K

� �0
2 R

K be the vector of phenotypes

for the ith BB individual. Further, let bMk and bPk represent the ef-
fect of the maternally inherited and paternally inherited B allele, re-
spectively, on the kth phenotype. If there is no association between
this SNP and the kth phenotype, it follows that bMk ¼ bPk ¼ 0. If
there is a marginal association between this SNP and the kth pheno-
type, but there is no POE present, then bMk ¼ bPk 6¼ 0. With this no-

tation defined, we can model y BBð Þ
i as

y BBð Þ
i ¼ l þ bM þ bP þ �i; i ¼ 1; . . . ; nBB (2)

Here, l is as defined previously for (1), bM ¼ ðbM1; . . . ; bMKÞ0 is
the K� 1 vector of maternal effects of the B allele on each of the k
phenotypes, and bP ¼ ðbP1; . . . ;bPKÞ0 is the K� 1 vector of corre-
sponding paternal effects of the B allele. Each element of bM and bP

is assumed to be a fixed effect. Just as for the AA subjects in (1), we
assume that E ei½ � ¼ 0K and Cov ei½ � ¼ R.

Lastly, we consider heterozygous AB individuals who carry only one

copy of the alternative allele B. Let y ABð Þ
i ¼ y ABð Þ

i;1 ; y ABð Þ
i;2 ; . . . ; y ABð Þ

i;K

� �0
2

R
K be the vector of phenotypes for the ith heterozygote. We can model

this vector as

y ABð Þ
i ¼ l þ pibM þ 1� pið ÞbP þ �i; i ¼ 1; . . . ; nAB (3)

In (3), pi is an indicator random variable where pi ¼ 1 if individ-
ual i received the B allele from the mother and pi ¼ 0 if individual i
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received the B allele from the father. We assume pi � Bernoulli
(1=2), as we expect that half of heterozygotes will have maternally-
derived B alleles. The maternal and paternal effect vectors are as
defined as for the model of BB subjects. We also assume that E ei½ � ¼
0K and Cov ei½ � ¼ R. In other words, the covariance matrix of the
error terms is the same within all three genotype groups.

Based on the derivations above, we can calculate the phenotype
covariance matrix for each genotype category. Based on Equations
(1) and (2), it is straightforward to show that the phenotype covari-
ance matrix of AA individuals (R) is the same as the analogous ma-
trix for BB individuals. Therefore, we can define RHom ¼ R as the
phenotypic covariance matrix for all homozygous subjects. For het-
erozygous AB subjects modeled in Equation (3), we can show that
(assuming pi? ei 8 i; i 2 1; . . . ; nABð Þ) the phenotype covariance ma-
trix for heterozygotes is RHet ¼ 1

4 bM � bPð Þ bM � bPð Þ0 þ RHom.
Defining bk ¼ bMk � bPk k ¼ 1; . . . ;Kð Þ, we can show that
RHet ¼ RHom if and only if

b2
1 b1b2 � � � b1bK

b2b1 b2
2 . . . b2bK

..

. ..
. . .

. ..
.

bKb1 bKb2 � � � b2
K

0
BBBB@

1
CCCCA
¼ 0K�K (4)

This observation motivates the use of a test of equality of two co-
variance matrices for detecting POEs in a population-based sample
where we cannot explicitly observe pi. If a POE SNP exists for any
phenotype k, then bk 6¼ 0 and b2

k > 0. Thus, the kth diagonal elem-
ent of RHet will be larger than the corresponding element of RHom.
Furthermore, if the SNP has POEs on two phenotypes k and k’, then
bkbk0 6¼ 0. The kk’ element of RHet will also be different from the
corresponding off-diagonal element of RHom.

