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Abstract

Background:  People ≥ 65 years are expected to live a substantial portion of their remaining lives with a limiting physical condition and the 
numbers of affected individuals will increase substantially due to the growth of the population of older adults worldwide. The age-related 
loss of muscle mass, strength, and function is associated with an increased risk of physical disabilities, falls, loss of independence, metabolic 
disorders, and mortality. The development of function-promoting therapies to prevent and treat age-related skeletal muscle functional 
limitations is a pressing public health problem.
Methods:  On March 20–22, 2022, the National Institute on Aging (NIA) held a workshop entitled “Development of Function-Promoting 
Therapies: Public Health Need, Molecular Targets, and Drug Development.”
Results:  The workshop covered a variety of topics including advances in muscle biology, novel candidate molecules, findings from randomized 
trials, and challenges in the design of clinical trials and regulatory approval of function-promoting therapies. Leading academic investigators, 
representatives from the National Institutes of Health (NIH) and the U.S. Food and Drug Administration (FDA), professional societies, 
pharmaceutical industry, and patient advocacy organizations shared research findings and identified research gaps and strategies to advance 
the development of function-promoting therapies. A diverse audience of 397 national and international professionals attended the conference.
Conclusions:  Function-promoting therapies to prevent and treat physical disabilities associated with aging and chronic diseases are a public 
health imperative. Appropriately powered, well-designed clinical trials and synergistic collaboration among academic experts, patients and 
stakeholders, the NIH and the FDA, and the pharmaceutical industry are needed to accelerate the development of function-promoting therapies.
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People ≥ 65 years are expected to live a substantial portion of their 
remaining lives with a limiting physical condition. The numbers of 
older adults living with a physical disability are expected to increase 
substantially due to the growth of the population of older adults 
worldwide. The age-related loss of muscle mass, strength, and func-
tion is associated with an increased risk of mobility limitations, falls 
and fractures, loss of independence, disability, metabolic disorders, 

and mortality (1,2). Recognizing the public health importance of 
developing effective interventions to prevent, delay, or reverse the 
age-related functional limitations, the National Institute on Aging 
(NIA), National Institutes of Health (NIH) U.S. Department of Health 
and Human Services  (HHS) held a workshop on March 20–22, 
2022, entitled “Development of Function-Promoting Therapies: 
Public Health Need, Molecular Targets, and Drug Development.” 
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A diverse group of experts, including academic investigators, rep-
resentatives from NIH and the U.S. Food and Drug Administration 
(FDA), professional societies, pharmaceutical industry, and patient 
advocacy organizations, shared current knowledge and perspectives 
on how to advance development of function-promoting therapies. 
A global audience of 397 professionals attended the workshop.

Speakers and discussants reviewed the urgent public health need 
for function-promoting therapies; advances in muscle biology, mo-
lecular targets, and candidate strategies; findings of preclinical studies 
and efficacy trials; critical issues in the design of efficacy trials; and 
strategies for accelerating the drug development process. Lessons 
learned from the successful Operation Warp Speed for coronavirus 
disease 2019 (COVID-19) Vaccine Development and from oncology 
drug development programs offer insights that can facilitate stra-
tegic planning to accelerate the development of function-promoting 
drugs. This review offers a synopsis of the topics presented at the 
workshop and its recommendations; a complete compendium of 16 
scientific papers describing in detail the topics presented and dis-
cussed at the workshop will be published in an upcoming special 
issue of the Journal of Gerontology, Series A: Biological Sciences and 
Medical Sciences.

Societal Impact of Aging-Related Functional 
Limitations: A Looming Public Health Crisis

By 2050, older adults will comprise nearly 20% of the world’s popu-
lation. Due to the increasing life expectancy (3) and the functional 
decline associated with advancing age (4), the number of older adults 
living with physical disabilities is expected to increase, profoundly 
influencing the need for health care resources. The functional limi-
tations associated with aging affect the ability of older adults to live 
independently in the community, engage socially, and enjoy a mean-
ingful quality of life. Physical activity is currently the only approach 
demonstrated to prevent disability, but the sustainability of phys-
ical activity interventions remains an issue (5). Therefore, function-
promoting pharmacologic therapies that can enhance or recapitulate 
the benefits of physical activity are urgently needed to reduce the 
burden of physical disabilities and to forestall the looming public 
health crisis.

Pathobiology of Functional Limitations 
Associated With Aging and Chronic Disease

Remarkable advances in muscle biology have revealed attractive tar-
gets for drug development, some of which have advanced to clinical 
trials. The leading candidate molecules undergoing investigation are 
described below.

Neural Mechanisms of Age-Related Loss of Muscle 
Strength
Impairments in neural as well as muscle-specific mechanisms con-
tribute to the age-related muscle weakness and mobility limitations. 
Aging is associated with alterations in neural mechanisms at mul-
tiple levels including supraspinal (reduced cortical excitability and 
arousal, dysfunction of dopaminergic neural circuits) (6,7); spinal 
cord (loss of functioning motor units, diminished motor neuron 
firing rates) (8); and neuromuscular junction (NMJ) (9). It is pos-
sible that failure of anabolic therapies to improve physical perform-
ance despite substantial increases in muscle mass may be related to 
their inability to induce neural adaptations necessary for integrated 

functions such as walking and stair climbing. An improved under-
standing of neural mechanisms that regulate complex physical func-
tions can facilitate the identification of neurotherapeutic approaches 
to enhance muscle performance and physical function.

