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Deep-sea hydrothermal vents are abundant on the ocean floor and play important roles in ocean biogeochemistry. In vent
ecosystems such as hydrothermal plumes, microorganisms rely on reduced chemicals and gases in hydrothermal fluids to fuel
primary production and form diverse and complex microbial communities. However, microbial interactions that drive these
complex microbiomes remain poorly understood. Here, we use microbiomes from the Guaymas Basin hydrothermal system in the
Pacific Ocean to shed more light on the key species in these communities and their interactions. We built metabolic models from
metagenomically assembled genomes (MAGs) and infer possible metabolic exchanges and horizontal gene transfer (HGT) events
within the community. We highlight possible archaea–archaea and archaea–bacteria interactions and their contributions to the
robustness of the community. Cellobiose, D-Mannose 1-phosphate, O2, CO2, and H2S were among the most exchanged metabolites.
These interactions enhanced the metabolic capabilities of the community by exchange of metabolites that cannot be produced by
any other community member. Archaea from the DPANN group stood out as key microbes, benefiting significantly as acceptors in
the community. Overall, our study provides key insights into the microbial interactions that drive community structure and
organisation in complex hydrothermal plume microbiomes.

ISME Communications; https://doi.org/10.1038/s43705-023-00242-8

INTRODUCTION
Deep-sea hydrothermal vents are abundant across mid-ocean
ridges, back-arc basins, and volcanoes on the ocean floor.
Hydrothermal vents emit hot fluids rich in reduced chemicals,
gases, and metals. These hot fluids (up to 400 °C) mix with the cold
seawater (2–4 °C) to form vent chimneys and hydrothermal
plumes. While vent chimneys are formed by precipitation and
solidification of minerals, hydrothermal plumes are turbulent
environments that can rise hundreds of metres from the seafloor
to achieve neutral buoyancy and spread across the ocean over
hundreds to thousands of kilometres [1, 2]. Microbial activity in
hydrothermal vents is driven by the presence of potential energy
sources such as H2S, Fe, Mn, CH4 and H2 (refs. [3, 4]). Hydrothermal
plumes are associated with a strong redox gradient formed due to
the presence of highly reduced electron donors from vents which
mix with the cold seawater rich in electron acceptors such as
oxygen and nitrate, which can provide microorganisms with
sufficient energy to fix carbon into biomass [1, 2]. Microbial
communities thrive in such harsh environments partly due to
metabolic interactions associated with their ability for interde-
pendent utilization of substrates [5–7]. Hydrothermal vent
microbial communities form the base of the food chain in these
environments and have been shown to play a significant role in

mediating various elemental cycles in ocean ecosystems [8, 9].
Hydrothermal vent habitats also harbour the growth of a very
specialized set of organisms like giant tubeworms (vestimentifer-
ans), Pompeii worms (Alvinella pompejana), Vesicomyidae clams,
vent mussels (Bathymodiolus elongatus), scaly-foot snails (Chryso-
mallon squamiferum), and crabs (Kiwa spp.). Flora and fauna in this
ecosystem flourish as a result of close symbiosis with chemosyn-
thetic microbes consisting primarily of bacteria and archaea.
Increasingly, omics-based approaches have focused on the

study of uncultivated microorganisms and there is a growing
recognition that microbial metabolic interactions are key in
maintaining microbial community structure and function in
diverse environments, including in the deep sea. The problem of
unculturability in microbes that pervades different ecosystems
makes it a challenge to isolate and characterize metabolic
interactions using conventional microbiological tools [10]. Meta-
bolic interactions are the threads holding a community of
microbes together [11–13]. Therefore, studying these interactions
can enable us to gain mechanistic insights into community
function [14, 15]. While metagenome-based interpretation of
microbial genomes (as implemented in the software METABOLIC)
can predict auxotrophies that can imply the presence of microbial
interactions, metabolic modelling represents a more powerful
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approach in predicting metabolic interactions. To this end, in silico
modelling approaches offer a promising alternative to study
microbial metabolism in general [16], and community metabolic
interactions in particular [17–19]. Genome-scale metabolic models
[20] can be built using whole genomes or metagenomically
assembled genomes (MAGs) of microbes [21, 22]. These models
capture the metabolic capabilities of an organism. Metabolic
models of all known members of a community allow us to study
community interactions using various graph-based and constraint-
based approaches [17–19].
In hydrothermal vents and plumes, prior studies have focused

on the genomic characterization of microbial and metabolic
diversity, but little is known about the role of metabolic
dependencies and interactions in these microbiomes. In this
study, we use deep-sea hydrothermal vents in Guaymas Basin in
the Pacific Ocean as a model system to study the functional
underpinnings of microbial communities in hydrothermal vent
plumes and the interactions that keep them together. In
particular, this study focuses on: (i) the coexistence of archaea
and bacteria and the cross-domain metabolic interactions
between them, and (ii) evolutionary processes in hydrothermal
plume microbial communities, including horizontal gene transfers
(HGTs) [1]. Our study implicates the metabolite environment in
which these microbes grow to play a major role in determining
interactions.
Overall, the potential of computational approaches like meta-

bolic modelling to unravel the complex web of metabolic and

genetic interactions that drive the organisation of microbial
communities has been illustrated in the study.