2.2 POIROT method to detect POE SNPs
We can test the null hypothesis that no POEs exist at a given SNP
for any of the K phenotypes under study (H0 : bM ¼ bP) by equiva-
lently testing H0 : RHet ¼ RHom. In our proposed method POIROT,
we test for equality of these phenotypic covariance matrices between
homozygotes and heterozygotes using the robust omnibus
(R-Omnibus) test of O’Brien (O’Brien 1992). POIROT uses R-
Omnibus rather than the traditional Box’s M test (Box 1949) to test
covariance differences since the latter is highly sensitive to devia-
tions of phenotypes from multivariate normality. This can lead to a
undesirable elevation in type I error rates (Tiku and Balakrishnan
1984).

To derive the R-Omnibus test, we first center the phenotypes by
the median within each genotype group (AA, AB, BB). This step is
necessary if a marginal association exists between the alternative al-
lele and a given phenotype. In that event, the variance of original
phenotype values among aggregate homozygous subjects (AA, BB)
would be erroneously inflated. We next group these centered pheno-
types by homozygote versus heterozygote status. Let xhet

i;k be the kth
centered phenotype of the ith heterozygote (i ¼ 1; . . . ;nABÞ and
xhom

j;k be the kth phenotype of the jth homozygous (AA and BB com-
bined) individual (j ¼ 1; . . . ;nAA þ nBB). We then calculate the me-
dian of each phenotype k in heterozygotes and homozygotes
separately. Let Mhet

k be the median of the kth phenotype in the nAB

heterozygotes. Correspondingly, let Mhom
k be the median of the kth

phenotype in the nAA þ nBB homozygotes. For heterozygotes and
homozygotes separately, we then calculate for phenotypes k and k’:

Zhet
i;k;k0
¼ xhet

i;k �Mhet
k

� �
xhet

i;k0
�Mhet

k0

� �
(5)

Zhom
j;k;k0
¼ xhom

j;k �Mhom
k

� �
xhom

j;k0
�Mhom

k0

� �
(6)

Whet
i;k;k0 ¼

Zhet
i;k;k0

Zhet
i;k;k0

���
���

1
2

(7)

Whom
j;k;k0
¼

Zhom
j;k;k0

Zhom
j;k;k0

���
���

1
2

(8)

In (7) and (8), we standardize the Z measures by dividing by the
square root of their absolute values. We consider Whet

i to be the vec-
tor of W values for the ith heterozygous subject, and Whom

j is the
corresponding vector of W values for the jth homozygous subject.
We then perform a two-sample Hotelling’s T2 test (Hotelling 1931)
comparing our two sets of p ¼ ðK2 þKÞ=2 sample means
(W het;W homÞ. There are p dependent variables being compared be-
tween heterozygotes and homozygotes as this corresponds to the
number of upper-triangular elements in the phenotypic covariance
matrix. We calculate the test statistic t2 ¼ nhetnhom

nhetþnhom

W het �W hom

� �
0S�1 W het �W hom

� �
, where S�1 is the inverse of the

pooled covariance matrix estimate. Under the null, our test statistic
t2 � T2 p; nhet þ nhom � 2ð Þ (Hotelling 1931). The test can also be
viewed as a one-way multivariate analysis of variance test
(MANOVA).

2.3 Post hoc test for interaction effects
As detailed above, POIROT tests for a variant demonstrating POE
by comparing/contrasting trait variances and covariances by geno-
type. However, trait variances can also differ by genotype when a
variant exhibits a gene–gene (GxG) or gene–environment (GxE)
interaction effect (Paré et al. 2010). To increase confidence that a
variant identified by POIROT demonstrates a POE rather than a
more general interaction effect, we propose a post hoc test that can
be utilized to differentiate the two phenomena. The test is motivated
by the observation that, for a general interaction effect, the variance
of a quantitative phenotype among BB homozygous individuals is
different from that of AA homozygotes. This observation is in con-
trast to the variance pattern expected under a POE, in which the
variability of each homozygous group is the same after phenotype
centering. Thus, we can craft a post hoc test that assesses the null hy-
pothesis of a POE (trait variance/covariances are the same between
the two homozygous categories) versus the alternative of a general
interaction effect (trait variance/covariances differ between the two
homozygous categories). We create such a test by implementing the
R-Omnibus framework as previously outlined in Section 2.2 but
restricted to comparison of the two homozygous groups (AA, BB).