Muscle Regeneration in Aging
Studies in preclinical models have documented the loss of resident 
skeletal muscle stem cells and a reduction in their myogenic po-
tential with aging (10,11). In response to muscle injury, these stem 
cells in young animals become activated to repair and fully restore 
damaged myofibers and muscles. However, the satellite cells number 
and myogenic potential decrease and regenerative response of skel-
etal muscle precursors following injury are attenuated with aging 
(11). In aged animals, muscle stem cells exhibit reduced capacity 
for proliferation, impairment of autophagy, and increased expres-
sion of aging-associated senescence markers. Pervasive STAT3 and 
p38a/β signaling and accumulation of p16mk in aged satellite cells 
lead to cell cycle exit and senescence (10). Extrinsic changes in the 
muscle microenvironment also contribute to an impaired regenera-
tive response of aged muscle precursor cells. Skeletal muscles can be 
reprogrammed to return to a state that fosters restoration, repair, 
and improved muscle mass and function in old and in dystrophic 
mice. Pharmacologic agents, cell-based therapies, or a combination 
of both are being explored for the treatment of people with mus-
cular dystrophies and those with age-related loss of muscle mass 
(12). It is still unclear whether such interventions will be efficacious 
as monotherapies or as components of interventions that target mul-
tiple pathways.

Mechanisms of Skeletal Muscle Atrophy
The mammalian target of rapamycin (mTOR) is known to con-
trol the anabolic and catabolic signaling of skeletal muscle mass, 
leading to modulation of muscle hypertrophy and atrophy. While 
anabolic agents that increase protein synthesis have been con-
sidered for treatment of sarcopenia, emerging evidence indicates 
that protein synthesis might be increased due to augmented mTOR 
complex 1 (mTORC1) activity (13). mTORC1 has been found to 
be hyperactivated in sarcopenia. Studies have shown that in certain 
muscles, partial suppression of the mTORC1 increased muscle mass 
and fiber type (cross-sectional area). The utilization of a low dose 
of a rapalog has been associated with downregulation of various 
senescence-linked genes and a reduction in gene expression markers 
of NMJ denervation. Ongoing efforts to partially suppress mTORC1 
with rapamycin and other rapalogs aim to better understand these 
findings. It is thought that partial suppression of mTORC1 can 
directly or indirectly control many age-related pathways, likely 
deferring sarcopenia evolution, and opening a wide array of options 
for therapeutic targets against this condition. Additional studies are 
needed to identify age-related alterations in muscle’s regenerative re-
sponse to injury, and to characterize the skeletal muscle adaptations 
in response to acute atrophy and recovery from it in older animals. 
Strategies to target multiple pathways associated with inflammation, 
metabolic stress, and extracellular matrix remodeling are needed.

Pharmacologic Interventions to Prevent and 
Treat Age-Related Functional Limitations

Although androgens, selective androgen receptor modulators 
(SARMs), growth hormone (GH) and GH secretagogues (GHS), and 
inhibitors of myostatin and activins are the farthest along in clinical 

2228� Journals of Gerontology: MEDICAL SCIENCES, 2022, Vol. 77, No. 11



development, several other pathways, such as the renin-angiotensin 
system, peroxisome proliferator activated receptor (PPAR) delta 
agonists, inflammatory pathways, orphan receptors, mitophagy, and 
mitochondrial function, also offer useful targets for drug develop-
ment. There is heightened excitement about drugs that target mech-
anisms of aging, such as nicotinamide adenine dinucleotide (NAD) 
boosters, senolytics, and mTOR inhibitors that are in early clinical 
development. In general, muscle anabolic drugs such as androgens 
and SARMs have shown excellent safety profile and consistent im-
provements in muscle mass and strength. Further studies are needed 
to evaluate strategies such as functional exercise training that can 
facilitate translation of gains in muscle mass and strength into func-
tional improvements.

Testosterone and Other Androgens
In randomized trials, testosterone treatment has been associated 
with consistent improvements in lean body mass, maximal voluntary 
strength, leg power, loaded stair climbing speed/power, and attenu-
ation of the age-related decline in aerobic capacity in healthy older 
men and older men with chronic conditions and mobility limitation 
(14–17). Testosterone treatment also improves depressive symptoms, 
increases areal and volumetric bone mineral density and estimated 
bone strength, and corrects unexplained anemia in older men with 
low testosterone levels and 1 or more of sexual symptoms, mobility 
limitation, and low vitality (18–20). Self-reported physical func-
tion is enhanced by testosterone treatment, but randomized trials 
have not shown clinically relevant improvements in performance-
based measures of physical function such as walking speed (21). 
Strategies to translate increases in testosterone-induced muscle mass 
and strength gains into functional improvements are needed. Large, 
adequately powered randomized trials of sufficiently long duration 
are needed to evaluate the efficacy of a combination therapy that in-
cludes testosterone plus multicomponent functional exercise training 
(22). Testosterone treatment of older men has been associated with 
relatively low frequency of adverse events in randomized trials; the 
long-term effects of testosterone on the incidence of major adverse 
cardiovascular events are being evaluated in a large, randomized 
trial in older adults with testosterone deficiency and increased risk 
of cardiovascular events (TRAVERSE Trial NCT03518034) (23).

Selective Androgen Receptor Modulators
SARMs are synthetic ligands that bind to androgen receptor and 
induce tissue-selective transcriptional activity whose development 
was motivated by a desire to improve the benefit-to-risk ratio of an-
drogen therapy and spare the prostate. Many SARMs with improved 
muscle anabolic to prostate activity relative to testosterone have 
undergone phase 2 trials, and some even phase 3 trials. Increases 
in lean body mass and muscle size, and the relative prostate sparing 
have been confirmed in randomized trials of several SARMs. In 
phase 2 trials in patients with cancer-related weight loss (24) and 
prostate cancer survivors with testosterone deficiency (25), oral 
SARMs have increased lean body mass but not measures of phys-
ical function. Similarly, in older women, SARM treatment has been 
shown to enhance lean body mass without increases in measures of 
physical function (26,27).