RESULTS
Design of this study
In this study, we use 98 MAGs described previously from Guaymas
Basin hydrothermal plumes (see Metagenomic datasets and
model building in Methods) to understand metabolic interactions
and evolution in hydrothermal systems (Refer Supplementary
File S1 for the short name references used in this article). Both
bacteria and archaea are abundant members of hydrothermal
plume microbiomes, yet play distinct roles in these environments.
In this study we draw various insights about the uncultured
bacteria and archaea, including bacteria depending on abundant
hydrothermally-derived sulphur. Our observations were drawn
from four major in silico analyses, MSI analysis, CSI analysis, HGT
analyses, and MRO studies performed on these microbes (Refer
Fig. 1 for the summary of the approaches used in this research
work). Overall, 26 (15 archaea and 11 bacteria) out of 98 MAGs
were the main focus of this research, though these analyses were
performed on all 98 microbes of the community. In comparison to
bacteria, archaeal biology is still extremely under-explored, and
their metabolic and functional potential is not well studied
primarily due to the difficulty of culturing them [23–25]. Archaea
are known to play important roles in hydrothermal vent
ecosystems, and throughout the pelagic oceans such as in

 MAGs
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Fig. 1 Summary of the process followed in studying the Guaymas microbiome. This study starts with the construction of genome-scale
metabolic networks using tools like CarveMe and MetQuest from the metagenomically-assembled genomes (MAGs) of corresponding
microbes. This allows us to further construct metabolic networks for two-member communities and higher-order communities. The next step
involves predicting the characteristics of the community, like the metabolic capability of microbes in the community, metabolic dependence
of the community, metabolic exchanges possible in the community and unique contributors in the community. Further, genetic interactions
between microbes were predicted using MetaCHIP, a tool for predicting horizontal gene transfers (HGTs). As the last step, the competitiveness
of the community is determined at a different community scale and compared against other microbial communities.
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ammonia oxidation and transformation of organic compounds
[2, 26–28]. Therefore, in order to understand and highlight the
functional importance of “microbial dark matter” in hydrothermal
plumes, a significant focus of this study is on the archaeal
members of this community and their interactions with other
archaeal and bacterial species in Guaymas basin (Refer Supple-
mentary Table 1 for the list of archaea in the community). The

Guaymas archaeome comprises three classes, Poseidoniia,
Nanoarchaeia, and Nitrososphaeria.
In any microbial community, the ability of a microbe to produce

or consume a metabolite is subject to the metabolite/media
environment those microbes inhabit. In this study, four different
media conditions (GM media, JW1 media, marine broth 2216 and
an all-media) were used to study this community (see Determining

(a) all-media (b) GM media

(c) JW1 media (d) Marine broth 2216
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Fig. 2 Pairwise MSI interactions of Candidatus Pacearchaeota archaeon UWMA 0287 with other microbes in the community. This chord
diagram shows all possible metabolic interactions between Candidatus Pacearchaeota archaeon UWMA 0287 and other microbial classes
present in the Guaymas microbiome in four different media conditions (a) all-media, (b) GM media, (c) JW1 media, (d) Marine Broth 2216. All
the interacting microbes are grouped under their corresponding microbial class except Candidatus Pacearchaeota archaeon UWMA 0287. The
chord starts from the donor microbe/class towards the recipient microbe/class. The thickness of the chord represents the number of microbes
participating in the interaction from the same class. The colours are mapped to microbial classes.
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the metabolite environment of Guaymas hydrothermal vent
ecosystem in Methods for more details on media conditions).
All-media is a synthetic media combining the other three media
conditions. Components of all three media are possible constitu-
ents of hydrothermal vent environments, hence having a synthetic
media like all-media might provide a closer representation of the
habitat.
Many observations were made about the metabolic capability

of microbes in different media and the implicated metabolic
exchanges. Oxygen, ornithine, and indole were some of the most
exchanged metabolites in all-media and JW1 media, but the
microbes in GM media and marine broth 2216 were unable to
produce oxygen resulting in the absence of their exchanges in
these environments (Refer Supplementary File S2). Acetaldehyde
and L-serine were the only metabolites exchanged irrespective of
media conditions (Refer Supplementary File S2). This observation
shows the capability of the community to compensate for an
absence of a metabolite through exchange. This helps in
maintaining the robustness of the community.

Archaea–bacteria pairs show high interaction potential in the
hydrothermal plume microbiome
In order to determine the influence of bacteria present in the
ecosystem on the metabolism of archaea, pairwise MSI analysis
was performed under four different media conditions. (Described
in Determining the metabolite environment of Guaymas hydro-
thermal vent ecosystem in Methods). Briefly, in this analysis, a
score called Metabolic Support Index (MSI) (Predicting metabolic
dependencies of microbes in the community in Methods) is
calculated for every possible pair of microbes (98C2 pairs), which
measures the increase in metabolic capabilities of a microbe while
in a community versus as an individual organism. Microbes in the
community gain different metabolic capabilities through
the exchange of metabolites. MSI provides distinct values for
both the members of a pair, i.e., MSI of A in AB community is
different from MSI of B in AB, and hence is a directional quantity.
We identified the most interesting archaea–bacteria microbial

pairs on all four media based on high MSI scores. The highest MSI
score observed in the Guaymas microbiome was 0.052 between
an archaeon and a bacterium: FLAE314→ CPA287 (the arrow goes
from donor to acceptor) in JW1 media, which was primarily due to
the exchange of metabolites cellobiose and D-Mannose 1-
phosphate. These metabolites activated many metabolic reactions
in CPA287. In this interaction, FLAE314 is not predicted to receive
any metabolite from its partner (MSI = 0) in all four media.
FLAE314→NPUM263, GAM261→ CPA287 were some other
archaea–bacteria microbial pairs with high interaction potential
in the Guaymas microbiome (Fig. 2 represents all the pairwise
interactions between CPA287 and other microbial classes). Among
the 98*2 ¼ 4753 pairs possible in the community, the main
emphasis was given to those where the receiver acquires at least a
1% increase in the metabolic capability (i.e., MSI � 0:01). Refer
Supplementary File S3 for the entire list of MSIs.
In most of the archaea-bacteria interactions, archaea were

always found to be on the “acceptor” side while bacteria “donate”
metabolites. A possible explanation for this is that archaea have
reduced metabolic capabilities than the bacteria in the Guaymas
community. It is possible that the understudied nature of archaea
manifests in a greater proportion of unannotated genes in their
genomes leading to the impression of them having reduced
metabolic capabilities. An MSI value (interaction) is always
attributed to a set of exchanges leading to the gain of metabolic
capabilities in the acceptor microbe. The metabolites frequently
exchanged in the archaea–bacteria interactions mentioned above
were cellobiose, D-Mannose 1-phosphate, O2, CO2, and H2S,
among others, but the exchange of any one of these metabolites
can lead to gain of comparatively greater metabolic capabilities in
the acceptor microbe.