2.4. Simulation study
We conducted a variety of simulation studies to determine
POIROT’s ability to detect POEs while maintaining proper rates of
type I error. We considered K¼3, 6, or 10 phenotypes and
n¼3000, 5000, or 10 000 unrelated individuals. To generate pheno-
types for each round of simulation, we first randomly generate K
intercepts from a standard normal distribution to form the K� 1
vector l. This corresponds to the mean vector of phenotypes among
AA homozygotes. For simplicity, we assume the diagonal elements
of the matrix R, corresponding to the variances of the random error
terms, are all equal to one. We assume the K phenotypes exhibit one
of three possible levels of pairwise correlation (low, medium, or
high). We assume the pairwise trait correlations are randomly
drawn from a uniform distribution. To simulate phenotypes exhibit-
ing “low” correlation, we assume this is a Uniform(0,0.3) distribu-
tion. For phenotypes of “medium” and “high” correlation, we
assume a Uniform(0.3,0.5) and Uniform(0.5,0.7) distribution, re-
spectively. These random draws are used to populate the off-
diagonal elements of R.

Once we have constructed R, we then randomly generate n ma-
ternal and paternal genotypes for a given SNP by sampling twice
from a Bernoulli [p ¼ MAF (minor allele frequency)] distribution
for each parent. To generate offspring genotypes, we sample from a
Bernoulli (p¼ .5) distribution to determine which maternal allele
and which paternal allele is transmitted. Thus, we can now assign
all n offspring to one of four genotype groups: (i) AB with maternal
reference/paternal alternative, (ii) AB with paternal reference/mater-
nal alternative, (iii) AA, and (iv) BB. We then simulate the
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phenotypic error vector for all n unrelated offspring by drawing
from a multivariate distribution with mean 0 and variance-
covariance matrix R. The respective fixed K� 1 maternal and pater-
nal effect vectors of the alternative allele (bM; bP) are constructed de-
pending on the specific null or alternative scenario under
consideration. We then add these vectors to the random error and
intercept term in concordance with the genotype group of each indi-
vidual, as described in Section 2.1.

For type I error rate simulations, as described above, we assume
these phenotypes have pairwise-trait correlation of levels low, me-
dium, or high. To reflect the scenario where there exist no POEs or
marginal effects of the alternative allele at the locus for any pheno-
type, we assume that bM ¼ bP ¼ 0. We also considered a second
null scenario wherein a marginal association exists for the variant
that is not specific to the parent of origin, i.e. bM ¼ bP 6¼ 0.
However, we note that if the same seeds are used in simulating the
data, this marginal fixed effect is effectively removed when centering
phenotypes by genotype group. The resulting test statistics are
equivalent to the first null scenario. We first consider the circum-
stance where the random error terms are drawn from a normal dis-
tribution, i.e. the error follows MVNKð0;RÞ and assume a MAF of
0.25. For each of the 27 combinations of number of phenotypes,
sample size, and pairwise-trait correlation, we conducted 50 000
null simulations. To evaluate the robustness of our method to highly
skewed phenotypes, we then repeated these parameter settings with
non-normal random error terms. In particular, we utilize the method
of Vale and Maurelli to simulate multivariate non-normal error
terms assuming a skewness of two and excess kurtosis of two for
each phenotype (Vale and Maurelli 1983). An example distribution
of such a phenotype is illustrated in Supplementary Fig. S1.

Next, we investigated the power of our test when POEs do in
fact exist for a locus. We again considered K¼3, 6, or 10 normally
distributed phenotypes. We assumed 1, 2, or 3 had parent-of-origin
specific associations with the variant. When the number of affected
phenotypes is greater than one, this corresponds to pleiotropy. For
these scenarios, we assumed bP ¼ 0 and bMk ¼ 0.5, 0.6, or 0.75 for
each phenotype k harboring a POE. All other elements of the mater-
nal effect vector are 0 for the phenotypes with no POE associations.
We again considered low, medium, and high pairwise-trait correla-
tions. We assumed a MAF of 0.25 and sample sizes of 5000, and
10 000. We applied our method to 5000 simulated datasets for each
of the 162 settings and calculated power at significance level
a 2 f0:005; 5 � 10�4g. We also evaluated the power of POIROT
when a locus is pleiotropic for POEs, but the magnitude of bMk