Myostatin
A member of the transforming growth factor (TGF)-β superfamily, 
myostatin, is a negative regulator of skeletal muscle growth. Naturally 
occurring mutations in several vertebrate species including humans 

are associated with hypermuscularity. Genetic disruption of the 
myostatin gene in mice and pharmacologic inhibition of myostatin 
in model organisms and humans increase skeletal muscle mass. 
Myostatin signals by binding initially to a type 2 receptor (ACVR2 
or ACVR2B)—followed by engagement of either type 1 receptors 
(ALK4 or ALK5) (28). Targeting both receptor types simultaneously 
can lead to substantial muscle growth in male and female mice, with 
greater increase in muscle mass than that associated with the inhib-
ition of the myostatin gene itself. Several strategies have been em-
ployed to block the effects of myostatin or activin including targeting 
of (i) mature myostatin or its pro-peptide; (ii) ligand traps such as a 
decoy soluble form of ACVR2B receptor, or a portion of follistatin 
fused to an Fc domain that prevents the binding of myostatin and 
related ligands to their receptors; (iii) monoclonal antibody directed 
against ACVR2 subtypes. Candidate molecules utilizing each of 
these strategies have been evaluated in human studies and shown 
to increase lean body mass; however, none has shown meaningful 
improvements in physical function. Inhibiting myostatin in preclin-
ical models increases bone mineral content and density. Skeletal 
muscle is a major regulator of metabolism; increasing muscle mass 
by blocking myostatin results in reduced fat mass, improved insulin 
sensitivity, and attenuation of the development of proatherogenic 
dyslipidemia and aortic atherogenesis in mice (29). Bimagrumab, a 
monoclonal antibody against activin type 2 receptor, increases lean 
body mass, and reduces fat mass, body weight, and hemoglobin 
A1c in adults with type 2 diabetes (30). Therefore, the therapeutic 
application of myostatin and activin blockers for the treatment of 
obesity and type 2 diabetes in older adults with sarcopenic obesity 
is appealing.

GH Secretagogues
Human aging is accompanied by a reduction in GH and sex ster-
oids. The isolation of growth hormone secretagogues (GHS), and 
GHS receptor (ghrelin, the natural ligand for the receptor) created 
new possibilities to investigate GH physiology, pathophysiology, and 
therapeutics. Orally active GHS restore pulsatile GH secretion in 
older adults to levels seen in young people without excessive GH 
overstimulation because of the IGF-1 feedback resulting in augmen-
tation of fat-free mass and fat redistribution to the lower extremities. 
These agents may have applications in promoting growth restor-
ation in children with GH deficiency or in treating nonalcoholic 
fatty liver disease, frailty, anemia, and osteoporosis in older adults. 
Side effects (increase in blood glucose, fluid retention, and worsening 
heart failure) may be an issue with these drugs (31).

Orphan Nuclear Receptors
Orphan nuclear receptors (ONRs) are important regulators of 
muscle fitness and potential therapeutic targets for muscle disorders. 
Skeletal muscle expresses high levels of an estrogen-related orphan 
receptor (ERR). An overexpression of ERR-γ in muscular dys-
trophy X-linked mice decreased the markers of muscle damage and 
improved exercise tolerance. ERR-γ also promotes recovery after 
exercise. Future research should focus on the translational value of 
ONRs in skeletal muscle dysfunction in aging and other chronic con-
ditions (32).

Fast Skeletal Muscle Troponin Activation
Fast skeletal muscle troponin activators amplify the response of 
the sarcomere to neural input and improve muscle force generation 
by increasing the calcium sensitivity of the troponin-tropomyosin 
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regulatory complex. Small-molecule fast troponin activators reduce 
fatigue in normal, atrophied, and hypoxic muscle, and may have 
utility for neuromuscular diseases (amyotrophic lateral sclerosis 
[ALS]) and for age-related muscle weakness and frailty. Reldesemtiv, 
a small-molecule fast skeletal muscle troponin activator, has been 
reported to increase muscle force generation in a phase 1 trial. 
Reldesemtiv also has shown some benefit in reducing the decline of 
slow vital capacity and self-reported function in patients with ALS in 
a phase 2 trial, but the differences between placebo and reldesemtiv 
arms were not statistically significant (33).

Mas Receptor Agonists
The binding of angiotensin2 (Ang2) to Ang2 receptor type 1 (AT1R) 
upregulates nuclear factor-kappa B (NF-κB), which mediates tran-
scription of pro-inflammatory cytokines and adhesion molecules, 
and induces vasoconstriction, inflammation, and fibrosis. Ang2 is 
converted by angiotensin-converting enzyme to Ang1–7, an agonist 
for Mas receptor (MasR) that counteracts many of the harmful ef-
fects of Ang2 mediated through AT1R. These data suggest that a 
MasR agonist could restore this balance between AT1R and MasR 
signaling, attenuate inflammation and fibrosis, and potentially re-
verse age-related loss of muscle mass and function. The SARCONES 
(BIO101; 20-hydroxyecdysone purified from the plant of the 
Cyanotis species) is an activator of the MasR (34) that has under-
gone a phase 2 trial to evaluate its safety and efficacy in improving 
mobility in older adults ≥ 65  years with sarcopenia. The BIO101 
350 mg twice-daily regimen was associated with trends toward im-
proved gait speed for those at risk of functional decline. BIO101 is 
also being investigated for the prevention of respiratory deterior-
ation in patients with COVID-19 pneumonia (34,35).