Though archaea–bacteria interactions were widely observed
in GM media, JW1 media and all-media, they were lower in
marine broth 2216. FUE333→ CPA287, PLAE346→ CPA287,
SNE353→ CPA287, and GEM339→ CNP359 were the only high
potential archaea–bacteria interactions observed in marine
broth 2216. Among these SNE353→ CPA287 was observed in
all four media.

Archaea-archaea interactions are dominated by DPANN
archaea as acceptor microbes
MGII266, MGII275, MGII279, MGII283 and MGII350 were some of
the archaeal interacting partners with CPA287 in GM media, JW1
media and all-media. Like in archaea–bacteria interactions,
CPA287 was always the acceptor in these archaea–archaea
interactions too. Cellobiose and CO2 exchanged from Marine
Group II euryarchaeotes to CPA287 has the potential to activate
many metabolic capabilities in CPA287.
Unlike CPA287, archaea of class Poseidoniia can act as both

acceptors and as donors in the Guaymas community. Interestingly,
these archaea exhibited three distinct interaction patterns:

1. MGII266, MGII275, MGII279, MGII283, MGII350 and
MGII352 showed similar interaction patterns (Refer Supple-
mentary File S4).

2. MGII323, MGII328, MGII344, MGII357 and MGIII284 showed
similar interaction patterns (Refer Supplementary File S4).

3. MGIII340 was distinct from other members of Poseidoniia.
The interaction pattern of this microbe was the sparsest in
comparison to other members of this group (Refer
Supplementary File S4).

Another significant archaea-archaea interaction involves
CNP359 and NPUM263 which belong to the class Nitrososphaeria
(Fig. 3 represents all the pairwise interactions between NPUM263
and other microbial classes). These organisms show potential
interactions in JW1 media and in all-media through the exchange
of ornithine, putrescine, and H2S.

Role of Pacearchaeota in the Guaymas community
Candidatus Pacearchaeota archaeon UWMA 0287 (CPA287) is an
archaeon belonging to class Nanoarchaeota from the super-
phylum DPANN. Members of DPANN (including this class) are
characterised by small genomes, and limited metabolic cap-
abilities due to which they are predicted to rely on other
microbes for most of their biosynthetic needs [24, 29–31]. It was
also evident from the pairwise MSI analyses that Pacearchaeota
are the largest beneficiary archaeon of Guaymas microbiome in
GM media, JW1 media and all-media, while in marine broth 2216
GEM339 benefited more. Though Pacearchaeota showed poten-
tial interactions with members of every other microbial class
present in the Guaymas microbiome, most of the interactions
were dominated by members of Gammaproteobacteria, Poseido-
niia, Alphaproteobacteria and Bacteroidia (Fig. 2). As the microbe
receiving the greatest benefits from interactions in the commu-
nity, Pacearchaeota receive cellobiose, O2, CO2, and H2S from its
partners (Fig. 4a). These exchanges were not seen in all four
media, for example, the exchange of CO2 was restricted to GM
media and marine broth 2216 alone as CO2 was already present
in JW1 media and all-media. Among these, cellobiose can be
seen in all interactions of Pacearchaeota except in marine broth
2216. Cellobiose is a disaccharide molecule and is a known
carbon source for hyperthermophilic archaea [32]. Our models
indicate that Pacearchaeota are able to accept cellobiose and
hydrolyse it to use as a carbon source, thus leading to gain of
many metabolic capabilities and high MSI in media conditions
except marine broth 2216. Pacearchaeota had the capability to
donate metabolites like ornithine, putrescine, 4-aminobutanal
(obtained during the metabolism of arginine) to other microbes
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only in all-media and JW1 media (Fig. 4b). The metabolites
exchanged in all other microbes are documented in Supple-
mentary File S5 and S6.

Interactions of bacteria in the Guaymas Basin microbiome
Bacteria in the Guaymas Basin microbiome exhibited a range of
interactions from being able to interact with other classes of

microbes to interacting with organisms from the same phylum/
class. Members of the proteobacterial class Gammaproteobacteria
are amongst the most abundant and dominant microbial
populations in hydrothermal plumes [33]. In the Guaymas Basin
microbiome, Gammaproteobacteria were predicted to have
amongst the largest number of interactions (Refer Supplementary
File S7 and S8).

(a) all-media (b) GM media

(c) JW1 media (d) Marine broth 2216

Microbe under study

Class Acidimicrobiia

Class Actinobacteria

Class Alphaproteobacteria

Class Bacteroidia

Class Binatia

Class Dehalococcoidia

Class Gammaproteobacteria

Class Gemmatimondates

Class Marinisomatia

Class Nanoarchaeia

Class Nitrososphaeria

Class Nitrospinia

Class Nitrospiria

Class Planctomycetes

Class Poseidoniia

Class Rhodothermia

Class SAR324

Class UBA1135

Class UBA2968

Class UBA8108

Class UBA9160

Class unclassified candidate 
division Zixibacteria

Class Verrucomicrobiae

Class Vicinamibacteria

Legends

Fig. 3 Pairwise MSI interactions of Nitrosopumilus sp UWMA 0263 with other microbes in the community. This chord diagram shows all
possible metabolic interactions between Nitrosopumilus sp. UWMA 0263 and other microbial classes present in the Guaymas microbiome in
four different media conditions (a) all-media, (b) GM media, (c) JW1 media, (d) Marine Broth 2216. All the interacting microbes are grouped
under their corresponding microbial class except Nitrosopumilus sp. UWMA 0263. The chord starts from the donor microbe/class towards
recipient microbe/class. The thickness of the chord represents the number of microbes participating in the interaction from the same class.
The colours are mapped to microbial classes.
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Candidatus Lambdaproteobacteria bacterium UWMA 0318
(LAM318, a member of the phylum SAR324) had the potential to
interact with all other 23 microbial classes of the Guaymas Basin
microbiome in JW1 media. Candidatus Lambdaproteobacteria
bacterium UWMA 0298 (LAM298) showed the most interactions
with microbes of the class Gammaproteobacteria, Bacteroidia, and
Alphaproteobacteria in all the given media, except in GMmedia. The
interactions were very minimal in GMmedia. LAM298 acted as both
donor and acceptor in all the four media. LAM318 also showed
interactions consistently with microbes of class Gammaproteobac-
teria in all the four media. Interactions with Alphaproteobacteria and
Bacteroidiawere seen in all-media and JW1media while interactions
with Poseidonia and Marinisomatia were prevalent in GM media.
LAM318 acted mostly as an acceptor in all the four media.
Meanwhile, Candidatus Handelsmanbacteria bacterium UWMA