varies by phenotype. For this power analysis, we again tested 3, 6,
or 10 total normal phenotypes, of which 2 or 3 are harboring POEs.
Since maternal effect sizes of 0.5–0.75 were considered for the scen-
arios described above, we tested bM1 ¼ 0:5, bM2 ¼ 0:75 when two
phenotypes have POEs. When three phenotypes have POEs, we
tested power using 0.5, 0.6, and 0.75 as maternal effect sizes.

We also compared the performance of POIROT to the corre-
sponding univariate test of Hoggart et al. (2014). For the univariate
test, we first calculated power using standard Bonferroni correction.
Power was calculated as the proportion of loci for which the min-
imum observed P-value across the K phenotypes tested was less than
a=K. Given that these phenotypes are correlated and therefore may
not reflect K independent tests, this approach can be overly conser-
vative. Thus, we implemented a second more liberal approach that
estimates the true number of independent tests, Keff , which corre-
sponds to the minimum number of principal components (PCs)
explaining 90% of the variation in our K phenotypes. We then
calculated power of the univariate approach as the proportion of
loci for which the minimum observed P-value was less than a=Keff

(Gao et al. 2008; Broadaway et al. 2016). We then repeated these
parameter settings for assessing power of POIROT with non-normal
phenotypes, as described for null simulations.

Finally, we performed several simulations to investigate the per-
formance of our proposed post hoc test for distinguishing POEs
from general interaction effects. Under the null hypothesis (i.e. there
exist POEs but no interaction effects for any of the phenotypes con-
sidered), we looked at type I error of the R-Omnibus test comparing

phenotypic covariances of the two homozygous groups. Similar to
above, we considered a MAF of 0.25 and 3, 6, or 10 tested pheno-
types, of which 1, 2, or 3 had POEs but no interaction effects. We
considered sample sizes of 5000 and 10 000, maternal POE effect
sizes f0.5, 0.6, 0.75g, and low/medium/high trait correlation. We
also evaluated the power of this post hoc test to identify GxE effects
when present. Simulation parameters were informed by prior work
of Paré et al. (2010). We considered a single unmeasured covariate
drawn from a standard normal distribution. Again, we considered 3,
6, or 10 total quantitative traits, of which three had a non-negligible
covariate effect. Of these three phenotypes, 1, 2, or 3 had gene–
covariate interaction effects. The covariate effect sizes ranged from
0.3 to 0.7. Among the phenotypes with gene–covariate interaction
effects, we varied to the proportion of total variation of each pheno-
type explained by the interaction effects between 0.005 and 0.01.
Again, we allowed traits to have varying pairwise correlation. We
performed 5000 simulations for each of the 216 power settings out-
lined for the post hoc interaction test.

2.5 Application of POIROT to UK Biobank
To assess the utility of POIROT for detecting POEs on continuous
phenotypes using published population-based GWAS data, we
utilized genotype and phenotype data from the UK Biobank
(UKB), a large-scale biomedical database housing data collected
from approximately 500 000 individuals from the UK (see
Acknowledgements). This study allows for widespread investigation
of the genetic variation associated with hundreds of lifestyle and
health factors. To identify potential POE variants, we obtained data
on three quantitative phenotypes [BMI (kg/m2), HDL cholesterol
(mmol/l), and LDL cholesterol (mmol/l)]. Relevant covariates
included genotyping array, PCs, sex, age at recruitment, and smok-
ing status (prefer not to answer, never, previous, current). Prior to
analysis, we removed all individuals identified as outliers according
to pre-calculated metrics of genotype missingness, heterozygosity,
and excess relativeness. We excluded those with putative sex
chromosome aneuploidy and those who were not included in PCA
calculation. We included individuals of self-reported white British
ancestry only.