Targeting Inflammation to Improve Health in 
Older Persons
The maladaptive activation of the immune system and chronic in-
flammation are a key factor in age-related functional decline and 
incident disability (36,37). Organ-specific and systemic alterations of 
the immune cell populations have been identified in aging. Alterations 
in a distinct subset of clonal GZMK+ CD8+ T cells are a conserved 
hallmark of inflammaging (38). Circulating interleukin (IL)-6 levels 
are cross-sectionally linked with increased risk of multimorbidity. 
Signaling molecules that regulate immunosenescence and 
inflammaging may offer therapeutic targets to prevent age-related 
loss of muscle mass, strength, and function. The ENRGISE trial 
evaluated the effects of losartan and fish oil to reduce IL-6 and im-
prove physical function. However, neither losartan nor fish oil were 
efficacious in reducing IL-6 or in improving walking speed (39). 
The Canakinumab Anti-Inflammatory Thrombosis Outcome Study 
trial tested the hypothesis that targeting inflammation without af-
fecting lipid levels reduces the risk of cardiovascular diseases (40). 
Canakinumab treatment was associated with lower rate of recur-
rent cardiovascular events than placebo, even though the drug did 
not affect lipid levels. Tumor necrosis factor (TNF)-α functions as 
the gate to many pro-inflammatory cytokines and inflammatory sig-
nals. Its pharmacological blockade by weekly subcutaneous injection 
of etanercept in mice prevented atrophy and loss of type II fibers, 
and improved muscle function and life span (41). In animal models, 
senolytics like dasatinib and quercetin have been reported to facili-
tate removal of senescent cells and reduce cytokine levels in tissues 
(42). The beneficial effects of aspirin, sodium salicylate, losartan, fish 
oil, and canakinumab in improving physical function or preventing 

age-related functional decline in humans have not been demon-
strated. Furthermore, there is concern that nonspecific suppression 
of inflammatory pathways could increase the risk of infections and 
cancers in older adults. An improved understanding of the mechan-
isms that trigger inflammaging is needed to enable the development 
of targeted interventions to suppress specific inflammatory pathways 
without inhibition of body’s defense mechanisms against cancer and 
infection.

Urolithin-A
Because aging impairs the body’s ability to eliminate poorly functioning 
mitochondria, inflammation develops with consequent impairment of 
muscle strength and energetics (43). Urolithin-A is a gut-microbiome-
derived metabolite of ellagitannins, reported to improve mitophagy 
and mitochondrial function in preclinical models. Daily dosing of 
urolithin-A for 4  months in overweight participants (40–64  years) 
with low endurance improved aerobic capacity and 6-minute walking 
speed; increased mitophagy proteins and decreased inflammatory 
markers (NCT03464500). In another trial, urolithin-A treatment of 
healthy older adults for 4 months improved muscle endurance and in-
flammatory markers but did not improve 6-minute walking distance 
(44). These data provide the rationale for larger trials to evaluate the 
efficacy of urolithin-A in older adults with functional limitations.

Gerotherapeutics: Drugs Targeting the 
Mechanisms of Aging

Age is a major risk factor for most chronic diseases and functional 
decline. Current approaches to prevent or treat single disease even-
tually lead to polypharmacy and its adverse consequences. The 
geroscience hypothesis posits that targeting the mechanisms of 
aging could prevent or treat several age-related conditions (45–47). 
Despite advances in understanding the mechanisms of aging, sub-
stantial work is still needed to determine the safety and efficacy of 
interventions targeting the aging mechanisms and whether these 
drugs can extend health span. There is also a need to identify the ap-
propriate indications, target populations, and end points for clinical 
trials of gerotherapeutics.

NAD Augmentation 
NAD plays an important role in energy production and regulation 
of mitochondrial function, metabolism, inflammation, innate im-
mune response, DNA repair, chromosomal integrity, axonal integ-
rity, and regeneration during aging (48–55). NAD levels are reduced 
in many tissues with aging (51–53) due to increased activity of the 
NAD-consuming enzymes CD38 and poly (ADP-ribose) polymerase 
1 (PARP1) (54) decline in nicotinamide phosphoribosyl transferase 
activity. NAD levels can be increased by stimulating NAD produc-
tion through its precursors (nicotinamide mononucleotide [NMN], 
or nicotinamide riboside [NR]), or by inhibiting its degradation. 
Administration of NMN and NR in preclinical models prevents or 
reverses several age-related conditions (adiposity, diabetes and its 
nephropathy, nonalcoholic fatty liver disease, retinal disorders, and 
Alzheimer’s disease), attenuates weight gain and fat accumulation in 
response to high-fat diet, and delay vascular aging (56). NMN ad-
ministration to old mice is associated with increased muscle capil-
larity, improved blood flow to the muscle, and longer running time to 
exhaustion than young mice (57). Repeated administration of NMN 
or NR daily is safe and increases blood NAD levels (48–53), prevents 
kidney injury in acutely ill patients, and shortens the length of stay in 

2230� Journals of Gerontology: MEDICAL SCIENCES, 2022, Vol. 77, No. 11



severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in-
fection (57–59). Other short-term studies of NMN and NR have re-
ported reduction in blood pressure, total and low-density lipoprotein 
(LDL) cholesterol, and aortic stiffness, and improvements in muscle 
insulin sensitivity. The changes in physical performance measures 
in early-phase trials have been inconsistent. Larger trials of longer 
duration are needed to determine whether NAD augmentation by 
administration of its precursors improves physical performance and 
whether the effects of NAD augmentation on physical performance 
are enhanced by physical exercise in older adults. Future trials should 
evaluate whether increasing NAD levels can protect against multiple 
age-related conditions, in line with the geroscience hypothesis.