0286 (HAN286) had the potential to interact with all other
microbial classes as well as with the other member of its own class

(Candidatus Handelsmanbacteria bacterium UWMA 0300) in
marine broth 2216 (Fig. 5 represents the interactions between
HAN286 and other microbial classes in all four media). Candidatus
Handelsmanbacteria bacteria showed most interactions with
microbes of class Gammaproteobacteria, Poseidonia, Bacteroidia,
and with Alphaproteobacteria in all the given media, except in GM
media. The interactions were very minimal in GM media (Refer
Fig. 5b). In most cases Candidatus Handelsmanbacteria bacteria
acts as a donor except in marine broth 2216 where almost all the
interactions involved Candidatus Handelsmanbacteria bacteria as
receivers (Refer Fig. 5d), though surprisingly the microbial class
with which it interacted were the same in both cases.
Given the abundance of reduced sulphur species in hydrothermal

plumes, we also identified sulphur oxidizing bacteria and observed
their interactions. Bacteria from the SUP05 clade of Gammaproteo-
bacteria (Candidatus Thioglobus) are amongst the most abundant
and active members of plumes. In the Guaymas Basin microbiome,

(b) Candidatus Pacearchaeota archaeon UWMA 0287 donating metabolites frequency

(a) Candidatus Pacearchaeota archaeon UWMA 0287 accepting metabolites frequency

Fig. 4 Metabolic support received and provided by Candidatus Pacearchaeota archaeon UWMA 0287. These plots depict the set of
possible metabolites (a) accepted and (b) received by Candidatus Pacearchaeota archaeon UWMA 0287 from other microbes through the
metabolic exchange. The Y-axis in this plot shows the number of interaction pairs in which that exchange has occurred, with 97 being the
highest number of possible pairs for a microbe in a 98-member community.
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five different Candidatus Thioglobus members represented by
Candidatus Thioglobus sp UWMA 0259 (CTB259), Candidatus
Thioglobus sp UWMA 0272 (CTB272), Candidatus Thioglobus
sp UWMA 0322 (CTB322), Candidatus Thioglobus sp UWMA
0342 (CTB342), Candidatus Thioglobus sp UWMA 0360 (CTB360)
interacted extensively with other organisms. First, CTB259 showed
consistent interactions with other Gammaproteobacteria in all

the four media, interactions with Poseidonia were observed in
three media, except for marine broth 2216. CTB259 acts as
acceptor in most cases. However in marine broth 2216, this
bacterium acted as the donor but still maintained interactions with
Gammaproteobacteria, Alphaproteobacteria, and Bacteroidia which
were previously donating metabolites to Candidatus Thioglobus sp
UWMA 0259 in other media. Second, CTB272 interacted with other

(a) all-media (b) GM media

(c) JW1 media (d) Marine broth 2216

Microbe under study

Class Acidimicrobiia
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Class Poseidoniia

Class Rhodothermia

Class SAR324

Class UBA1135

Class UBA2968

Class UBA8108
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Legends

Fig. 5 Pairwise MSI interactions of Candidatus Handelsmanbacteria bacterium UWMA 0286 with other microbes in the community. This
chord diagram shows all possible metabolic interactions between Candidatus Handelsmanbacteria bacterium UWMA 0286 and other
microbial classes present in the Guaymas microbiome in four different media conditions (a) all-media, (b) GM media, (c) JW1 media, (d) Marine
Broth 2216. All the interacting microbes are grouped under their corresponding microbial class except Candidatus Handelsmanbacteria
bacterium UWMA 0286. The chord starts from the donor microbe/class towards recipient microbe/class. The thickness of the chord represents
the number of microbes participating in the interaction from the same class. The colours are mapped to microbial classes.
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Gammaproteobacteria and Alphaproteobacteria in three media
except GM media where the only interaction was with Nanoarch-
aeia (CPA287). Third, CTB272 was observed as an acceptor in all-
media while in other three media it acted as both an acceptor and
donor. CTB322 showed most interactions with Gammaproteobac-
teria in all the four media, while interactions with Poseidonia were
prevalent only in all-media and JW1 media. This microbe is a
dominant a donor in all the four media conditions. Fourth, CTB342
interacted extensively with other Gammaproteobacteria in all four
media, while interactions with Bacteroidia were seen in media
except marine broth 2216 where the interactions were minimal.
Interactions between Alphaproteobacteria and CTB342 were
observed in only all- media and JW1 media. CTB342 was observed
to act as both a donor and acceptor in all four media. Fifth, CTB360
interacted with other Gammaproteobacteria and Alphaproteobac-
teria in all-media and JW1 media. Interactions were minimal in the
other two media, GM media and marine broth 2216. Interactions
with Nanoarchaeia were observed in all four media. CTB360 was a
dominant acceptor in all-media and JW1 media, while in marine
broth 2216 it acted as a donor.
In addition to Candidatus Thioglobus, other abundant sulphur

oxidizing bacteria in plumes were Sulfitobacter and Thiotrichaceae
species. Sulfitobacter sp UWMA 0305 (SUL305) interacted predomi-
nantly with Gammaproteobacteria and Bacteroidia in media except
GMmedia where the interactions were constrained to Nanoarchaeia
and Planctomycetes. Interactions with Poseidonia were observed
only in all-media and JW1 media. SUL305 was a dominant donor
except in marine broth 2216. THIO311 interacted predominantly
with Gammaproteobacteria and Poseidonia in media except in
marine broth 2216, while interactions with Alphaproteobacteria and
Bacteroidia were common in media except GM media. Thiotricha-
ceae bacterium UWMA 0311 was observed to act as both an
acceptor and donor in all four media (Refer Supplementary File S9
for the MSI scores of all bacteria in the community).