Subjects were genotyped using either the UK BiLEVE or UK
Biobank Axiom arrays. We considered only autosomal variants with
MAF >0.05, Hardy–Weinberg equilibrium P>1e�8, and missing-
ness rate <0.02. After quality control and filtering, 330 801 SNPs
remained for analysis across 292 779 unrelated individuals with
complete phenotype and covariate information. There is moderate
negative correlation between BMI and HDL cholesterol (Pearson’s
r¼�0.35), low positive correlation between BMI and LDL
(r¼0.02), and low positive correlation between LDL and HDL
(r¼0.10). However, all estimated correlations are statistically
significant (P<2.2e�16). Covariate adjustment was performed by
first fitting a linear model for each phenotype and extracting the
residuals as the new adjusted phenotypes. We then applied POIROT
to these three adjusted phenotypes to jointly test for POEs across the
genome. We compared the findings of our approach to those from
the method of Hoggart et al. performed on each phenotype individu-
ally. For any variant identified by POIROT meeting the Bonferroni-
adjusted genome-wide significance threshold, we applied our
proposed post hoc test to assess if the effect might be explained by a
general interaction effect rather than a POE.

We concluded with a follow-up analysis to determine whether
we see enrichment of variants in imprinting regions among those
with lowest POIROT P-values for detecting POEs in the UKB co-
hort. We first downloaded genes of known imprinting and predicted
imprinting status in humans from the GeneImprint database (https://
www.geneimprint.com/). We then determined which variants in the
UKB dataset fell within 500 kb of the starting and ending site of
these genes. We defined these as our variant set of interest [compar-
able to a gene set in Gene Set Enrichment Analysis (GSEA)]. We then
utilized the GSEAPreranked tool to test for enrichment of variants in
this set among those top ranked variants by -log10(POIROT P-value)
(Mootha et al. 2003; Subramanian et al. 2005).
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3 Results

3.1 Type I error rate
We summarize the type I error of null scenarios with a sample size of
5000 individuals using Quantile-Quantile (QQ) plots in Fig. 1 (nor-
mal traits) and Fig. 2 (non-normal traits). Across the settings consid-
ered, our method yields the expected distribution of P-values under
the null hypothesis of no POEs for any single phenotype.
The distribution of the P-values is again as expected under the
null when we have non-normality of phenotypes (Fig. 2), suggesting
our method remains robust. We summarize the empirical type I
error rates of our proposed test and the competing univariate
approach at significance level a 2 f0:05; 0:005; 5 � 10�4;5 � 10�5g
in Supplementary Table S1. POIROT maintained appropriate type I
error across all scenarios for normally distributed traits. We
observed slightly higher error when 6 or 10 highly-skewed non-nor-
mal phenotypes were tested. The univariate approach with correc-
tion for Keff tests showed minor inflation with 6 or 10 highly
correlated phenotypes.

3.2 Power
Simulation results comparing the performance of POIROT to the
competing univariate test under the assumption of true POE(s) are
summarized in Fig. 3. This figure reflects normally distributed traits
and sample size of 5000 (a ¼ 5 � 10�4). Corresponding results
from all other additional power settings, including both normal and
non-normal traits, sample sizes of 5000 and 10 000, and a ¼
0:005; 5 � 10�4 are provided in Supplementary Figs S2–S9.

Simple Bonferroni correction tends to be overly conservative in
the presence of correlated traits. We therefore used two multiple-
testing correction approaches for the univariate method. As power
generally increases with increasing sample size and POE magnitude,

Figure 1 QQ plots of P-values for proposed parent-of-origin effect test under the

null hypothesis bM ¼ bP ¼ 0 using a series of 50 000 simulations of 5000 individu-

als using 3 (left column), 6 (middle column), or 10 (right column) continuous nor-

mal phenotypes. MAF is assumed to be 0.25. Horizontal panels depict level of

pairwise-trait correlation (low, medium, high). QQ, quantile–quantile; MAF, minor

allele frequency.