Metformin
Commonly used for type 2 diabetes mellitus, metformin extends life 
span in Caenorhabditis elegans, nematodes, and mice (60). In hu-
mans, metformin is associated with lower incidence of cancer, cardio-
vascular disease, dementia, frailty, and all-cause mortality (61–64). 
Metformin activates adenosine monophosphate activated protein 
kinase (AMPK), modulates several pillars of aging, such as PPAR 
gamma coactivator 1α, a master regulator of mitochondrial func-
tion; nrf2, a transcription factor that controls antioxidant programs; 
and the mTOR (65). Metformin also reduces inflammation (local, 
systemic) and insulin/IGF-1 signaling, and inhibits NF-κB activa-
tion (66,67). Metformin treatment reduces reactive oxygen species 
in an AMPK-dependent manner, and attenuates DNA damage in-
duced by Ras expression (67). Metformin-induced AMPK activation 
upregulates autophagy and suppresses senescence and senescence-
associated secretory phenotype (SASP) in some cell lines and induces 
transcriptomic changes in animals similar to those seen with caloric 
restriction (66). A randomized placebo-controlled trial is examining 

the effects of metformin on frailty and several hallmarks of aging 
in older adults with frailty and impaired glucose tolerance (68). 
Metformin could be quickly translated to clinical use if clinical trials 
show evidence of efficacy in preventing age-related diseases.

Senolytics
Senescent cells accumulate with age and clearance of these cells in 
mice has health benefits (69). Two key triggers of senescence are the 
cyclin-dependent kinase inhibitors, CDKN2A (p16Ink4a) and CDKN1A 
(p21Cip1); activation of these pathways leads to growth arrest, resist-
ance to apoptosis, and the SASP, which consists of inflammatory 
cytokines, chemokines, and metalloproteinases (69,70). At least 2 ap-
proaches have been used to target senescent cells (71): (i) senolytics 
aimed at the anti-apoptotic pathways these cells rely upon for their 
survival; (ii) senomorphics that do not kill senescent cells but inhibit 
the SASP. Genetic approaches to target senescence as well as pharma-
cologic senolytic and senomorphic agents have shown some beneficial 
effects on age-related changes in multiple tissues in mice, consistent 
with the predictions of the geroscience hypothesis (69,72). Some 
senolytic compounds have advanced into early-phase clinical trials. 
Although targeting senescent cells has shown promise in preclinical 
studies, substantial work is needed for development of new senolytic 
compounds and biomarkers to identify individuals most likely to 
benefit from these therapies, and monitoring of treatment response.

Table 1 summarizes research gaps and opportunities for the de-
velopment of function-promoting therapies.

Physical Exercise Interventions to Enhance 
Mobility in Older Adults

Physical exercise interventions are the most efficacious function-
promoting therapies for older adults with mobility limitation (5). The 

Table 1.  Summary of Research Gaps and Opportunities for Function-Promoting Therapies Development

Translational biology Clinical trials of function-promoting therapies 

Improved understanding of the neural mechanisms that regulate 
integrated muscle performance and complex physical functions 
(walking, stair climbing, and other ADLs) to facilitate development 
of neurotherapeutic approaches to enhance muscle performance and 
physical function.

Adequately powered randomized efficacy trial/s of multicomponent 
intervention/s that combine a promyogenic pharmacologic agent with 
other strategies to translate muscle mass gains into clinically meaningful 
functional improvements in older adults with a recognized functional 
limitation/s using a model study protocol and validated end points.

Strategies targeting multiple mechanisms/signaling pathways 
associated with muscle energetics, regeneration, inflammation, 
metabolic stress, and extracellular matrix remodeling.

Adequately powered randomized efficacy trials of 1 or more geroscience 
function-promoting molecules/drugs representative of leading geroscience 
mechanisms (NAD boosters, senolytics, rapalogs, Mas receptor agonists) 
that have shown promise in early-phase studies.

Targeted studies to identify druggable pathways and mechanisms that 
contribute to age-related impairments of muscle’s regenerative response 
to injury and maladaptation in response to acute muscle atrophy.

Studies of clinical pharmacology, metabolism, and pharmacokinetics of 
leading geroscience drugs/molecules in humans to guide dosing and design 
of intervention trials.

Additional studies to evaluate translational value of promising 
novel molecular targets (orphan nuclear receptors, fast skeletal 
muscle troponin activators, Mas receptor agonists, apelin, and other 
pathways) in appropriate preclinical models, preferably in higher 
mammals (eg, dogs) that display physical functional limitations 
similar to humans.

Consensus-based model study protocol/s to provide guidance on 
framing indications, inclusion and exclusion criteria, selection of end 
points including PROs, and defining meaningful change and efficacy of 
pharmacologic function-promoting therapies in efficacy trials of function-
promoting therapies.

Harmonized methods for the measurement of geroscience biomarkers 
(eg, NAD and its metabolites, senescence markers and SASPs, other 
geroproteins) in biological fluids and in situ in the tissues, and 
reference ranges to facilitate subject selection and serve as end points 
and improve scientific rigor in preclinical and early-phase human 
trials of gerotherapeutics.

 

Notes: ADLs = activities of daily living; NAD = nicotinamide adenine dinucleotide; PROs = patient reported outcomes; SASPs = senescence-associated secretory 
phenotypes.
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goal of the Molecular Transducers of Physical Activity Consortium 
(MoTrPAC)  is to assess molecular changes in response to physical 
activity in animals and humans. with a particular focus on the role of 
exosomes in integrating the exercise response across organ systems 
(73). Exercise training induces sex-specific alterations in the white 
adipose tissue in male rats but not in female rats. Training-induced 
alterations in metabolite levels at rest are smaller in magnitude than 
those observed in response to acute exercise. Initial analyses of the 
metabolomic data reveal that exercise training induces alterations in 
sphingolipids, fatty acids, and aromatic amino acids.