Key microbes in Guaymas Basin microbiome and unique
contributors in the community
To determine the significance of microorganisms in a microbial
community, we conducted CSI analyses (see Support offered by a

group of microbes to the community in Methods) on the Guaymas
Basin microbiome. First, the 98 microbes were clustered into 24
clusters based on the taxonomic class they belonged to. Secondly,
each cluster was “knocked out” from the community to identify
the metabolic capabilities lost by the community, a CSI value
above zero indicates that the cluster has some significance to the
community and an CSI score equal to zero indicates little to no
significance to the community. This analysis was performed in all
four media conditions and eight key microbial classes were
identified based on the CSI scores (Refer Supplementary Table 2
for the list of microbes in each media). These key microbial classes
were Alphaproteobacteria, Dehalococcoidia, Gammaproteobacteria,
Nitrososphaeria, Planctomycetes, Poseidoniia, Rhodothermia, and
UBA8108. Only Poseidoniia were identified to be significant in all
four media conditions (Refer Supplementary Files S10 and S11 for
all the data generated by CSI analysis on Guaymas microbiome
using taxonomic clusters).
Unique contributors in the community are microbes that have

the capability to produce and donate certain metabolites that
cannot be produced by any other microbe in the community. This
was determined by performing CSI analysis where the metabolic
capabilities of a community are studied before and after adding
the microbe of interest (see Unique contributors of the commu-
nity in “Methods”). Unique contributors were identified in
Guaymas community in all four media conditions summing up
to 10 different microbes (Refer Supplementary Table 3). Every one
of these microbes is attributed to one or more unique metabolites
that they can contribute to the community. The unique
metabolites exchanged from these microbes to the community
in different media conditions were agmatine, L-citrulline, L-
ornithine, trans-4-hydroxy-L-proline, 2-oxoglutarate (Fig. 6), which
were mostly metabolites involved in amino acid synthesis or
metabolism pathways. This shows that amino acid auxotrophies
exist in the community and are an important driver of the
exchange of these metabolites from producers to the auxotrophs.
This is potentially explained by the abundance of DPANN archaea
in the community which are known to be auxotrophic for amino
acids [34]. In addition to these metabolites, dihydroxyacetone,
dihydroxyacetone phosphate, and acetone were also exchanged

Agmatine

Dihydroxyacetone phosphate

Agmatine

Agmatine

Agmatine

2-Oxoglutarate

Agmatine

Agmatine
L-Citrulline

L-Citrulline
Agmatine

Agmatine

Agmatine

Agmatine

Agmatine

Agmatine
Agmatine

Agmatine

Agmatine

Agmatine

Agmatine

Agmatine

Agmatine

Agmatine

Agmatine

L Ornithine

Trans 4 Hydroxy L proline

Trans 4 Hydroxy L proline

Trans 4 Hydroxy L proline

Trans 4 Hydroxy L proline

Trans 4 Hydroxy L proline

Trans 4 Hydroxy L proline

Trans 4 Hydroxy L proline

Trans 4 Hydroxy L proline

Trans 4 Hydroxy L proline

Trans 4 Hydroxy L proline

Trans 4 Hydroxy L proline

Dihydroxyacetone phosphate

Dihydroxyacetone

Dihydroxyacetone phosphate

L Ornithine
L Ornithine

L Ornithine

L Ornithine

L Ornithine

Marine_Group_III_euryarchaeote_UWMA_0340

Marine_Group_II_euryarchaeote_UWMA_0275

Marine_Group_II_euryarchaeote_UWMA_0279

Marine_Group_II_euryarchaeote_UWMA_0283

Marine_Group_II_euryarchaeote_UWMA_0352

Planctomycetes_bacterium_UWMA_0276
Methylococcaceae_bacterium_UWMA_0327

Methylococcaceae_bacterium_UWMA_0325

Micavibrio_sp_UWMA_0310

Oceanospirillaceae_bacterium_UWMA_0280

Microbacterium_sp_UWMA_0270

Porticoccaceae_bacterium_UWMA_0313

Planctomycetes_bacterium_UWMA_0329

Fuerstia_sp_UWMA_0333

Rhodospirillales_bacterium_UWMA_0295

Gammaproteobacteria_bacterium_UWMA_0260

Verrucomicrobiales_bacterium_UWMA_0332

Gammaproteobacteria_bacterium_UWMA_0273

Marine_Group_III_euryarchaeote_UWMA_0284

Gammaproteobacteria_bacterium_UWMA_0291

Candidatus_Marinimicrobia_bacterium_UWMA_0285

Gammaproteobacteria_bacterium_UWMA_0302

Candidatus_Nitrosopelagicus_sp_UWMA_0359

Planctomycetaceae_bacterium_UWMA_0346

Planctomycetes_bacterium_UWMA_0265

Planctomycetes_bacterium_UWMA_0294

Sulfitobacter_sp_UWMA_0305

Verrucomicrobiales_bacterium_UWMA_0292

Verrucomicrobiales_bacterium_UWMA_0320

Candidatus_Marinimicrobia_bacterium_UWMA_0306

Candidatus_Marinimicrobia_bacterium_UWMA_0309

Gammaproteobacteria_bacterium_UWMA_0281

Gammaproteobacteria_bacterium_UWMA_0343

Gemmatimonadetes_bacterium_UWMA_0339

Acidimicrobiia_bacterium_UWMA_0264

Acidimicrobiia_bacterium_UWMA_0303

Candidatus_Thioglobus_sp_UWMA_0342

Gammaproteobacteria_bacterium_UWMA_0258

Gammaproteobacteria_bacterium_UWMA_0282

Gemmatimonadetes_bacterium_UWMA_0308

Gemmatimonadetes_bacterium_UWMA_0334

Unique contributors in all-media

Legend

Agmatine

2-Oxoglutarate

L-Citrulline

Trans 4 hydroxy L proline
L-Ornithine

Dihydroxyacetone
Dihydroxyacetone phosphate

Edge mapped to metabolites
exchanged

Node mapped to role of 
microbes

Unique contributors

Recipient microbes
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by these contributors to the community (Refer Supplementary
Files S12 and S13 for all the data generated by CSI analysis on
Guaymas microbiome using individual microbes).