Figure 2 QQ plots of P-values for proposed parent-of-origin effect test under the

null hypothesis bM ¼ bP ¼ 0 using a series of 50 000 simulations of 5000 individu-

als using 3 (left column), 6 (middle column), or 10 (right column) continuous non-

normal phenotypes. MAF is assumed to be 0.25. Horizontal panels depict level of

pairwise-trait correlation (low, medium, high). QQ, quantile–quantile; MAF, minor

allele frequency.

Figure 3 Power of POIROT to identify POEs assuming K¼3, 6, or 10 normal phe-

notypes (horizontal panels) compared to univariate test. We assume either 1, 2, or 3

of the phenotypes harbor POEs at the locus (vertical panels). We performed 5000

simulations for each scenario. We calculated power at significance level 0.0005 for

our multitrait test and 0.0005/K (Bonferroni correction) and 0.0005/Keff for the uni-

variate test, where Keff is the number of PCs needed to explain 90% phenotypic

variation. bMk ¼ 0:75 for POE traits, MAF¼0.25, and sample size¼5000. POE,

parent-of-origin effect; MAF, minor allele frequency; PCs, principal components.
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the scenarios shown in Fig. 3 correspond to a bMk of 0.75 and sam-
ple size of 5000. For almost all scenarios, we see three general
trends. First, unlike the univariate method, our method successfully
leverages the correlation among phenotypes. We see power increas-
ing with increasing trait correlation. Second, when pleiotropy exists
and more than one phenotype harbors a POE, our method outper-
forms the univariate approach regardless of the multiple testing cor-
rection strategy. Third, power of POIROT increases as the number
of phenotypes associated with the maternally-transmitted alternative
allele increases across all levels of phenotypic correlation. Under
simulated pleiotropic POE loci with varying bMk, the power of
POIROT tends to reflect the power assuming a constant bMk for
POE phenotypes at the median effect size (Supplementary Figs S10
and S11).

The one exception to these trends is the top right panel of Fig. 3.
This reflects the scenario where three of three phenotypes harbor
POEs of the same magnitude and direction. We see here that power
decreases going from low to medium correlation and from medium
to high correlation. We also see lower power when three phenotypes
are affected when compared to the corresponding settings when
only two of three phenotypes have POEs. This pattern, although un-
usual, has been documented in previous cross-phenotype methodo-
logical studies (Broadaway et al. 2016; Ray et al. 2016). As
described in Section 2.2, the R-Omnibus test for equality of covari-
ance matrices used by POIROT ultimately employs a one-way
MANOVA test to generate our test statistic. Ray et al. describe how
when we have K correlated traits being tested and a SNP is associ-
ated with all K traits, utilizing a MANOVA to find marginal associ-
ations with multiple traits can result in an appreciable loss of power.
In particular, the authors show how the power of MANOVA is
asymptotically lower when all traits are associated with equal mag-
nitude and direction than when fewer than K phenotypes are associ-
ated (Ray et al. 2016).

3.3 Post hoc interaction test
Type I error results of our post hoc test for distinguishing POE (null)
from general interaction effects (alternative) are shown in
Supplementary Fig. S12. This is an illustrative example when only
POEs exists for a sample size of 10 000 and the maternal POE effect
size is 0.75. These results are indicative of all null simulation settings
which show the test was well calibrated under the null when the
only effects were parent-of-origin-dependent. Under alternative sim-
ulations with a GxE interaction effect, our post hoc test had the
power to differentiate interaction effects from POEs (Supplementary
Figs S13 and S14). Power is increasing with increasing number of
phenotypes with non-null interaction effects, sample size, strength
of interaction effect, and generally, pairwise trait correlation.