Physical Activity SPRINT-T
The Sarcopenia and Physical fRailty IN older people: 
Multicomponent Treatment Strategies was conducted in 16 clin-
ical sites in 9 European countries, with the goal of recruiting 1500 
community-dwellers > 70 years. The intervention focused on physical 
activity, nutritional assessment with personalized diet, and remote 
monitoring of physical activity. The physical activity included an aer-
obic exercise, strength, flexibility, and balance trainings. Aerobic and 
strength components gradually increased in intensity during a 1-year 
adoption phase. Adherence with the center- and home-based exercise 
was >70%. The multicomponent intervention was associated with 
a reduction in the incidence of mobility disability in older adults 
with physical frailty and sarcopenia and short physical performance 
battery (SPPB) scores of 3–7. Investigators concluded that physical 
frailty and sarcopenia may be targeted to preserve mobility in vul-
nerable older people (74).

Prehabilitation to Improve Functional Recovery After 
Orthopedic Surgery
The prevalence of osteoarthritis (OA) is increasing due to the aging 
of human population and increasing rates of sarcopenic obesity. 
Lifestyle modification and exercise are as effective as orthopedic 
surgery in managing painful OA in middle-aged and older adults 
with hip or knee OA (75). Yet less than one third of patients under-
going joint replacement receive adequate nonsurgical interven-
tions (eg, nutrition and exercise training) prior to surgery. Despite 
high-quality evidence that exercise and weight reduction reduce pain 
and improve function, implementation strategies and systematic ap-
proaches to incentivize these behaviors are lacking. Robust trials to 
determine the value of prehabilitation programs prior to total knee 
and hip arthroplasties are lacking. Larger trials are also needed to 
examine the effects of multimodal interventions (eg, exercise, nu-
trition, and muscle anabolic therapies) for OA in older adults with 
obesity. Strategies to delay the onset and progression of OA through 
lifestyle modification and function-promoting therapies have the po-
tential to significantly affect the management of OA and health care 
costs.

Behavior Change Strategies to Increase and 
Maintain Physical Activity
Despite the proven benefits of physical activity for functional health, 
<20% of adults engage in recommended levels of exercise. The an-
nual health care costs of inadequate physical activity are estimated 
at $117 billion, with 1 in 10 premature deaths in the United States 
related to inactivity. The Midlife in the United States longitudinal 
study measured functional health at midlife and later life and found 
that functional decline starts early in life and the slope of decline is 
significantly steeper for those without a college education compared 
to those with a college education. Studies of self-regulatory and mo-
tivational strategies to increase physical activity in sedentary adults 

by The Boston Roybal Center for Active Lifestyle Interventions show 
that social support and interaction with other participants using so-
cial engagement technologies increase physical activity and social en-
gagement (76). Future approaches to improve physical activity and 
functional health should include technology use, intergenerational 
programs, and preventive interventions during midlife.

Nutritional Interventions to Support 
Aging Muscles

The influence of Dietary Protein Quantity, Quality, 
and Timing During Aging 
Aging is associated with substantial alterations in nutrient me-
tabolism and the efficiency of the uptake of amino acids in the 
splanchnic region, insulin resistance, protein anabolic resistance, 
and inflammation. A review of the effects of the timing of protein 
intake found that the primary benefit of these strategies is to help 
older adults consume sufficient total protein to meet their needs, ra-
ther than any specific timing effect (77). Habitual protein intake less 
than the recommended daily allowance (RDA) is associated with re-
duced muscle mass and immune response in postmenopausal women 
(78,79). Older adults with daily protein intake in the highest quintile 
lost 40% less whole body and appendicular lean mass than those 
in the lowest quintile (80). A  systematic review and meta-analysis 
of controlled feeding studies found that the RDA for protein is ad-
equate to support lean mass in adults in nonstress states and protein 
intake greater than the RDA had no influence on lean body mass 
(81,82). Both appendicular lean mass and grip strength were lower 
in middle-aged adults who ate less than the RDA. It is possible that 
protein intakes above the RDA may be needed during periods of 
catabolic stress. Further research on dietary protein as a modifiable 
sarcopenia risk factor in older adults is warranted (83).

Optimen Trial
The Optimen Trial compared the effects of protein intake equal to 
the RDA versus 1.3  g/kg/day without and with a regimen of tes-
tosterone administration in older adults with mobility limitation 
who were consuming less than the RDA (84,85). Changes in lean 
body mass, muscle strength and power, and physical function did 
not differ between men who consumed controlled diets (RDA for 
protein) and men who consumed the higher amounts of protein 
(84). Protein intake exceeding the RDA did not augment anabolic 
response to testosterone. Protein intake greater than the RDA was 
associated with greater loss of whole-body fat mass than the RDA 
but higher protein intake did not improve insulin sensitivity or lipids 
(86). High-quality interventional trials are needed to determine the 
effects of the quantity, quality (source), and timing of dietary protein, 
especially in older adults with chronic disease and functional limi-
tations. Data on protein requirements and muscle’s adaptations in 
response to higher protein intake are lacking in the oldest old and in 
older adults with chronic disease. It also remains unknown whether 
animal- or plant-based proteins are more efficacious in improving 
muscle mass and function. Long-term studies are needed to further 
evaluate the effect of protein intake and visceral adipose tissue and 
metabolism. The effects of combinations of higher protein, ana-
bolic agents, and resistance exercise on body composition, muscle 
strength, and function, and metabolism should be investigated.