Resource competition in the Guaymas Basin microbial
community
To study metabolic resource competition in the community, we
employed a metric called Metabolic Resource Overlap (MRO) [35, 36].
Briefly, MRO is the maximum possible overlap of the minimal
metabolite set of all members of the community required for their
growth. MRO is solely dependent on the metabolism of the microbes
and hence the lesser the MRO, more complementary the microbial
metabolisms to each other in the community. In this study, we have
computed MRO for different communities including an anaerobic
digestion microbiome (ADM) [37], gut microbiome [38], East Pacific
Rise L hydrothermal vent microbiome, East Pacific Rise M hydro-
thermal vent microbiome, and Guaymas Basin hydrothermal plume
microbiome. In each microbiome dataset, MRO was observed for
community size ranging from 2 (pairwise community) to 10 (10-
member community) (Refer Studying the level of competition in the
community in Methods). On comparing the MRO values of diverse
microbial communities pertaining to different metabolic niches, we
observed the MRO of ADM and gut microbiomes which belong to
relatively similar niches were relatively close while that of hydro-
thermal vent microbiomes were significantly lower than that of
former (Fig. 7). Overall, these MRO values agree with our findings
from the MSI analyses since lesser the overlap in metabolism, the
higher the potential for interaction between microbes [35].

Horizontal gene transfers (HGTs) in the Guaymas Basin
microbiome
HGT is one of the survival strategies adopted by microbes to
compete in challenging ecosystems [39]. During this process,
microbes acquire novel DNA from their partners or from the
environment and evolve their metabolic capabilities [40, 41].
Microbes coexisting as communities undergo HGT events to
enforce cooperation and HGT is also helpful in structuring the
communities [42]. Therefore, we studied HGT events in the
community using a tool called MetaCHIP, which allowed for
detecting HGT events in our metagenomic data. A list of 214 HGT
events was detected in the community (Fig. 8(a)). On functional
annotation, we observed that most of the HGT genes were
responsible for translation machinery, energy production and

conversion, amino acid metabolism, and transport mechanisms.
The gene transfers occurred across genera and species, but there
were no specific patterns observed at that level. However, zooming
out to the level of classes, HGTs were more frequently observed
between Gammaproteobacteria and Alphaproteobacteria (Fig. 8(b)).

DISCUSSION
In this study, we explored the use of systems-level modelling of
hydrothermal plume microbial communities in the Guaymas
basin. Microbes in these extreme habitats are unique in different
ways extending our knowledge of the diversity of life on earth.
These microbes are adapted to chemoautotrophy due to their
scarce exposure to sunlight. With metagenomic data corre-
sponding to 98 microbes from Guaymas Basin hydrothermal
plumes, genome-scale metabolic models were built using
CarveMe. The main focus of our research was to shed light on
the possible interactions that can be observed in these complex
deep-sea microbiomes. Insights were obtained for metabolic
interactions in the community by studying the metabolic
exchanges and genetic interactions in the community by
studying HGTs.
The major focus of our study was unveiling the possible

interactions between archaea and bacteria. One of the interesting
predictions was about archaeon CPA287 belonging to class
Nanoarchaeia. This archaeon was one of the most dependent
microbes in Guaymas microbiome (remains an acceptor in all high
MSI pairwise interactions). We hypothesize that this observation is
likely due to the microbes of class Nanoarchaeota being devoid of
core metabolic pathways as reported previously and hence might
lead a parasitic or symbiotic lifestyle [29–31, 43, 44].
At the same time, not all archaea in Guaymas microbiome are

metabolically dependent on another microbe. Archaea of class
Poseidoniia (Phylum Euryarchaeota) can act as supporters to
bacteria and other archaea (Refer Supplementary File S14). This
is likely because these microbes have greater metabolic
capabilities in comparison to other microbes in the Guaymas
microbiome. This can be due to the metabolic capabilities
acquired through HGT events [45]. HGT analysis showed that
Poseidoniia did take part in HGTs, and most of the genes
transferred were related to metabolism. This is potential cause
for Poseidoniia becoming dominant archaea in the Guaymas
microbiome.

Fig. 7 Metabolic Resource Overlap scores of different microbiomes compared to the Guaymas microbiome. This violin plot represents the
distribution of the MRO score of four different microbial communities. 1. Anaerobic Digestion Microbiome (ADM) (Blue) 2. Gut microbiome
(Orange) 3. East Pacific Rise (EPR) L hydrothermal vent (active vent) microbiome (Green) 4. East Pacific Rise (EPR) M hydrothermal vent (inactive
vent) microbiome (Red) 5. Guaymas microbiome (Violet). The MRO scores (Y-axis) are determined for different community sizes (X-axis), from a
2-member community to a 10-member community.
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Microbes of class Gammaproteobacteria form the majority of the
Guaymas microbiome, which might be due to their ability to
interact with most microbes in the community. In most cases,
Gammaproteobacteria act as donors due to the large metabolic
capability of thesemicrobes in the hydrothermal plume community.
Results from genome-scale analyses of MAGs generated using
METABOLIC [9] also confirmed that the metabolic contributions
made by Gammaproteobacteria were the highest among the
Guaymas community. Gammaproteobacteria are also recognised
for their contributions towards nitrogen fixation, ammonia oxida-
tion, and denitrification in hydrothermal vent ecosystems [4, 46, 47].
Metabolic modelling showed a majority of microbial activity