3.4 Applied data analysis
We applied our method for detecting POEs to genotype and multi-
variate phenotype data of 292 779 individuals of European ancestry
from the UK Biobank. Raw quantitative phenotype measures of
interest were BMI, HDL cholesterol, and LDL direct cholesterol.
Phenotypes were appropriately adjusted for the effects of genotype
array, PCs, sex, age, and smoking status. For the 330 801 variants
considered, the average computation time per POIROT test was
22.53 s. Analysis was run with parallel computation with the gen-
ome segmented into 793 blocks with a maximum block runtime of
4.7 h (681 variants). We identified a total of 338 variants with
POIROT p-values falling below the Bonferroni-adjusted genome-
wide significance threshold of 1.5�10�7 (Supplementary Table S4).
These suggestive POE variants are shown in the Manhattan plot in
Fig. 4.

We also saw a significant positive normalized enrichment score
(nominal P< .001) from the GSEA follow-up test, indicating that
variants within 500 kb of imprinted or predicted-imprinted genes
tended to lie at the top of our list ranked by increasing POIROT
P-value. We next applied our post hoc test to these 338 identified
variants to evaluate whether any demonstrated general interaction
effects and observed that approximately two-thirds (230) had

P> .05/338 and failed to reject the null of a POE. We similarly
applied the univariate test for POEs genome-wide using each indi-
vidual phenotype separately. Results are provided in Supplementary
Figs S15–S17.

We report on the 41 variants identified by POIROT as potential
POE loci that were not identified by any of the three univariate tests
for POEs and further were not significantly demonstrating general
interaction effects based on our post hoc test. These 41 variants thus
represent the strongest evidence for novel POE effect(s) in our
analysis. Among them, we highlight one exonic variant (Affx-
20090007, POIROT P¼9.7�10�16) and one intronic variant
(rs41360247, POIROT P¼3.0�10�13) on chromosome 2 for gene
ABCG8. Polymorphisms in this gene have previously been associ-
ated with direct LDL in UKB samples (Klimentidis et al. 2020;
Barton et al. 2021). Variants within this gene have additionally been
associated with cholesterol phenotypes in analyses outside of the UK
Biobank dataset (Willer et al. 2013). Of particular note, ABCG8 has
been shown by prior research to be a high-confidence gene for ma-
ternal imprinting (Luedi et al. 2007). We also wish to highlight var-
iants identified by POIROT around the gene APOB on chromosome
2. Of 14 POIROT-identified variants mapping to this gene, two
failed to show evidence of significant interaction effects by our
post hoc test [rs550619 (intronic, POIROT P¼3.1�10�10),
rs74629722 (intergenic, POIROT P¼3.3�10�10)]. In particular,
rs550619 lies 3299 bp from a previously published POE variant for
BMI (rs1367117) (Hochner et al. 2015) and has significant GWAS
associations with direct LDL levels and total cholesterol phenotypes
(Klimentidis et al. 2020; Barton et al. 2021). Neither of these var-
iants were identified for any of the three tested phenotypes using the
existing univariate approach to detect POEs.

4 Discussion

In this article, we introduce a multivariate method, POIROT, for
identifying common variants exhibiting POEs on one or more quan-
titative phenotypes in unrelated subjects. This work is motivated
dually by the widespread evidence of pleiotropy in the genetics lit-
erature, as well as the limited statistical options for detecting POEs
in unrelated cohorts. Our proposed method is an inherently simple
statistical test of whether the phenotypic covariance matrix of heter-
ozygotes is equal to that of homozygotes at a given locus. It repre-
sents a multivariate extension of the POE test of a single continuous
phenotype proposed by Hoggart et al. (2014). It allows for appro-
priate adjustment for the effects of important covariates on the phe-
notypes under study and is also computationally efficient for
application to biobank-scale datasets (Supplementary Tables S2 and
S3). The R code for implementing POIROT is publicly available (see
Data availability).

Figure 4 Manhattan plot of parent-of-origin effects analysis using POIROT with

BMI, HDL cholesterol, and LDL cholesterol phenotypes from the UK Biobank. The

dashed line represents Bonferroni-adjusted genome-wide significance of 1.5�10�7.