Vitamin D Supplementation
The VITamin D and OmegA-3 TriaL (VITAL), a large randomized 
controlled trial of supplemental vitamin D versus placebo, revealed 
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that 2 000 IU/day of vitamin D3 did not reduce the risk of incident 
falls or bone fractures, nor improved body composition, bone density, 
or structure in men and women not selected for vitamin D deficiency 
(87,88). These findings do not support the use of vitamin D to improve 
musculoskeletal health in healthy adults. The vitamin D3-omega 
3-home exercise-healthy ageing and longevity trial (DO-HEALTH 
Trial) determined the effects of 3 strategies—2  000 units vitamin  
D/day, 1 g of omega-3 fats/day, and home exercise—on bone, muscle, 
cardiovascular, immunological, and brain health in adults ≥ 70 years 
(89). No significant benefits of vitamin D were found on lower ex-
tremity function measured by the SPPB or falls incidence. Vitamin D, 
omega-3 fatty acids, and exercise individually showed no significant 
reduction in the risk of frailty but the combination of all 3 revealed a 
significant reduction in the odds of becoming prefrail (89).

Nutraceuticals for Frailty
Malnutrition continues to be a problem for some older adults world-
wide. In older people who are malnourished, providing sufficient nu-
trition reduces mortality (90). In critically ill hospitalized patients, 
β-hydroxy-β-methylbutyrate (HMB) did not significantly improve 
the composite end point of 90-day post-discharge incidence of death 
or nonelective readmission, but HMB decreased mortality and im-
proved indices of nutritional status during the 90-day observation 
period (91). In the Effect of Early Nutritional Support on Frailty, 
Functional Outcomes, and Recovery of Malnourished Medical 
Inpatients Trial (EFFORT) (92), the use of individualized nutritional 
support in hospitalized patients at nutritional risk improved survival, 
compared with standard hospital food. These findings suggest that 
nutritional screening of hospitalized patients and individualized nu-
tritional intervention in those at risk can improve health outcomes.

Effect of Calorie Restriction and Time-Restricted 
Feeding on Muscle and Bone Health 
Obesity exacerbates age-related decline in physical function. Calorie 
restriction has been shown to extend health span and life span in 
some but not all model organisms. In Comprehensive Assessment of 
Long-Term Effects of Reducing Intake of Energy (CALERIE) phase 
2 trial, an average 12% reduction of caloric intake—substantially 
less than that achieved in model organisms to improve life span—im-
proved plasma lipids, insulin sensitivity, inflammation, and oxidative 
stress (93). Long-term adherence and loss of muscle mass and bone 
associated with caloric restriction also are a concern (94). There is a 
need for nutritional strategies such as intermittent fasting, periodic 
fasting, and time-restricted eating (TRE) that can achieve the benefits 
of caloric restriction with greater likelihood of sustainability over 
long periods. TRE refers to the restriction of food intake to specific 
time windows during the 24 hours, typically <10 hours. A restricted 
eating window of 8–10 hours early in the day frequently leads to 
modest calorie restriction (94,95), to which the addition of a mod-
erately increased protein intake could possibly minimize loss of lean 
mass. Randomized trials of time-restricted feeding, however, have 
yielded inconsistent results (96,97). Dietary interventions in older 
adults with obesity should consider quality, quantity, and timing of 
food intake, perhaps starting with time restriction.

Optimizing the Design of Clinical Trials of 
Function-Promoting Therapies

No pharmacologic function-promoting therapy has been approved 
to date; many aspects of clinical trial design including the framing 

of indications, selection of patient populations, and primary and sec-
ondary end points have been recognized as major barriers to the de-
velopment and approval of these therapies. Many problems of aging 
do not fit well into regulatory guidelines for a medical indication. 
Mobility disability associated with aging and chronic diseases is a 
highly prevalent condition and an appealing indication for function-
promoting therapies. Mobility disability is a validated marker of 
disablement commonly seen in older adults and linked to elevated 
risk of incident instrumental activities of daily living (IADLs), dis-
ability, hospitalization, and mortality (98,99). Older individuals hos-
pitalized for an acute illness who have mobility disability or ADL 
disability during recovery from an illness; persons with burns or 
massive trauma, who have functional limitations during recovery; 
and cachexia associated with some types of cancer also represent 
attractive indications for function-promoting therapies.

Sarcopenia is a multicomponent syndrome associated with 
age-related changes in the skeletal muscle (100). Over 15 definitions 
of sarcopenia have been published; these definitions have substan-
tial overlap in their conceptual framework but differ in the specific 
tests and the associated cut points for defining this condition. The 
Sarcopenia Definitions and Outcomes Consortium (SDOC) funded 
by NIA to develop diagnostic cut points for sarcopenia analyzed 
data from 8 prospective observational studies using classification 
and regression tree analysis (101,102). Both low grip strength and 
low usual gait speed independently predicted falls, self-reported mo-
bility limitation, hip fractures, and mortality in community-dwelling 
older adults (101). Lean mass measured by dual energy X-ray ab-
sorptiometry (DXA) with or without adjustment for body size 
was not associated with incident health outcomes (101). Based on 
these comprehensive analyses, the SDOC definition of sarcopenia 
includes low grip strength (<35.5 kg for men, <20 kg for women) 
and slowness (walking speed <0.8 m/s) (101,102). Although in the 
SDOC analyses, DXA-derived lean mass was not associated with 
health outcomes, recent studies have found that low muscle mass 
measured using D3 creatine dilution is predictive of incident falls, 
disability, fractures, and mortality (103,104). Anabolic drugs that 
increase muscle mass induce loss of fat mass and improve metabolic 
outcomes. Therefore, anabolic drugs should be investigated for the 
treatment of older adults with sarcopenic obesity and functional 
limitations, or as adjuncts to caloric restriction or weight loss drugs 
to minimize loss of muscle and bone mass.

Inclusion/Exclusion Considerations for Clinical Trials
Carefully defined inclusion criteria are necessary for reconciling the 
dual goals of recruiting people with the condition with objectivity 
and ensuring that the study participants are representative of the 
general population. Eligibility criteria also should enable exclusion 
of people who are unlikely to respond or might respond differently 
to the intervention or are at increased risk of being harmed by the 
intervention than the general population. In older adults, attention 
must be paid to polypharmacy, drug interactions, and other potential 
adverse events.