involves the exchange of oxygen, amino acids like serine,
methionine, amino acid intermediates like 4-Aminobutanoate,
indole-3-acetaldehyde and elements involved in the carbon cycle
like CO2, acetaldehyde, and malate, and sulphur-based compounds
like methanethiol and H2S. This might suggest that metabolites like
CO2, H2 and H2S are important to the microbes in this environment.
Microbes in hydrothermal vent ecosystems rely on the oxidation of
sulphur, and sulphur-based reduced compounds, and hydrogen
oxidation for energy metabolism [48, 49]. Thus, these metabolites
are likely to play major roles in this ecosystem. It was also observed
that the absence of these metabolites in media was always
compensated by exchange from other microbes. The absence of
CO2 in GM media and Marine broth 2216 and the absence of H2S in
JW1 media were all compensated by metabolic exchanges.
The unique metabolites predicted to be exchanged in the

community in different media conditions, were agmatine, L-
citrulline, L-ornithine, trans-4-hydroxy-L-proline, and 2-oxogluta-
rate, which were mostly the metabolites involved in amino acid
synthesis or metabolism pathways. This likely implies that amino
acid auxotrophies exist in the community and drives the exchange
of these metabolites from producers to auxotrophs. The extensive
occurrence of metabolic handoffs in hydrothermal plume com-
munities provides functional interdependency between microbes,
leading to auxotrophies. Thus, the community achieves efficient
energy and substrate transformations [50].
In summary, this research focused on unveiling the possible

interactions between archaea and bacteria in the Guaymas
hydrothermal plume microbiome by constructing metabolic net-
works of corresponding microbes. This approach allowed us to
predict possible metabolic exchanges between individual microbes,
and the metabolic capabilities of microbes in different media
conditions, which are indecipherable to this extent by experimental
approaches. The approaches described herein have led to many
interesting hypotheses, providing a fertile ground for future wet lab
experiments to further understand the organisation of the Guaymas
hydrothermal plume microbiome, and deep-sea microbiomes
broadly, to gain better insights into the cultivation of uncultivated
organisms in consortia. Studying higher-order interactions of
microbes in this community has highlighted unique metabolic
contributors amongst microbes in the community. While metabolic
modelling provides insights into metabolic interactions, HGT
analysis helped explore gene transfers between microbes in the
community. Overall, the approach here is fairly generic and can be
applied to any microbial community to generate testable hypoth-
eses on experimentally unculturable microbes.

METHODS
Figure 1 provides a pictorial representation of the approaches used in this
study. This research work starts with building genome-scale metabolic
networks of microbes of the communities from their respective
metagenomically-assembled genomes.

Metagenomic datasets and model building
The Guaymas hydrothermal plume microbiome data [33] consists of
metagenomically assembled genomes (MAGs) of 98 microbes. These

MAGs fulfil the MIMAG high-quality criteria [51] on completeness and
contamination which are available in our GitHub repository. Only these
MAGs were used for further reconstructing the genome-scale metabolic
models. Briefly, the samples were collected from plumes of Guaymas
Basin, the Gulf of California and high-throughput shotgun sequencing
was performed on the DNA. Metagenomic sequences were assembled
into scaffolds and binned into corresponding metagenomically
assembled genomes (MAGs). A detailed description of sampling,
DNA extraction, and processing of MAGs is described in detail
elsewhere [33, 52].
In this study, 98 MAGs corresponding to 98 OTUs were used to

construct draft genome-scale metabolic models using CarveMe [21].
Along with this, we also used the data from a recent comparative study
of the East Pacific Rise microbiome [44] for studying the level of
competition in the community (MRO analysis) discussed later in the
article (see Studying the level of competition in the community). Given
that these bacteria and archaea remain mostly uncultured and poorly
characterized, the metabolic models were reconstructed without any
gap-filling to avoid any biases. Hence, these draft metabolic models only
represented the metabolism captured in the MAGs and which could be
annotated.

Determining the metabolite environment of Guaymas
hydrothermal vent ecosystem
Four different metabolite conditions were used for performing all the
analyses in this study: (1) Guaymas media (GM) which simulates conditions
in the hydrothermal plumes of Guaymas Basin- MMJHS medium [53] with
methanol, (2) JW1 media [54] with sulphite, thiosulfate, elemental sulphur,
sodium sulphide, cysteine hydrochloride, methanol, (3) Marine Broth 2216
[55] with sulphite, thiosulfate, elemental sulphur, sodium sulphide, cysteine
hydrochloride, methanol and (4) components of all three media combined
(referred as “all-media” hereon). Supplementary File S15 gives the list of all
metabolites in all four media conditions.

Predicting metabolic capabilities of microbes in the
community
MetQuest [56], a Python package built based on a graph-theoretic
algorithm was employed to predict metabolic reactions that can be active
and inactive in the given media conditions. This is achieved in two steps:

1. Constructing metabolic networks by assembling reactions into
pathways using a dynamic programming-based approach.

2. Identifying all the reactions that are active (visited) and inactive
(stuck) for a given set of starting/seed metabolites.

These seed metabolites are essentially the components of nutrient
media on which the community needs to be grown or simulated. Since the
algorithm requires only the topological information of metabolic networks,
just the draft metabolic reconstructions of microbes are sufficient. The
components in the media are important because the analyses performed
in this study depends mainly on the environmental metabolome in which
they are present (Supplementary File S15). This is due to the fact that
metabolic support received or provided by a microbe to other members of
the community varies with the media conditions. The metabolites that can
be produced from the active reactions tells the metabolic capability of the
microbes in the given media.