BMI, body mass index; HDL, high-density lipoprotein, LDL; low-density

lipoprotein.
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Through simulations, we demonstrate POIROT achieves appro-
priate type I error under the null. It further displays superior power
to detect POEs than the competing univariate approach under most
settings. Our method is indeed robust to non-normality of pheno-
types across several simulation scenarios. We further applied our
method to real GWAS data on white individuals of European ances-
try from the UKB. In this analysis, we considered BMI as well as
HDL and direct LDL cholesterol as potential imprinted phenotypes.
The analysis revealed 338 variants meeting the stringent genome-
wide significance threshold. Of these, 41 of may warrant particular
focus in future investigations. They were not identified by the exist-
ing univariate approach to detect POEs and did not show evidence
of significant gene–gene or gene–environment interaction effects
using our proposed post hoc test. Two of these variants map to gene
ABCG8, a gene with high confidence of maternal imprinting in
humans based on previously published work, and another lies near-
by a known POE variant for BMI in the gene APOB.

While the results presented here are promising for the utility of
our proposed multivariate method for POE detection in practice,
there are inherent limitations that we must address. Firstly, we pro-
pose POIROT as a method to detect SNPs wherein the effect of the
variant allele in offspring differs according to which parent transmit-
ted it. We do not evaluate the ability of our method to detect other
trans-generational effects that may appear as imprinting effects at
surface evaluation (Connolly and Heron 2015). Furthermore, we ac-
knowledge that our method to detect POEs by evaluation of differ-
ing phenotypic covariance matrices by genotype groups may lead to
false positive identifications at loci where gene–environment or
gene–gene interaction effects exist. We have proposed a two-stage
screening procedure to combat this: first by implementing POIROT
as described, and second, by following up with our proposed test to
distinguish which findings may be the result of more general inter-
action effects. We also note if a trans-generational effect exists by
which, for example, the maternal genotype is affecting the offspring
phenotype in a manner that is not completely independent of off-
spring genotype (in other words, there are maternal–fetal genotype
interaction effects), we do believe we would be able to detect these
in our post hoc test for interaction effects.

POIROT is a variance/covariance-based test for detecting POEs
applicable to large population samples where allelic parental origin
is unknown. If parental genetic information is known (i.e. through
collection of parent-offspring trios), then it is well-established that
variance-based tests within the offspring are often considerably less
powerful than mean-based tests (like those described in the Section
1) that leverage allelic parental origin and look for differences in
phenotypic means between heterozygous offspring with maternally-
versus paternally inherited effect alleles (Struchalin et al. 2010). We
performed additional simulations comparing the power of the two
strategies at different sample sizes. Specifically, we simulated
parent-offspring trio genotype data, restricted samples for analysis
to include only heterozygous offspring, and tested for mean-based
differences in phenotypes between offspring who inherited the vari-
ant alleles maternally versus those who inherited it paternally via
one-way MANOVA. We assumed 2 out of 3, 6, or 10 phenotypes
harbored a POE. We generally found that variance/covariance meth-
ods require �13 times as many observations as familial mean-based
tests for equivalent power. The trio-based simulations assumed full
knowledge of parental transmission of the variant allele in heterozy-
gous offspring, when in reality, parent-of-origin may be ambiguous
in certain cases. For details, please see Supplementary Fig. S18.
Thus, if family-based data are available, we recommend the use of
mean-based tests for POE detection rather than variance-based tests.
For population studies, variance-based tests remain the only option
for POE analysis.

There are several avenues we are interested in pursuing to extend
the work presented here. Rather than testing genome-wide variants,
implementation of a two-stage screening procedure may mitigate the
multiple testing burden. In the first stage, we propose to perform a
standard GWAS for marginal (not parent-of-origin dependent) vari-
ant associations that considers multiple traits jointly. We restrict
consideration to marginal association tests that are orthogonal to

POIROT and thus provide complementary information. We can
then efficiently test a smaller subset of top SNPs identified from the
first stage for POEs. Another limitation we acknowledge is the re-

quirement of continuous phenotypes. We are interested in the pos-
sible extension of our approach to accommodate dichotomous

multivariate traits. One potential solution would be to use liability-
threshold models (Hujoel et al. 2020) that can effectively transform
a binary outcome into a continuous-valued posterior mean genetic

liability.
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