Selection of End Points in Clinical Trials
Careful selection of end points is essential for establishing proof of 
efficacy and securing treatment approval. Muscle mass measured 
with an accurate method, such as D3 creatine dilution, could pro-
vide proof of mechanism for anabolic drugs in early-phase studies. 
Muscle protein synthesis might also be a good pharmacodynamic 
marker for anabolic therapies. In efficacy trials, performed-based as 
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well as self-reported measures of physical function are needed to 
determine whether improvements in performance-based measures of 
muscle performance and physical function are associated with en-
hancements in how a person lives, functions, or feels. The end points 
should be well-aligned with the attributes of the disease or condition, 
meet some minimal metrics of reliability and validity, and have suffi-
cient precision and accuracy in the range of functional ability of the 
study population. Estimates of meaningful treatment effect in the 
context of the study population are required for interpreting their 
clinical relevance. The measures of mobility, such as walking speed 
using standardized procedures (6-minute walking distance, 4-m 
walking speed, SPPB, or 400-m walking speed) and stair climbing 
speed and power, can be useful as end points in studies of older 
people with mobility limitation. Mobility can also be ascertained re-
liably by self-report. The end point should be aligned with the mech-
anism of drug action (98,99,105–107).

Clinical Outcome Assessments
Clinical outcome assessment should measure the way a patient func-
tions, feels, or survives. The clinically meaningful threshold may not 
be a single threshold for all patient populations. Triangulation of 
evidence is a good way to ensure that several lines of evidence point 
to a range of thresholds that would define what is clinically mean-
ingful. Patient-generated health data collected from digital health 
technologies also allow researchers to understand patient behavior 
in the context of their daily lives.

Adjunct Multicomponent Functional Exercise 
Training
Pharmacologic function-promoting therapies, such as androgens, 
have shown consistent improvements in fat-free mass and maximal 
voluntary strength, but the increases in muscle mass and strength 
have not translated into consistent improvements in performance-
based measures of physical function. Adding progressive resistance 
training to the pharmacologic regimen might produce an additive 
effect. Functional training aims to develop movement patterns with 
resistance specific to a targeted activity and integrates whole-body, 
multiplanar movement; includes training in balance and stability, 
strength, and power; and is intended to improve performance in spe-
cific tasks. Well-designed and executed functional exercise training, 
appropriate to ability, followed by progression to increasingly larger 
doses of exercise specific to the targeted task could facilitate the trans-
lation of muscle mass and strength gains into improved ability to per-
form task-specific functions required in ADLs; improve balance; and 
reduce fall risk. There was strong agreement that well-designed, large, 
randomized trials of a multicomponent intervention that combines 
an anabolic drug, multidimensional functional exercise training, and 
cognitive and behavioral strategies are urgently needed and have the 
best potential to improve function and health outcomes (108,109).

Standardizing Nutritional Intake
Appropriate attention to nutritional status and intake is important 
when designing clinical trials of function-promoting therapies. While 
rigorous standardization of protein and energy intake may not be 
feasible in large, randomized trials of function-promoting therapies, 
baseline assessment of nutritional status to exclude those with invol-
untary weight loss or severe malnutrition as well as specific guidance 
to the study participants to minimize the risk of major changes in 
energy and protein intake during trial are necessary and feasible. 

A baseline assessment of physical activity can help identify people 
who are engaged in progressive exercise training or those who are 
severely disabled and may not be able to undertake tests of physical 
performance (110).

Strategies to Expedite the Translation of 
Extraordinary Advances in Muscle Biology Into 
Approvable Drugs

Lessons From the Extraordinary Success of the 
COVID-19 Vaccine Development
The Operation Warp Speed was established by the U.S.  govern-
ment to coordinate efforts among pharmaceutical companies, sev-
eral U.S.  government agencies, and academic experts. The success 
of Operation Warp Speed was based in part on optimizing existing 
processes and technologies to support expedited vaccine develop-
ment. Formal guidance and informal ongoing interactions between 
the FDA and manufacturers facilitated rapid resolution of issues that 
might have otherwise delayed the project. The historical success of 
Operation Warp Speed in expediting the development of COVID-19 
vaccines in less than a year offers useful lessons that can guide the 
development of function-promoting therapies.

Lessons From the Oncology Drug Development 
Programs
Numerous factors have contributed to the success of cancer drug 
development programs, such as having well-defined clinical trial end 
points for phases 2 and 3 trials; enhanced understanding of cancer 
biology, therapeutic targets, and the host response; improved selec-
tion of patient populations using biomarkers; and availability of a 
publicly supported clinical trial infrastructure. These factors should 
be considered in the development of strategic plans to accelerate the 
development of drugs to treat age-related functional limitations.

Conclusions of the Expert Panel Discussion

The aging of human populations and the imminent increase in the 
numbers of older adults with aging-related physical disabilities 
would greatly affect the ability of older people to lead meaningful 
independent lives in the community, as well as the health care needs 
and economies of human societies. Therefore, expedited develop-
ment of function-promoting therapies to prevent and treat func-
tional limitations and physical disabilities associated with aging 
and chronic diseases is an urgent public health need. The success 
of the Operation Warp Speed and the oncology drug development 
programs holds useful lessons that can be applied to accelerate the 
development of function-promoting therapies. Such an effort to ad-
vance the field would require synergistic collaborations among aca-
demic investigators, the NIH, professional societies, patients and 
patient advocacy organizations, the pharmaceutical industry, and 
the FDA, and expeditious trial execution. In addition, well-designed, 
adequately powered clinical trials will require careful definition of 
indication/s, and reliably measured patient-important end points to 
ensure successful execution and outcome.
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