Predicting metabolic dependencies of microbes in the
community
Metabolic dependence is the dependence of one microbe on another
microbe in the community for the activation of certain inactive (stuck)
metabolic reactions. A reaction is active only when all the required
substrates are available; this unavailability of substrates gives rise to
dependencies. It was observed that the number of stuck reactions
decreased when microbes were in a community versus when in individual
state. This was due to the activation of previously inactive reactions led by
availability of metabolites through the exchange of metabolites from other
microbes. These reactions are referred as relieved reactions. A score called
Metabolic support index (MSI) [57] was used to determine this metabolic
dependence of microbes. The formula for calculating MSI goes as follows:

MSI AjA ∪ Bð Þ ¼ NAjA � NAjA ∪ B

NAjA
(1)
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where NAjA ∪ B represents the number of stuck reactions (reactions that are
inactive in the given media condition) in A in the presence of B and NAjA is
the number of stuck reactions in A when A is in isolation. Each reaction
stuck/not executable is the loss of a metabolic capability of the metabolic
network and MSI calculates the gain of metabolic capability. MSI gives
distinct values for both the members of a pair, i.e., MSI of A in A ∪ B (or just
AB, for brevity) community is different from MSI of B in AB, and hence it is a
directional quantity. As an example, if MSI of A in AB is 0.041, this means
that 4.1% of inactive reactions in microbe A can be activated by microbe B
by exchange of required metabolites that were not available to microbe A
in the absence of B. This value can be as high as one (MSI = 1) and as low
as zero (MSI = 0). This step is called MSI analysis and was performed for all
possible microbial pairs (98C2) in the community.

Visualising pairwise interaction networks
In order to visualise the results of pairwise MSI analysis, metabolic
interaction networks were constructed. Different types of network
visualisation were used viz., Cytoscape [58] for visualising interactions
between the microbes. In the “MSI network”, each node corresponds to the
microbe and an edge between them indicates a potential interaction, i.e. a
non-zero MSI value. Since MSI is directional, the interactions are captured
via directed networks. The node on the arrowhead side is the “receiving”
microbe while the node on the source side is the “supporting” microbe.
Another way of visualising the metabolic interactions was using chord

diagrams. The chord diagrams were generated using the R package Chord
diagrams, using home-grown scripts (shared via GitHub). For this, initially
the microbes were grouped into their corresponding microbial classes and
then the interaction between each of the 98 microbes with microbial
classes of Guaymas microbiome was represented using the chord
diagrams. Again, the node on the arrowhead side is the “receiving”
microbe/class while the node in the source side is the “supporting”
microbe/class, and the chord thickness was mapped to the number of
microbes in a class that interact with the target microbe. All the networks
generated for the archaea and bacteria under study are available in
Supplementary File S4.

Predicting possible metabolic exchanges in all microbial pairs
Metabolic exchanges are the metabolites transferred from one microbe to
another leading to the revival of stuck reactions. A list of stuck and relieved
reactions was obtained for all the microbes in the respective communities.
The reactants of relieved reactions that are transport reactions are the
metabolites received during exchange.

Identifying higher order interactions (CSI analysis)
Support offered by a group of microbes to the community. Here, the
microbes in the community were pooled into different clusters based on
the microbial classes they belong to such that each microbial class forms a
cluster. There were 24 clusters formed corresponding to the 24 microbial
classes present in the Guaymas community (Refer Supplementary File S16
for the list of clusters and the microbes in each cluster). The support
offered by a cluster as a whole on the community can be determined by
knocking out clusters and studying the reactions relieved in the presence
of a particular cluster. Considering X as the microbial community and A the
cluster to be removed, then ~A is the community without the cluster A. This
can be represented as ~A ¼ ðX � AÞ (ref. [59]). Then the formula for support
index becomes

CSI ~AjX� � ¼ N~Aj~A � N~AjX
N~Aj~A

(2)

where N~AjX is the number of stuck reactions in the community ~A in the
presence of cluster A (note that, stuck reactions of microbes from cluster A
will not be considered), and N~Aj~A captures the number of stuck reactions in
the community when cluster A is removed from the community.

Unique contributors of the community. A unique contributor of a
community is a microbe that has the potential to expand the metabolic
niche of a community by contributing a unique metabolite to the
community, thereby activating metabolic capabilities in the microbes. In
order to determine the potential of a microbe A to support its community,
the metabolic network of the community can be simulated with and without
microbe A. Then, the support offered by A is the fraction of reactions relieved
in the presence of A. Here, X is the microbial community and A is the microbe

to be removed, then ~A is the community without the microbe A. This can be
represented as ~A ¼ ðX � AÞ. The formula for support index is the same as
Eq. 2. Every member of the community can be knocked out one by one to
study the support offered by every microbe in the community. By this
method any unique contributors in the community can be identified.

Predicting HGT events. HGT events can be studied from metagenomic
datasets of a community using MetaCHIP [60]. HGT analysis was
performed using MetaCHIP v1.7.5 on all phylum, class, order, family
and genus levels of taxonomic classification. Broadly, MetaCHIP first
clusters query MAGs according to phylogenies and performs an all-
versus-all blastn for all genes across genomes (parametric step). Next,
the blastn matches for each gene is compared across taxa and is
considered to be an HGT event if the best match comes from a non-self
taxa. MetaCHIP then uses a phylogenetic approach to (i) reconcile
differences between species and gene trees using RANGER-DTL [61] and
(ii) identify the direction of the putative transfer event. The enumerated
HGT events can be visualised using the circlize package in R. Finally, egg-
NOG mapper [62] is used to map the HGT genes to corresponding
functional categories.

Studying the level of competition in the community. It is possible to
predict the level of competition in a community by knowing the nutrient
requirements of microbes in the community. We used SMETANA [35] to
calculate the metabolic resource overlap (MRO), which is the maximal
overlap of minimal nutrient requirements of members of a community.
SMETANA is formulated as a mixed linear integer problem (MILP) that
enumerates the set of essential metabolic exchanges within a commu-
nity of N species with non-zero growth of the N species subject to mass
balance constraints. SMETANA does not use any biological objective
functions which makes it unique. For every member i in a group of N
distinct microbes, SMETANA enumerates the set of minimal nutritional
components required for growth, Mi. Nutritional requirement sets Mi

were used to compute MRO as described in the original paper. For the
comparative analyses across different ecosystems, 1000 random com-
munities were generated for community sizes ranging from 2 to 10 for
four different ecosystems, viz. Guaymas [33], East Pacific Rise [44],
anaerobic digestion [37] and the gut [38]. This analysis is called MRO
analysis.
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